
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Genetic Programming and Boosting Technique
to Improve Time Series Forecasting

Luzia Vidal de Souza, Aurora T. R. Pozo,
Anselmo C. Neto and Joel M. C. da Rosa

Federal University of Parana
Brazil

1. Introduction

An essential element for many management decisions is an accurate forecasting. There are
several methods and techniques to forecast time series that include traditional forecasting
techniques with theoretical foundations in statistics. These methods present some obstacles
and complexities to overcome; one of the most important ones is the difficulty to select the
model that can provide the best adjustment for a specific dataset, many attempts have to be
usually done until the best model can be obtained. Considering this scenario, different
machine learning techniques have been recently used in this problem, such as Artificial
Neural Network (ANN), Evolutionary Computation (EC), in particular, Genetic
Programming (GP), which is considered a promising approach to forecast noisy complex
series (Kaboudan, 2000), there are many other works founded in the literature that use (GP)
to Time Series Prediction. On the other hand, recently advances in the machine learning
field show that the application of the Boosting algorithm is a powerful approach to increase
the accuracy of forecasting methods. Boosting algorithm was proposed and developed by
Freund and Schapire (1996). According to Allwein et al. (2000), Boosting is a method of
finding a highly accurate hypothesis by combining many "weak" hypotheses, each of which
is only moderately accurate. Paris et al. (2004) proposed GPBoost that uses the Boosting
algorithm with the GP as base learner. We have proposed a new formula for the updating of
the weights and for obtain the final hypothesis of the predictor. This algorithm was called of
Boosting Correlation Coefficients (BCC) and it is based on the correlation coefficient instead
of the loss function used by traditional Boosting algorithms. To evaluate this approach we
conducted three experiments. In the first one, the BCC was used to forecast real time series,
in this experiment the mean squared error (MSE) has been used to compare the accuracy of
the proposed method against the results obtained by GP, GPBoost and the traditional
statistical methodology (ARMA). In the second, to prove the efficiency of the proposed
methodology a widespread Monte Carlo simulation was done covering the entire ARMA
spectrum, in which artificial series were generated from the parametric space of the
principal ARMA models, they are AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). The database
generated was composed by 214.000 time series with 150 observations each one. The
training set was composed by 90% of date and the others 10% composes the test set. The
results were compared out of sample and the BCC showed better performance than ARMA O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Evolutionary Computation

104

methodology, Genetic Programming and GPBoost. Finally, the BCC algorithm was also
applied to multiple regressions problem and the results obtained from this method were
compared with the results from Artificial Neural Network, Model Tree and Boosting. This
comparison showed that the BCC supplied better results than other ones. In way compare
the performance of the BCC methodology with other methods, many statistical tests were
performed such as Median Square Error (MSE), Root Median Square Error (RMSE) and a
non parametric test Friedman. The results were compared out of sample and the BCC
methodology had been presented accurate forecasts. Future research Considering that GP is
able to provide solutions of high quality, and after the success of our own experiments
(Souza et al., 2007a), we are encouraged to further explore GP towards finding solutions to
the problem of modeling and pattern discovery of complex time series and in additional we
will investigate the procedure BCC using GP as a base learner to analyze probabilistic and
stochastic processes. We will investigate new tools that can work GP to more effectively
solve this problem. One of the most important applications for the time series analysis is in
stock markets. The goal of this task is to choose the best stocks when making an investment,
and to decide which is the best strategy at the moment. Therefore, we will investigate the
appropriate means for using GP in this task, as well as other general problems in financial
time series. An another application that we must investigate is in Biological Networks, for
example, gene regulatory network.

2. Genetic programming

Genetic Programming (GP) is an Evolutionary Computation Technique in which the
individuals are computational programs. This theory was developed by John Koza (1992)
and it is based on Genetic Algorithm (GA) presented by John Holland (1975). In accordance
to Banzhaf (1998) and Kaboudan (2000) GP is known as an effective research paradigm in
Artificial Intelligence and Machine Learning, and have been studied in the most diverse
areas of knowledge, such as: digital cirucuits, data mining, molecular biology, optimization
taks and another ones. In nature, those individuals that better adapt to the environment that
surrounds them, have greater chance to survive. They pass their genetic characteristics to
their descendents, who will suffer modifications to better adapt to the environment. After
many generations, this population reaches a natural evolution. In Genetic Programming
(GP), the evolutionary algorithm operates over a population of programs that have different
forms and sizes. The initial population must have enough diversity, that is, the individuals
must have most of the characteristics that are necessary to solve the problem, because
characteristics that do not exist in the initial population will probably not appear during the
evolutionary process. The evolutionary process is guided by a fitness function that measures
the individual’s ability to solve the problem. Those individuals that better solve the problem
will receive a better fitness value and consequently, will have a better chance to be selected
for the next generation. The choice of this function depends on the domain of the problem.
A good choice is essential to provide good results. Once the individuals are selected, it is
time to apply the genetic operators. These are: Reproduction – an individual is replicated to
the next generation, with no modification in its structure; Crossover – two programs are
recombined to generate two offspring and Mutation – a new sub-tree replaces a randomly
selected part of a program. This process is repeated until a satisfactory solution or a stop
criterion is reached. Instead of a population of beings, GP works with a population of

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

105

computer programs. The goal of the GP algorithm is to select, through recombination of
“genes”, the program that better solves a given problem. The main elements of GP are:
- Program Structure: a tree is the most used structure to represent programs in GP. Each

node can be a function or a terminal. A function has to be evaluated considering its
parameters while a terminal has its own value. The terminal (T) and function (F)
datasets must be provided by the user in accordance to the current problem. For
example, if the datasets are: F = {+, −, *, /} and T = {x, 2} are one simple variable
arithmetic expression can be generate, such as x * x + 2 or (x2+2). Figure 1 shows the
abstract syntax tree for that expression.

