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1. Introduction     

When an animal is exposed to antigens an efficient immune response is developed in order 
to defend the organism where specific antibodies are produced to combat them. The best 
antibodies multiply (cloning) and are improved (hypermutation and replacement) while 
new antibodies, produced by the bone marrow, are generated. Thus, if the organism is again 
attacked by the same antigen a quicker immune response takes place. This scheme of 
adaptation is known as clonal selection and affinity maturation by hypermutation or, more 
simply, clonal selection (Garrett, 2004). Computational methods inspired by the biological 
immune system are called Artificial Immune Systems (AISs). Immune-inspired algorithms 
have found applications in many domains. One of the most important area, the 
optimization, is a mathematical principle largely applied to design and operational 
problems in all types of engineering, as well as a tool for formulating and solving inverse 
problems such as parameter identification in scientific and engineering situations. When 
applied to optimization problems, the AISs are stochastic populational search methods 
which do not require a continuous, differentiable, or explicit objective function, and do not 
get easily trapped in local optima. 
However, the AISs, as well as other nature-inspired techniques, usually require a large 
number of objective function evaluations in order to reach a satisfactory solution. As 
modern problems have lead to the development of increasingly complex and 
computationally expensive simulation models, this becomes a serious drawback to their 
application in several areas such as Computational Structural Mechanics, Reservoir 
Simulation, Environmental Modeling, and Molecular Dynamics. Thus, a good compromise 
between the number of calls to the expensive simulation model and the quality of the final 
solutions must often be established. 
A solution to this problem is to modify the search process in order to obtain either a 
reduction on the total computational cost or an increase in the efficiency of the optimization 
procedure. The solution considered here is the use of a surrogate model (or metamodel), 
which provides an approximation of the objective function, replacing the computationally 
intensive original simulator evaluation. Additionally, the surrogate model can help to 
smooth out the objective function landscape, and facilitate the optimization process. 
The idea of reducing the computation time or improving the solutions performing less 
computationally expensive function evaluations can be found in the evolutionary 
computation literature (Bull, 1999; El-Beltagy et al., 1999; Jin, 2002; Zhou, 2004; Rasheed, O
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2005; Forrester, 2009). Exist many surrogate models available: some examples are 
polynomial models (Response Surface Methodology) (Grefenstette & Fitzpatrick, 1985), 
Artificial Neural Networks (Ferrari & Stengel, 2005), Kriging or Gaussian Processes 
(Kecman, 2001), Radial Basis Functions (Giannakoglou, 2002; Forrester, 2009), and Support 
Vector Machines (Emmerich et al., 2006). In addition, several surrogates may be derived 
from physical or numerical simplifications of the original simulation model. 
In this paper we propose an artificial immune system assisted by a Similarity-Based 
Surrogate Model (SBSM) in which the objective is to allow the AIS to evolve for a larger 
number of generations, but still using a fixed number of expensive evaluations, in order to 
obtain improved final solutions. 
This chapter is organized as follows. Section 2 gives a formulation for the optimization 
problems considered here. AISs are presented in Section 3. Sections 4 and 5 present the 
Surrogate Models and the surrogate-assisted AIS, respectively. The computational 
experiments and a discussion of the results obtained can be found in Section 6. The 
concluding remarks are given in Section 7. 

2. The optimization problem 

The class of optimization problems considered here can be written as 

nixxx

tosubject

xfMinimize

U
ii

L
i ,,1,

)(

A

f

=≤≤

 

where )(xf
f

 is the objective function to be optimized (it is easy to see that a maximization 

problem can also be solved by minimizing )(xf
f

− ), n  is the number of design/decision 

variables, and the search space is bounded by the constraints nixxx U
ii

L
i ,,1, A=≤≤ . 

In practice, the value of )(xf
f

 is normally computed by means of a simulator. Thus, the 

evaluation of a candidate solution is often computationally expensive. In the proposed 

algorithm, the individuals evaluated by the original function (i.e., solutions evaluated 

exactly) are stored in a database (memory cells). The population of memory cells is used to 

construct a surrogate, based on similarity, which is used along the optimization procedure 

to perform extra (surrogate) evaluations, resulting in a larger number of total (surrogate 

plus exact) evaluations. Those extra surrogate evaluations involve a simple procedure, with 

relatively negligible computational cost. 

3. Artificial immune systems 

AISs are computational techniques, inspired by the biological immune system, which can be 
used to solve complex real world problems. In optimization problems (Bernardino & 
Barbosa, 2009), the AIS algorithms evolve improved solutions by means of natural immune 
mechanisms, such as clonal selection, immune network theory, vaccination, or other 
immune system concepts. 
In general, an immune optimization algorithm will have a population of antibodies 
(candidate solutions) and another composed by the antigens (objectives) that the antibodies 
attempt to reach or match (optimize). The main differences among the AIS techniques 
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applied to optimization problems reside in which natural immune mechanism is considered 
to evolve the antibodies, i.e., how the candidate solutions evolve. 
According to clonal selection theory – the immune mechanism used by the algorithm 
considered here – there is a selection process which leads to the evolution of the immune 
system repertoire during the lifetime of the individual (Burnet, 1959). Also, according to this 
theory, on binding with a suitable antigen, activation of lymphocytes occurs. The clonal 
expansion is the process whereby clones of the activated lymphocyte are produced 
expressing receptors identical to the original one that encountered the antigen. Any 
lymphocyte that has receptors specific to molecules of its own body must be deleted (i.e., 
these lymphocytes will not be cloned). Therefore, only an antigen may cause a clonal 
expansion. Then, the clonal selection culminates in the increase in the average affinity 
between the antibodies and antigens due to the somatic hypermutation and selection 
mechanisms of clonal expansion. It is responsible for the fact that upon a subsequent 
exposure to the antigen, a stronger immune response is produced (AISWeb, 2009). 
The clonal selection process is directly responsible for the evolution of the candidate 
solutions. The affinity maturation, as it is also known, is a mutation of the individuals 
applied with a high rate, which is inversely proportional to the fitness of the antibody 
(affinity antibody-antigen), unlike the standard mutation of Evolutionary Algorithms (EAs). 
Thus, inferior individuals are subject to more modification than the better ones, which need 
a finer tuning. When applied alone, this procedure is a random search. Therefore, a selection 
method is necessary to keep the good solutions, eliminate the worst ones, and maintain 
diversity. 

3.1 Clonal selection algorithm 
Based on the clonal selection theory, de Castro and Von Zuben proposed an AIS algorithm 
that performs computational optimization and pattern recognition tasks. CLONALG, or 
CSA (as it was initially called), evolves the antibodies inspired by the concept of clonal 
selection. In this method, each antibody is cloned, hypermutated (mutation applied with 
high rate), and those with higher affinity are selected. The main features of this technique 
are (i) the mutation rate, normally inversely proportional to the affinity of the antibody with 
respect to the antigens and (ii) the absence of recombination operators (such as crossover in 
GAs). The clonal selection principle can be interpreted as a remarkable microcosm of 
Darwinian evolution (Cziko, 1995) and can be considered an evolutionary algorithm. 
In (de Castro & Zuben, 2000) the CSA was proposed as “a powerful computational 
implementation of the clonal selection principle” and applied to two optimization 
(multimodal optimization, and a 30-city instance of the Traveling Salesman Problem) and 
one pattern recognition problems (binary character recognition) showing its potential as a 
meta-heuristic to solve multimodal and combinatorial optimization problems. 
The improved CSA is known as CLONALG and was proposed in (de Castro & Zuben, 
2002). Benchmark problems were considered in order to evaluate the performance of the 
algorithm as well as a sensitivity analysis with respect to the user-defined parameters was 
presented. 
Figure 1 shows CLONALG’s pseudo-code which is inspired in the algorithm presented in 
(Bernardino & Barbosa, 2009). 

In the algorithm of Figure 1, antibodies is a population of candidate solutions, β defines the 
number of clones generated by each antibody (it can be the same for all antibodies or 

proportional to their affinities), ρ is a parameter used to define the mutation rate (de Castro 
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& Zuben, 2002), nSelection is the number of the best antibodies selected to be cloned, and 
bestAffinity is the best value found by the AIS. Also, in the same algorithm, the following 
functions must be considered: “calcAffinities” calculates the affinities between each 
antibody and all antigens (in optimization problems this value often corresponds to the 
value calculated by the objective function); “select” selects the nSelection best individuals to 
be cloned; “clone” clones the selected antibodies; “hypermutate” applies the somatic 
hypermutation in generated clones; “update” replaces some antibodies by other ones from 
hypermutated clones; “stopCondition” verify if the stop condition is satisfied; and 
“getBestAffinity” returns the best solution found. 
 

 

 Fig. 1. A CLONALG pseudo-code for optimization problems. 