Fig. 1. Sintax tree for (x*x+2)

- Fitness Function and Selection: in nature, individuals are selected based on how well
they fit to the environment. The individuals that are able to better solve the problem
have better chance to be selected.

- Parameters: there are some parameters that will guide the evolutionary process, these
parameters will limit and control the search performance. Some of them are: genetic
operators rates (crossover rate, mutation rate), population size, selection rate
(tournament size), maximum depth of the individual, etc.

In GP the population is composed by individuals that are computational programs (Koza,
1992). The first step of the algorithm is to create randomly the initial population that is the
Generation 0. After that, there are two majors tasks processed in a loop with two main steps:
1. The evaluation of each program by using a fitness function: the GP algorithm receives

the set that includes the values that represent the solution for the problem. For example,
in a Symbolic Regression problem, it is necessary to provide the set of values of x and f
(x) to the GP algorithm. These values are applied to the programs generated with the
defined sets of operators and terminals. At the end, the fitness value is obtained.

2. The new population is created by selecting individuals that have better fitness value
and by applying the genetic operators.

Fig. 2. Pseudo code of Genetic Programming

+

*

xx

2

1. Randomly create an initial population
2. Repeat until a good solution or a stop criterion is reached.

2.1 Evaluate of each program by means of the fitness function
2.2 Select a subgroup of individuals onto which applies the genetic operators
2.3 Apply the genetic operators
2.4 Replace the current population by this new population

3. End

www.intechopen.com

 Evolutionary Computation

106

Each run of this loop represents a new generation of individuals, that are the new
population that will substitute the previous one. This process is repeated until a solution is
found or until a maximum number of generations is reached. At the end, the GP algorithm
presents the best tree that is able to solve the given problem in the best way. The pseudo
code of the GP algorithm is showed in the Figure 2.

3. Boosting algorithms

The Boosting algorithm was proposed and developed by Freund and Schapire (1996) for
binary problems. According to Schapire and Singer (1997) Boosting is a method to find a
highly accurate hypothesis by combining many weaker hypotheses, each of which is only
moderately accurate. It manipulates the training examples to generate multiple hypotheses.
In each iteration the learning algorithm uses different weights on the training examples and
returns a hypothesis ht. The weighted error of ht is computed and applied to update the
weights on the training examples. The result of the change in weights is to place higher
weights in training examples that were misclassified by ht, and lower weights on examples
that were correctly classified. The final classifier is composed by the weighted vote of the
individual classifiers. Freund and Schapire (1996) introduced the AdaBoost algorithm
commonly referred to as the Discrete Boosting algorithm, Ridgeway (1999) developed for
binary classification problems. Freund and Schapire (1997) extended AdaBoost to a multi-
class case, which they called AdaBoost.M1 and AdaBoost.M2. In order to solve regression
problems, Schapire (2002) extended the AdaBoost.M2 and called it AdaBoost.R. It solves
regression problems by reducing them to classification ones. Drucker (1997) developed
AdaBoost.R2 algorithm, which is an ad hoc modification of AdaBoost.R. He carried out
some experiments with AdaBoost.R2 for regression problems and obtained some promising
results (Solomatine and Shrestha, 2004). All these approaches follow the view of boosting as
a gradient descent procedure (Breiman, 1997), or as residual-fitting, (Buhlmann and Yu,
2003), (Mason et al. 1999). Instead of being trained on a different sample of the same training
set, as in previous boosting algorithms, a regressor is trained on a new training set that has
different target values (e.g., the residual error of the sum of the previous regressor) (Assad
and Bone, 2003). Bone et al. (2003) adapted a Boosting algorithm to time series forecasting
using neural networks as base learners. Their experiments showed that Boosting actually
provides improved results in regression problems. Iba (1999) proposed a version of
AdaBoost for GP and regression. In his work the distribution was implemented picking up
examples to generate a new learning set for each Boosting round. The probability of an
example being picked up is proportional to its weight, and any example can be picked from
0,1 up to several times. According to Paris (2002), this approach makes the implementation
easier, but the precision of weights is somewhat lost in the process.

3.1 GPBoost

Paris proposed a Boosting method that retains the precision of weights and operates on the
whole set of examples for every round of Boosting. Their algorithm, named GPBoost, uses a
weighted based fitness function in GP and the generic AdaBoost.R2 algorithm to update the
weights its pseudo code is showed in the figure 3. The GP technique allows us to obtain
accurate models from different datasets with diverse characteristics, and from the obtained
model to estimate or predict the behavior of the system along time. On the other side, using
Boosting, the results obtained with the merging hypothesis are always better than the results
obtained with GP technique.