The “update” method used here selects the best candidate solutions in the union of the 
antibody population and the newly generated set of clones. The idea is to use a replacement 
method as simple as possible, considering that the focus of this work is the use of the 
surrogate model. A pseudo-code for the  “update” procedure can be found in Figure 2. 
 

 

Fig. 2. Pseudo-code for “update” from Figure 1. 

More information about artificial immune algorithms for optimization problems can be 
found in (Bernardino & Barbosa, 2009). 

4. Surrogate models 

Surrogate modeling, or meta-modeling, can be viewed as the process replacing the original 
evaluation function (a complex computer simulation) by a substantially less expensive 
approximation. The surrogate model should be simple, general, and keep the number of 
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control parameters as small as possible (Blanning, 1974). Similarity-Based Surrogate Models 
(SBSMs), an example of such surrogates, will be described in the following sections. 

4.1 Similarity-Based Surrogate Models (SBSMs) 
In contrast to “eager” learning algorithms such as Neural Networks, Polynomial Response 
Surfaces, and Support Vector Machines, which generate a model and then discard the 
inputs, the Similarity-Based Surrogate Models (SBSMs) store their inputs and defer 
processing until a prediction of the fitness value of a new candidate solution is requested. 
Thus, SBSMs can be classified as “lazy” learners or memory-based learners (Aha, 1997) 
because they generate the output value by combining their stored data using a similarity 
measure. Any intermediate structure or result is then discarded. 
Fitness Inheritance, Fitness Imitation, and the nearest neighbors method can be classified as 
SBSMs. The following sections present these approaches and describe in detail the nearest 
neighbor method, which is the surrogate model used here. 

4.1.1 Fitness inheritance 
First proposed in (Smith et al., 1995), the fitness inheritance surrogate model has been 
applied in several problems (Bui et al., 2005; Ducheyne et al., 2003; 2007; Salami & 
Hendtlass, 2003; Sastry et al., 2004; Zheng et al., 1997) and algorithms (Pilato et al., 2008; 
Reyes-Sierra & Coello, 2005). In this method, all the individuals in the initial population 
have their fitness value calculated by the exact objective function evaluator. Thereafter, a 
fraction of the individuals in the population has its affinity (or fitness) values inherited from 
their parents, while the remaining candidate solutions are evaluated using the original 
(exact) objective function. 

Given a candidate solution hx  generated from the parents 
ipx , with 2,1=i , the surrogate 

evaluation is given by: 
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where ),( hpi xxs  is the similarity between pix  and hx .  
This kind of surrogate model assumes that the offspring are similar to their parents and thus 
their fitness values are determined as the weighted average of the parent’s fitness. Although 
this approach introduces some noise in the search process and may adversely affect the final 
solution found (Ducheyne et al., 2007), it can be orders of magnitude less expensive than the 
original fitness evaluation. In the inheritance procedure an entire simulation is replaced by a 
technique with negligible computational cost, which may lead to large computational 
savings which grow with the rate of application of the inheritance technique and the cost of 
the fitness function evaluation (Chen et al., 2002; Sastry et al., 2001). 

4.1.2 Fitness imitation 
In the fitness imitation surrogate model (Jin, 2005) the individuals are clustered into groups. 
This task can be performed by any clustering technique (Kim & Cho, 2001). Each cluster can 
be represented by a candidate solution. The choice of the representative individual can be 
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made either deterministically or randomly (Mota & Gomide, 2006). The representative 
individuals are evaluated exactly while the other individuals in the same cluster will be 
approximated by the value of the representative solution and a similarity measure. When a 
new individual does not belong to any existing cluster it is evaluated by the original 
function. The term Fitness Imitation is used in contrast to Fitness Inheritance. 
Figure 3 shows an illustration of Fitness Imitation, where the clusters are represented by 
dotted circles. The candidate solutions inside the same dotted circles belong to the same 
cluster. Black squares denote the representative individuals, i.e., those evaluated by the exact 
function. The remaining individuals (black circles) are evaluated by the surrogate model. 
 

 
 Fig. 3. Illustration of the Fitness Imitation organization. 

4.1.3 Nearest neighbors 

The nearest neighbors ( NNk −μ ) is a surrogate model where the fitness values calculated 

are based on a set of samples μ , where ημ = , evaluated exactly. Given a candidate 

solution hx  then we have that 
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where ),(
ih xxs μ is a similarity measure between hx  and μμ ∈

i
x  of the μk  candidate 

solutions most similar to hx , and u  is set to 2. 
For the binary-coded AIS, two similarity measures can be used. The first one, based on the 
Hamming distance, is given by 

c
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while the similarity measure based on the Euclidean distance is written as 

),(

),(
1),(

UL
E

ihE
ih

xxd

xxd
xxs −=  

where ),( ihH xxd  and ),( ihE xxd  are respectively the Hamming and Euclidean distances 

between hx  and ix , and cl  is the chromosome length.  
The NNk −μ  technique has several advantages: it is general, does not require any 

predefined functional form nor rely on any probability distribution, the variables can be 
either continuous or discrete, the databases are easy to maintain and can be updated when it 
is necessary to add or remove candidate solutions. 

Although there is no training procedure associated, the computational cost for evaluating an 

individual is )( ημkO  because of the search for the nearest neighbors. 

5. Surrogate-assisted artificial immune system 

Due to its simplicity, the Nearest Neighbors technique has been chosen to be used as the 
surrogate model. Although the Fitness Inheritance surrogate model is simpler than the 
Nearest Neighbor surrogate, it cannot be directly applied to the AIS algorithm. In the AIS, 
offspring are generated by cloning and hypermutation, and hence the fitness value of only 
one parent is available, while Fitness Inheritance requires at least two parents in order to 
build a surrogate evaluation. 
Once a surrogate model has been chosen, there are many ways of introducing it into the 
original algorithm. Several approaches have been made in general surrogate-assisted 
evolutionary frameworks such as: integrating GAs with surrogate approximations (Queipo 
et al, 2005; Regis & Shoemaker, 2004) or landscape approximations (Knowles, 2006), the use 
of surrogate-guided evolutionary operators (Rasheed, 2002), surrogate-assisted local search 
(Lim et al, 2008; Wanner et al. 2008), accelerating the optimization process using surrogate 
models, pre-selection approaches (Giannakoglou, 2002; Praveen & Duvigneau, 2009), 
multiple surrogates (Acar & Rais-Rohani, 2008; Lim et al, 2008; Sanchez et al. 2007), and co-
evolution of fitness predictors (Schmidt & Lipson, 2008). However, no Surrogate-Assisted 
AIS algorithm seems to have been proposed in the literature so far. 
In this chapter we introduce the surrogate models into the immune inspired algorithm cycle 
by means of a model management procedure which, in each iteration, uses in a cooperative 
way both surrogate and exact models.  

The first model management used here will be referred to as Random Selection (RS), i.e., a 

candidate solution is evaluated by the exact function, with probability 10 ≤≤ smp . 

Therefore, evaluation by the surrogate model will occur with probability smp−1 . It is 

important to notice that  RS applies to all clones except the ones from the best candidate 

solution which are evaluated exactly. This is due to the fact that the Nearest Neighbors 

surrogate model (Section 4.1.3) never generates a value better than the best neighbor. As a 

result, βλλ )1(ˆ −≤  new antibodies are chosen at random to be evaluated by the surrogate 

model while λλβ ˆ−  candidate solutions are evaluated by the exact objective function, 

where λ  is the population size. It is easy to see that 0ˆ1 =⇒= λsmp  and the standard 

CLONALG is recovered. However, 0=smp  does not mean that all evaluations will be 

performed by the surrogate model. In fact, in this case, only the clones from the best 

www.intechopen.com



 Evolutionary Computation 

 

186 

antibody will be evaluated exactly. The modification is confined to the procedure 

“calcAffinities” from pseudo-code presented in Figure 1, where the decision is made as to 

using the surrogate model or not. A pseudo-code for  the “calcAffinities” procedure can be 

found in Figure 4. 
 

 

Fig. 4. Pseudo-code for  “calcAffinities” from Figure 1 – Random Selection (RS) model 
management. 

It is important to notice that the initial population of candidate solutions is evaluated 

exactly. Also, every individual evaluated by the exact function is stored to be used by the 

surrogate model. In the immunological paradigm, this database of antibodies corresponds to 

the memory-cells set: a sample of representative cells stored with the objective of improving 

the combat against the antigens in the subsequent attacks. 

The Surrogate-Assisted AIS developed here will be referred to as SAAIS. 

6. Computational experiments 

The impact of the introduction of the surrogate model into the CLONALG algorithm is 

analyzed in this section. The original algorithm and the proposed one (using a surrogate 

model) are evaluated by means of a set of benchmark unconstrained minimization problems 

from the literature. The performance comparison is made varying the value of the parameter 

psm from 1 (original algorithm) down to 0.1 (in steps of 0.1). As psm decreases, more surrogate 

evaluations are introduced into the evolutionary optimization process. In both cases the 

genotypical (Hamming) as well as the phenotypical (Euclidean) similarity measures are 

analyzed. Except for the use of the surrogate model, the algorithms are compared under the 

same set of parameters. The algorithmic parameters of the SBSM-CLONALG are 

summarized in Table 1. 