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

107

Algorithm 2 – GPBoost

1. Given a training set S = {(x1, y1), (x2, y2), …, (xm, ym)}; xi ∈X, yi ∈R, GP is the base
algorithm

2. D1(i) is the weight of the example (xi, yi), D1(i) : = 1 ∀ ∈i i(x ,y) Sm

 Repeat: t = 1 to T

 Run GP over Dt using the function fitness:

()
1=

= −∑
m

i i t
i

fit f(x) y * D (i) * m ,

 where f is a function in GP population and ft is the best individual in the run t.

 Calculate: the loss function
1=

−
=

−
t i i

i

i ...m t i i

f (x) y
L

max f (x) y

 Calculate the average loss function:
1=

= ∑
m

i i
i

L L D

 Let
1

β =
−t

L

L
 is the confidence given to the function ft

 Update for the next round:

 distribution
1

1

−

+ =
iL

t
t

t

D (i)
D (i) :

Z
, Zt is a normalization factor.

3. Output: Final Hypothesis
1

1 1 1

2≤ =

⎛ ⎞ ⎛ ⎞
= ∈ ≥⎜ ⎟ ⎜ ⎟

β β⎝ ⎠ ⎝ ⎠
∑ ∑
t

m

t:f (x) y tt t

F(x) min{y R : log log }

Fig. 3. Pseudo code of GPBoost Algorithm

3.2 Boosting Correlation Coefficients (BCC)

After many studies through the Boosting algorithms, it is possible to point out that these

algorithms have been sufficiently explored over classification problems. Less emphasis,

however, has been given to regression problems. The Boosting algorithm for regression

problems is an adaptation of the concepts used in classification. The traditional form of

obtaining the weights of each example is based on error or loss function. However, the loss

function is one of the possible information that can be used to obtain these weights.

Recently, (Souza et al., 2007; 2009) used the BCC algorithm that is Boosting using

Correlation Coefficients to time series forecasting and regressions problem. The method is a

new approach of the Boosting algorithm for regression and is empirically based. BCC uses

the coefficients of correlation for the updating of the weights and it has been observed that

this directly influences the minimization of the loss function. The same coefficients can also

be used in the final combination of predictors. The correlation coefficient is a statistical

measure of the interdependence of two or more random variables. Fundamentally, the value

indicates how much of a change in one variable is explained by a change in another. The

BCC method is based on this measure and will be described within this section, but firstly, a

brief review on the definition of Correlation Coefficients is given.

Definition: The correlation between two samples X and Y, with m observations, is

calculated by using the Equation 1.

www.intechopen.com

 Evolutionary Computation

108

()()

() ()
1

22

1 1

=

= =

− −
ρ =

− −

∑

∑ ∑

m

i i
i

m m

i i
i i

x x y y

(x,y)

x x y y

 (1)

where x and y are the mean values of the samples X and Y respectively. The coefficient

ranges from −1 to 1. If the coefficient has the value 1 it means that a linear equation
describes the relationship perfectly and positively, with all data points lying on the same
line and with Y increasing with X. A score of −1 shows that all data points lie on a single line
but that Y increases as X decreases.
The Boosting Correlation Coefficient is a metric function that measures the relation degree
between two variables, in this case between the real and the predicted values. The structure
of the BCC algorithm is similar to the GPBoost algorithm. First of all, the weight distribution
Dt is initialized in Step 1 and the boosting iterations start (Step 2) by calling each time the GP
algorithm. After the GP’s complete execution, the best individual ft in the run is chosen.
After, the loss function is computed. To calculate the loss function different forms can be
used, such as the exponential showed in Equation 2. Then, the correlation coefficients are
calculated (Equation 3) and after the next weights are updated using the Equation 4. Finally,
Step 3, the output must be computed as a combination of the different generated
hypotheses. To calculate the final hypothesis F, T functions ft will be combined using again
the correlation coefficients, see Equation 5.

 ()
1

1

=

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟−⎝ ⎠

t i i

t i

i ...m t i i

f (x) y(x)
L x exp

max f (x) y(x)
 (2)

 () ()
() ()() () ()()

() ()() () ()()
1

2 2

1 1

=

= =

− −
ρ =

− −

∑

∑ ∑

m

t i t i
i

t t i i m m

t i t i
i i

f x f x y x y x

(f x ,y x)

f x f x y x y x

 (3)

 () ()() ()1+ = ρt i t t i i t t iP (x) f x ,y x * P * L x (4)

() ()() ()

() ()()
=

−

=

=
∑

∑
1

1

1

, *

()

,

ρ

ρ

T

t t i i t i
t

i T

t t i i
t

f x y x f x

F x

f x y x

, i = 1, ..., m-1 (5)

1==
∑ ()

()

T

t i
t

m

f x

F x
T

, i = m

The intention in use the correlation coefficients is to promote a smoothness in the update of
the weights, because it was observed that there is an inherent roughness on it, on the other
hand the correlation coefficients were used to combine the obtained hypothesis in only one
hypothesis that can be better than each one because of its goodness of estimation.