Table 2 shows the set of 8 benchmark unconstrained minimization problems, with the 

respective name, explicit representation, maximum number of exact evaluations 

(simulations, fMaxN ), and lower and upper bounds ( [ ]UL xx ; ). These functions were chosen 

because they are commonly used in the literature and have different features (such as long 

narrow valleys, discontinuities, noise, and a large number of significant local optima). In all 

cases, the dimension considered is 10=n  and the optimal objective function value is 

0* =f . 
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Parameters Value 

Population size ( λ ) 30 

Representation Binary Gray Code with 20 bits 

ρ (used by hypermutation) 4 

β (number of clones) 1, 2, and 3 

μk (number of neighbors) 2 and 4 

Stop criterion Maximum number of exact evaluations ( fMaxN ) 

Number of independent runs 50 

New individuals randomly generated 0 

Table 1. Parameters used in all computation experiments 

# Name Explicitly Function fMaxN  [ ]UL xx ;  

01F  Sphere ∑
=

n

i
ix

1

2  2000 [ ]12.5;12.5−  
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n

i
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1
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−+
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i
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i

i
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2 cos

4000
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i
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eee
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−−+
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3000 [ ]768.32;768.32−  

05F  Rosenbrock ( ) ( )∑
−

=
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⎤
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⎡ −+−

1

1

222
1 1100

n

i
iii xxx  10000 [ ]12.5;12.5−  

06F  Quarticnoise ( )∑
=

+
n

i
i Uix

1

4 1,0  4000 [ ]28.4;28.4−  

07F  Rastrigin ( )[ ]∑
=

+−
n

i
ii xx

1

2 102cos10 π  6000 [ ]12.5;12.5−  

08F  Schwefel ∑
=

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−

n

i
ii xxn

1

sin339828872724.418  12000 [ ]500;500−  

Table 2. Unconstrained minimization problems considered in the experiments 

6.1 Random selection model management 
In this section we analyze the impact of the parameters of the surrogate model (number of 
neighbors μk ) and the algorithm (number of clones β ) on the final results obtained by the 

SAAIS. Figures 7-14 show the contour plots of the fitness (averaged in 50 runs) obtained for 
functions 01F - 08F  by the SAAIS, for different values of psm and number of clones. Each figure 

displays the results corresponding to the use of 2 and 4 neighbors to construct the surrogate 
model. The results for (a) Hamming similarity and (b) Euclidean similarity are shown in the 
figures. 
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(a) (b) 
 

Fig. 7. 01F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 

 

 

(a) (b) 
 

Fig. 8. 02F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 
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(a) (b) 
 

Fig. 9. 03F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 

 

 

(a) (b) 
 

Fig. 10. 04F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 
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(a) (b) 
 

Fig. 11. 05F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 

 

 

(a) (b) 
 

Fig. 12. 06F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 
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(a) (b) 
 

Fig. 13. 07F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 

 

  

(a) (b) 
 

Fig. 14. 08F - Contour plots of the fitness (averaged in 50 runs) for different number of clones 

(1, 2 and 3), using 2 and 4 neighbors to build the surrogate. Results for: (a) Hamming 
similarity, and (b) Euclidean similarity. 
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In order to check whether there is a linear relationship between the algorithm performance 
(fitness) and its parameters (psm, number of neighbors and clones, and similarity measure) 
an analysis of correlation was performed. 
For each combination of the different levels of each factor 50 independent runs were 
performed. As we have 2 levels for the similarity measures (Hamming and Euclidian), 3 
levels for the number of clones (1, 2, and 3), 2 levels for the number of neighbors (2 and 4) 
and 10 levels for the parameter psm (1-0 varying in steps of 0.1), 50x2x3x2x10 = 6000 runs 
were performed for each test problem. Table 3 shows the correlations found among the 
dependent factor (averaged fitness values) and the four independent factors (psm, number of 
clones, similarity measure and number of neighbors). In order to obtain the results 
presented in that table, the categorical values for the Euclidean and Hamming similarity 
measures were set to 0 and 1, respectively. The Pearson’s correlation coefficient can take 
values between -1 (perfect negative linear correlation) and 1 (perfect positive linear 
correlation).  
From Table 3 we can see that the number of neighbors is weakly correlated to the final 
fitness, and thus using 2 or 4 neighbors to build the surrogates does not affect in a 
significant way the fitness values in the final population of the SAAIS. Also, we can observe 
the same weak correlation between the similarity measure (Euclidean or Hamming) and the 
fitness values. 
 