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

109

4. Time Series Forecasting

Time Series Forecasting is an important area of the knowledge and there are many
applications in the real world. Accurate forecasting is an essential element for many
management decisions. There are several methods and techniques to find a good model that
can be used to produce accurate forecasting the traditional techniques have your
foundations in statistics. The most important model statistical methodology is the
Autoregressive and Moving Average (ARMA) models. These methods presents some
obstacles and complexities to overcome. The major difficulty is to select the good model that
can best adjustment for a specific dataset, usually many attempts must be performed until
the best model must be found. Because of these difficulties, many researchers have been
done several efforts to overcome these problems, such as Artificial Neural Network (ANN),
Evolutionary Computation (EC) and in special Genetic Programming (GP) that have been
provided good results in time series forecasting.

5. Experiments using real time series

This section will describe the experiments that have been accomplished using the BCC
algorithm with GP as a base learner and the results are compared with other techniques
such as Box & Jenkins; traditional GP and GPBoost. In the first experiment the algorithms
were used in a group of academic series, in the second one (Section 6) we used a widespread
Monte Carlo simulation covering the entire ARMA spectrum. First of all, we will describe
the data sets that were used in the experiments, second the configuration of the
methodology that were used and after the results are presented and the evaluate of the
algorithms is done.

5.1 Academic and Benchmark Time Series

The academic series used in this experiment can be found at the website:
(www.ime.usp.br/~pam/ST.html) and the Benchmark series at (www.economatica.com). A
brief explanation about the series is presented at Table 1. Each data set was divided into two
other data sets: training set that contains the 90% first values from the data set that were
used to train the methods and the second one that contains the remaining values.

5.2 Box and Jenkins methodology- ARMA models

The Box & Jenkins methodology is one of the most important and recognized work in Time
Series area. The research was made by George Box and Gwiliyn Jenkins (1970) and it is
based on the Wold (1954) studies, who proved that any time series can be represented by a
structure of infinity moving average . The methodology adjust Autoregressive and Moving
Average Models ARMA(p, q) to the data set, where p is the parameter of the Autoregressive
and q is the parameter of the Moving Average models and they represent the order of the
model to be used. The Box and Jenkins methodology is composed by four steps.
Step 1. Identification of the model to be used on the dataset, the best model is selected by

using Akaike (1974) Information Criterion (AIC), see Equation 6, where k is the
number of parameters in the statistical model, and L is the maximized value of the
likelihood function for the estimated model.

 ()LkAIC ln22 −= (6)

www.intechopen.com

 Evolutionary Computation

110

Real Time Series

Atmosphere: daily measurements of the temperature in degrees centigrade, at twelve
o’clock from 1/1 to 12/31/1997, São Paulo, Brazil, 365 examples.

Beverages: monthly figures of drinks industrial production, from 1/1985 to 7/2000,
Brazil, 187 examples.

Consumption: monthly figures of product sales, from 1/1984 to 10/1984, São Paulo,
Brazil, 154 examples.

Fortaleza: annual measurements of atmospheric precipitation, from 1849 to 1997,
Fortaleza, Brazil, 149 examples.

ICV: monthly figures, pricing index, from 1/1970 to 6/1980, São Paulo,
Brazil, 126 examples.

IPI: monthly observations of Food products (Industrial Production index),
from 1/1985 to 7/2000,187 examples.

Lavras: monthly measurements of atmospheric precipitation, from 1/1966 to
12/1997, Lavras, Brazil, 384 examples.

Sunspots: annual observations of the Wolfer Sunspots, from 1749 to 1924, 176
examples.

Djiad,
Nasdaq
Ibovd

daily figures of the Stock returns from their respective financial
markets, from 13/08/2001 to17/08/2005, 1100 examples each dataset.

Table 1. Real Time Series

Serie
Dataset
(100%)

Training set
(90%)

Test set
(10%)

Atmosphere 365 329 36

Beverage 187 169 18

Consumption 154 139 15

Fortaleza 149 135 14

ICV 126 114 12

IPI 187 169 18

Lavras 384 346 38

Sunspots 176 159 17

Djiad 1100 990 110

Ibovespa 1100 990 110

Nasdaq 1100 990 110

Table 2. Number of examples of each data set

Step 2. Estimation of the parameters to adjust the order of the model to be used.
Step 3. Adaptability verification of the model. Trough the residual analysis is verified if the

model has a good fit to the dataset.
Step 4. Forecasting is made using the chosen model.

5.3 Configuration of GP, GPBoost and BCC

To apply these algorithms, we chose the tool Lil-GP 1.0 (Zongker, 1995) which is a free and
easily configurable software, implemented according to Koza’s GP (1992). To solve the

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

111

problems it is necessary to provide the configuration files, standard GP parameters,
functions and variables used to generate the models, input and output files (training and
test set), as well as to specify the fitness function. The parameters used in this work to
configure GP tool are showed at Table 3. These parameters have been gotten empirically
after many tests have been accomplished. The terminal set used was T = { Zt−1, Zt−2, Zt−3,
Zt−4} that is, the last four observations are used to make a prediction at the time t. Beside

these a constant α is also used and the functions set is F = {+, −, *, /, log, cos, sin, exp, root}.
This Function set allows us to obtain non linear models that have better adjust to the
complex series than linear models. The fitness function used was defined as the Weighted
Root Mean Square Error (WRMSE) that is, in general, used to measure the accuracy of a

forecasting method. The WRMSE is showed in Equation 7, where xi is the real value, ix̂ is

the estimated value, Di is the weight of each example and n is the size of the dataset. In this
experiment, individuals with WRMSE equal to 0 or near to 0 are the best.

()

n

mDxx

Fitness

n

i

iii∑
=

−

= 1

2ˆ

 (7)

The Boosting algorithm with the different output hypotheses has been implemented in C

computer language. For each data set, ten models of each algorithm (GP, GP-Boost and

BCC) were obtained using a different random initial seed and for the GPBoost and BCC

algorithm it was used ten Boosting iterations. After that, each generated model was used to

forecast the values in the test set.

Parameters Value
Population Size 4,000
Population initialization method Full
Number of generations 250
Selection method Best
Initial depth 2 - 10

Maximum depth limit 10
Maximum number of nodes 50
Crossover rate 0.7
Reproduction rate 0.2
Mutation rate 0.1

Table 3. Parameters of GP, GPBoost and BCC

5.4 Results

In order to evaluate the performance of these methods, we used the average of the Mean

Square Error (MSE) obtained by using 10 initial seeds over the test set. This measure was

used as a parameter of comparison because it is accepted by the statistical community. For

the ARMA model, there is only one prediction and then the value of n is one. The results of

this experiment are summarized in Table 4. The BCC algorithm presented the best

performance, in almost all the data set the MSE average was the lowest.

www.intechopen.com

 Evolutionary Computation

112

Serie ARMA GP GPBoost BCC
Atmosphere 38.98 38.08 36.72 7.59
Beverage 308.25 245.65 231.76 62.59

Consumption 137.76 236.15 140.52 60.86

ICV 445,690.37 423,083.18 400,212.40 209,855.37

IPI 624.96 130.99 124.45 17.05

Lavras 5,335.99 13,788.93 8,249.27 4,623.50

Sunspots 902.70 320.85 318.76 329.10
Djiad 0.05 0.00 0.00 0.00
Ibovd 0.26 0.00 0.00 0.00

Nasdaq 0.06 0.00 0.00 0.00

Table 4. Average values of MSE from 10 run of the algorithms.

Beside the MSE, it was applied a non parametric test, Friedman Test (Siegal, 1988) and
(Demsar, 2006), to estimate the BCC performance against the other methods. The null
hypothesis that all the algorithms are equivalent was tested and rejected, after that the post-
hoc multiple comparisons were performed. The results are summarized in Table 5. The
algorithms ARMA, GP, GP-Boost and BCC and the result of the test shows that there is a
significant difference between ARMA and BCC and between GPBoost and BCC all the other
algorithms have no significant difference.

Algorithms Statistical Difference
ARMA – GP FALSE
ARMA – GPBoost FALSE
ARMA – BCC TRUE
GP – GPBoost FALSE
GP – BCC FALSE

GPBoost – BCC FALSE

Table 5. Multiple comparisons among evaluated methods after Friedman test

6. Experiment using Monte Carlo simulation

A widespread Monte Carlo simulation has been done to exhaustively evaluate the
performance of the BCC algorithm with GP as a base learner, in which we simulated
artificial time series that belong to the entire spectrum of the structures AR(1), MA(1), AR(2),
MA(2) and ARMA(1,1). To generate these series we used the free statistical software R). The
parameters were put through variations within their respective parametric spaces and a
noise component was added. The noise has normal distribution with mean 0 and standard
deviation 1.

6.1 Parameters setting

In order to setting the parameters that were used in this simulation, it was considered the
stationary region in the parametric space of the principal structure of the ARMA models:
AR(1), AR(2), MA(1), MA(2), ARMA(1, 1). The stationary region of the AR(1) and MA(1)

structure are represented by the Equation 8. Where φ1 is the autoregressive parameter and θ1
is the moving average parameter, both of them are defined from -1 to 1. This space was
divided using step 0.1

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

113

1

1

1 1

1 1

− < <
− < <

φ
θ

 (8)

The parametric space of the stationary region of the AR(2) structure is defined by the

Equation 9. Where φ1 and φ2 are the autoregressive parameters, for the MA(2) structure
there is no restriction of the stationary (Morettin and Toloi, 2004), but its invertibility region
is the same of the stationary region of the AR(2) structure. This region was divided using
step 0.2 on the x and y axes.

1 2

2 1

2

1

1

1 1

+ <
− <

− < <

φ φ
φ φ

φ
 (9)

Finally, the parametric space of the stationary region of the ARMA(1, 1) structure is defined

by the Equation 10. Where φ1 is the autoregressive parameter and θ1 is the moving average
parameter.

1 1

1

1

1

1 1

1 1

+ <
− < <
− < <

θ φ
θ
φ

 (10)

Using this criterion, the data set included 214.000 series distributed for each structure as
showed in the Table 6. For each set of parameter, 500 series were created, for example, the
AR(1) structure has 19 parameters, then the number of series is 500 × 19 = 9,500. Each data
set was divided in training and test set in the same way that was made for the real time
series. The number of the examples of each data set was 150, then the training set contain
135 examples and the test set 15.