 

Table 3. Correlations among the dependent factor (averaged fitness values) and the 

independent factors (psm, number of clones β , similarity measure and number of neighbors 

μk ) 

The averaged fitness values have a strong and positive correlation to the values of the 

parameter psm, for all test problems, except for 07F and 08F . In these problems, the correlation 

appears to be negative. Observing the third and fifth columns of the Table 3, we can see that 

for problems 07F and 08F  the fitness values tend to be worse for smaller values of psm and 

also when we change from Euclidean to Hamming similarity. For those problems, this 
behavior is observed in Figures 13(a)-(b) and 14(a)-(b). Observing the Figure 13, we can see 
the dependence of the fitness values with the number of clones for F07. The best values of the 
averaged fitness are attained using a lower number of clones. Also, we note that the fitness 
values are not significantly altered by the number of neighbors. This behavior becomes more 
evident when using Hamming similarity, as shown the contour lines of Figure 13(b). A 
similar behavior is observed for function F08. Also, as the parameter psm decreases, the fitness 
values become worse, and this same behavior is verified when we change from Euclidean to 
Hamming similarity. 
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Additionally, we observe that the averaged values of the fitness are positively correlated to 
the number of clones for all test problems, i.e., as the number of clones decreases, the values 
of the fitness function become smaller.  
Figures 15 and 16 display a comparison between the performance the SAAIS when using 
Hamming and Euclidean similarities for different values of psm. When compared to the 
conventional AIS (red boxplot), the results obtained by the SAAIS are better for smaller 

values of psm for 01F - 06F . Indeed, the results obtained using the Euclidean similarity (green 

boxplots) are better than the ones obtained by the Hamming similarity (yellow boxplots). 
 

 
01F  02F  

 
03F  04F  

Fig. 15. Comparison of the performance of the SAAIS implementing Hamming and 
Euclidean similarities for different values of psm. 
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05F  06F  

 
07F  08F  

Fig. 16. Comparison of the performance of the SAAIS implementing Hamming and 
Euclidean similarities for different values of psm. 

6.2 General comments about the experiments 
The results found in the experiments show that the use of a surrogate model allows for 

increasing the total number of iterations of the algorithm and, for almost all problems 

considered, leads to solutions which are better than those provided by the baseline clonal 

selection algorithm (CLONALG). 

In the Random Selection model management, the new candidate solutions are randomly 
chosen (with probability psm) to be evaluated exactly (via simulator). Also, the best 
antibodies from the population composed by the union of the current candidate solutions 
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and their clones are selected to form the new population. The results found in section 6.1 
show that the use of this kind of surrogate model works well for most problems considered 

here (except functions 06F  and 07F ). The authors suggest that this is due to the fact that, for 

those functions, the surrogate model increases the exploitation of the baseline CLONALG, 
inducing a faster convergence to local optima. Also, we use here a very simple surrogate 
model, which smoothes out the fitness landscapes and has limited capabilities to 
approximate complex functions.  

7. Concluding remarks 

In this chapter we analyze the impact of introducing a Similarity-Based Surrogate Model, 
the k-nearest neighbors method, in a Clonal Selection Algorithm (CLONALG). The resulting 
framework is referred to here as Surrogate-Assisted Artificial Immune System (SAAIS). 
A surrogate model is introduced in the optimization cycle by means of a simple model 
management (Random Selection) in order to determine which candidate solutions will be 
evaluated exactly via the (expensive) simulation. Thus, we increase the total number of 
iterations of a baseline CLONALG algorithm providing a longer evolutionary process –
which may lead to improved final solutions. The total number of exact evaluations is kept 
constant in order to reflect the situation of a limited budget in computationally expensive 
real-world problems, in which each simulation can take from minutes to hours. 
The results show that the new proposed SAAIS algorithm (CLONALG+SBSM) performs 
better than a baseline application of the clonal selection algorithm. 
The underlying idea behind the use of surrogate models with AIS algorithms is to improve 
the exploitation capability of the latter without increasing too much its computational cost. 
Obviously, other ways of combining these approaches are possible, which can potentially 
improve even further the performance of the resulting algorithm. 
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