Structures Parameters Series

AR(1) 19 9,500
AR(2) 90 45,000
MA(1) 19 9,500
MA(2) 200 100,000

ARMA(1, 1) 100 50,000

Table 6. Monte Carlo Simulation Series

6.2 Evaluation metrics

Despite using MSE as a comparison measure, this is not enough to guarantee that the
algorithm is better than another one. To analyze more precisely the performance of the
proposed algorithm against other, the Friedman test was performed. The null hypothesis
that states that all the algorithms are equivalent was rejected and then, the post-hoc multiple
comparisons were performed. The analysis was made for each structure considering the
MSE results of each set of parameters. For example, the MA(2) structure has two hundred
different sets of parameters, for each of them, one MSE result is obtained for each algorithm.
In this simulation, only one seed was used to GP due to the largest of the data set. The
training set contains the first 90% of the values from the data set and was used to train the
methods. The testing set contains the remaining values and was used to evaluate the methods.

www.intechopen.com

 Evolutionary Computation

114

6.3 Computational implementation
For each series from the data set (214,000) it was run 10 Boosting algorithm (GPBoost and
BCC). The data sets have been run in a computational platform that includes 42 dual
processor computers. The computer language used to implement the algorithms GPBoost,
BCC and GP was C++ that used the Lil-GP 1.0 to run the GP as a sub routine. The data set
was divided into 428 groups each one containing 500 series. Each group ran 10 Boosting
algorithms including GPBoost and BCC. The computational time to run each group was 32
hours.

6.4 Results
The results were analyzed through the MSE in the test set, the MSE was calculated in
accordance with Equation 11. Where serie(xi) are the real values, ARMA(xi) are the
predicted values from ARMA models, GPBoost(xi) are the predicted values from GPBoost
and BCC(xi) are the predicted values from BCC algorithm.

()()

() ()()

()()

()()

2500

1

500
2

1

500
2

1

500
2

1

1

500

1

500

1

500

1

500

=

=

=

=

⎧ −⎪
⎪
⎪
⎪
⎪ −
⎪⎪= ⎨
⎪

−⎪
⎪
⎪
⎪

−⎪
⎪⎩

∑

∑

∑

∑

i i

i

i i

i
i

i i

i

i i

i

serie(x) ARMA x

serie x GP x

error(h)

serie(x) GPBoost x

serie(x) BCC x

 (11)

In Table 7 is presented the MSE in the forecasted values for all the algorithms. Table 8 shows
the results of the MSE for all the structure, due to space reasons only the sum of the MSE is
presented. Table 9 shows the pos-hoc multiple comparisons results. In this Table, the symbol
“FALSE” is used to denote that there is no statistical difference between the methods
ARMA, GP, GP-Boost and BCC. From these Tables it is possible to conclude that:
- For AR(1) structure, the BCC is significantly better than the other algorithms; GP and

GPBoost algorithms have no difference, as well as, ARMA and GP algorithms.
- For AR(2) structure, the BCC is significantly better than ARMA and GP algorithms, and

equal to GPBoost; ARMA and GP have no difference.
- For MA(1) structure, the BCC is significantly better than the other algorithms; there is

no difference between: ARMA and GP algorithms, ARMA and GP-Boost algorithms,
and GP and GP-Boost algorithms.

- For MA(2) structure, the BCC is significantly better than the other algorithms; there is
no difference between ARMA and GP algorithms; GP-Boost is better than GP and
ARMA algorithms.

- For ARMA(1,1) structure, the BCC is significantly better than the other algorithms;
there is no difference between ARMA and GP algorithms; GP-Boost is better than GP
and ARMA algorithms.

Concluding, in almost all the cases the BCC method is the best and when the method is not
the best, there is no statistical differences between the methods. GP-Boost is significantly
better than GP and ARMA algorithms in many cases, but GP and ARMA algorithms have
no difference.

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

115
Forecasting MSE Average AR(1) AR(2) MA(1) MA(2) ARMA(1, 1)

ARMA 2.3702 4.3479 2.3150 3.0335 1.7917

GP 1.0567 1.3176 5.6063 2.2456 1.8133

GPBoost 1.0118 1.1906 1.1318 2.0985 1.1327
e136

BCC 0.9282 1.0997 1.0781 1.9234 1.1087

ARMA 2.3527 4.1828 1.8223 2.7355 2.0809

GP 1.9907 1.5090 1.6281 2.1690 1.2657

GPBoost 1.1842 1.3537 1.1394 2.0773 1.1427
e137

BCC 1.0924 1.2563 1.0260 1.8843 1.0553

ARMA 2.0450 4.0820 1.8098 2.6617 2.2494

GP 1.0470 1.3674 1.1456 3.2616 1.3300

GPBoost 1.0311 1.1733 1.0935 2.0698 1.1277
e138

BCC 0.9583 1.4734 0.9838 1.9117 1.0897

ARMA 2.1817 4.1294 1.9132 2.6473 2.3892

GP 1.3314 1.4605 1.2253 3.0242 1.6402

GPBoost 1.2955 1.2963 1.1898 2.0711 1.1417
e139

BCC 1.2194 1.5489 1.0972 1.9318 1.0871

ARMA 2.0486 4.2354 1.7691 2.6666 2.4768

GP 1.5099 1.6394 1.2392 2.1816 1.3522

GPBoost 1.3779 1.4485 1.1130 2.0828 1.1416
e140

BCC 1.2547 1.4844 1.0077 1.8970 1.0806

ARMA 1.9550 4.5942 1.8326 2.6444 2.5734

GP 1.4487 1.5345 1.1601 2.3654 1.2922

GPBoost 1.2907 1.3558 1.1285 2.0613 1.1399
e141

BCC 1.4669 1.3466 1.0123 1.9397 1.1006

ARMA 1.6495 4.5034 1.8526 2.6580 2.6567

GP 2.2842 1.6545 1.2233 2.3011 1.6019

GPBoost 1.1341 1.1711 1.1996 2.0800 1.1467
e142

BCC 1.0966 1.2458 1.0695 1.9264 1.2413

ARMA 1.4880 4.7462 1.8323 2.6514 2.6738

GP 2.0030 1.7681 1.2425 3.1361 1.2913

GPBoost 0.9834 1.3549 1.1424 2.0581 1.1375
e143

BCC 0.9053 1.4738 1.0188 4.4017 1.0651

ARMA 1.2274 3.6964 1.7596 2.6497 2.7013

GP 0.8461 5.0540 1.3345 2.7877 1.3619

GPBoost 0.8106 1.2776 1.1668 2.2478 1.1386
e144

BCC 0.7475 1.5608 1.0914 2.6743 1.0664

ARMA 1.4540 3.6346 1.8127 2.6596 2.7278

GP 1.1212 1.4859 1.4670 3.0190 1.3692

GPBoost 1.1029 1.2636 1.1852 2.0717 1.1365
e145

BCC 1.3978 1.2616 1.0703 2.4415 1.4385

ARMA 1.6769 3.3792 1.8306 2.6673 2.7513

GP 1.4171 2.4862 1.1538 2.5006 10.2940

GPBoost 1.3755 1.2689 1.1349 2.0858 1.1417
e146

BCC 1.2677 1.2078 1.0377 2.4169 1.1677

ARMA 1.2946 3.4343 1.8601 2.6690 2.7759

GP 1.0576 1.5164 1.2334 2.7557 1.8779

GPBoost 1.0276 1.3071 1.1368 2.0776 1.1450
e147

BCC 0.9326 1.2561 1.0224 2.5989 1.1471

ARMA 1.3387 3.3868 1.7664 2.6551 2.7658

GP 1.1235 2.2805 1.2059 2.7182 6.5438

GPBoost 1.0967 1.2308 1.0886 2.0734 1.2860
e148

BCC 1.0049 1.1477 1.0428 2.1184 1.2057

ARMA 1.2239 3.5028 1.7232 2.6740 2.8048

GP 1.0304 1.5118 1.1609 2.7705 1.3648

GPBoost 1.0237 1.2823 1.1196 2.1262 1.1386
e149

BCC 0.9286 1.8203 1.0069 1.9977 1.0578

ARMA 1.7268 3.4916 1.7436 2.6571 2.8316

GP 1.7379 1.6753 1.1366 2.5503 3.4325

GPBoost 1.5064 1.4174 1.0936 2.0637 1.1398
e150

BCC 1.5922 1.4630 0.9879 2.0916 1.0977

Table 7. MSE average in the test set

www.intechopen.com

 Evolutionary Computation

116

Model ARMA GP GPBoost BCC

AR(1) 29.99 25.24 20.48 15.29
AR(2) 356.08 169.57 116.35 123.88
MA(1) 35.01 29.34 21.61 19.70
MA(2) 537.74 530.49 417.93 455.41

ARMA(1,1) 255.00 252.21 114.91 113.40

Table 8. Sum of MSE average in the test set

Friedman Test Comparison

Structure
ARMA

GP
ARMA

GPBoost
ARMA

BCC
GP

GPBoost
GP

BCC
GPBoost

BCC

AR(1) FALSE TRUE TRUE FALSE TRUE TRUE

AR(2) FALSE TRUE TRUE TRUE TRUE FALSE

MA(1) FALSE FALSE TRUE FALSE TRUE TRUE

MA(2) FALSE TRUE TRUE TRUE TRUE TRUE

ARMA(1, 1) FALSE TRUE TRUE TRUE TRUE TRUE

Table 9. Multiple comparisons among evaluated methods Friedman test

7. Regression problems

In this section we describe an experiment applying the BCC algorithm for Multivariate
Regressions Problems. The goal is to evaluate the proposed method in this kind of problem.
In order to compare with other techniques, we used the same datasets and evaluation
measures described in Souza and Vergilio (2006). In their work, they presented the results
obtained with the application of Neural Networks (multi-layer perceptron, ANN), M5
Model Tree (MT), Adaboost.R2 (R2) and Adaboost.RT (RT), here replicated for comparison
purposes with our approach.

7.1 Data sets

The dataset´s features are described in Table 10, these datasets are used as a benchmark for
comparing results with the previous research. The dataset was divided into training (70%)
and test (30%). The subsets were obtained using a random selection without replacement
strategy. The procedure was repeated for ten times with different seeds in order to obtain
ten statistically different subsets of data. These ten subsets were prepared to obtain
consistent results. The BCC algorithm was implemented using the software R and as base
learner the Cart (Classification and Regression Tree) algorithm was used. The reason to
select this learning technique is that it is simple, easy and fast to train.

Data Base Number of Instances
Number of
Atributtes

CPU 209 6

Housing 506 13

Auto-Mpg 398 7

Friedman #1 1500 5

Table 10. Multiple Regression Dataset

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

117

7.2 Results

The performances of the different algorithms are presented in the Table 11. By analyzing the
results we can conclude that there is no technique that will always present the best results.
For some datasets the best model was obtained by using one approach, for other datasets
the best model was obtained with another one. In order to analyze more precisely the
algorithm’s relative performance some quantitative measurement is needed rather than just
subjective comparison. For this reason, following the methodology used by Souza and
Vergilio (2006), we used the so-called scoring matrix. It shows the average relative
performance (in %) of one technique over another technique for all the data sets considered.
Element of scoring matrix SMij should be read as the ith machine’s average performance
(header row in Table 12) against machine j (header column in Table 12) and is calculated for
a N number of datasets as is showed in the Equation 12 (for i ≠ j). From Table 12 it can be
clearly observed that BCC scores highest.

()1

1

=

−
= ∑ ,

max ,

N
k j ki

ij

k kj ki

RMSE RMSE
SM

N RMSE RMSE
 (12)

Bases BCC MT Bagging ANN AdaBoost.R AdaBoost.RT

CPU 22.48 34.65 32.64 13.91 24.45 26.52
Housing 1.12 3.62 3.24 3.54 3.23 3.23
Auto-Mpg 0.85 3.01 2.86 3.79 2.84 2.96
Friedman 0.7 2.19 2.06 1.51 1.82 1.72

Table 11. Performance comparison (RMSE) between the different algorithms in the test set

Machine MT Bagging ANN R2 RT BCC Total

MT 0.0 -6.8 -18.1 -11.5 -14.3 -61.0 -117.7
Bagging 6.8 0.0 -12.8 -9.4 -8.0 -58.2 -81.6
ANN 18.1 12.8 0.0 6.6 7.3 -40.4 4.4
R2 11.5 9.4 -6.6 0.0 1.6 -51.2 -35.3
RT 14.3 8.0 -7.3 -1.6 0.0 -52.8 -39.4
BCC 61.0 58.2 40.4 51.2 52.8 0.0 263.6

Table 12. Scoring matrix for different machines

8. Conclusion

In this paper we present the BCC algorithm that uses the correlation coefficients between the
real and the forecasting value obtained using GP as a base learner. The correlation
coefficient is used for update the weights and for the generation of the final formula.
Differently from works found in the literature, in this paper we investigate the use of the
correlation metrics as a factor, besides the error metric. This new approach, called Boosting
using Correlation Coefficients (BCC), has been empirically obtained when trying to improve
the results from the other methods. The correlation coefficient was considered because two
algorithms could present the same mean error and different correlation coefficients for a
dataset. This difference on behavior of the two algorithms can be measured by the
correlation coefficient. A good correlation coefficient results in small errors for each
example. The correlation coefficient is used in the proposed algorithm with two purposes:

www.intechopen.com

 Evolutionary Computation

118

the first use of the correlation coefficient is for the update of the weights, here the intent is to
promote a smoothness of the update, because it has been observed that the original equation
has an inherent roughness. The second use is to combine the final hypothesis, and in this
case the intent is to allow that each hypothesis contributes to the final hypothesis according
to its goodness of estimation. This idea was evaluated through two groups of experiments.
In the first group of experiments, we explore the BCC for time series forecasting, using
Genetic Programming (GP) as a base learner. Differently from works found in the literature
a great number of series were used considering academic series and a widespread Monte
Carlo simulation. In the Monte Carlo Simulation, series were generated
in the entire parametric space for the main ARMA structures: AR(1), AR(2), MA(1) MA(2)
and ARMA(1,1). From all these experiments we can conclude that in almost all cases the
BCC method is the best and when the method is not the best, there is no statistical difference
between the compared methods. The goal of the second group of experiments was to
evaluate the proposed method in multivariate regression problems. We have compared the
BCC algorithm with the results reported by other authors, comparing a M5 model tree (MT),
bagging, AdaBoost.R2, AdaBoost.RT and Artificial Neural Networks (ANN). For our work,
a model tree was chosen as the base learner. We use a scoring matrix to analyze the
algorithms’ relative performance. It shows the average relative performance (in%) of one
technique over another technique. Like in time series forecasting it can be clearly observed
that BCC scores the highest. We can conclude that the proposed algorithm is very
advantageous for regression problems. The BCC algorithm was evaluated using two
different base learners and it always showed good results. These results encourage us to
carry out future experiments to explore other base learners. We intend to better evaluate the
proposed approach and to explore meta-learning to select the best algorithm according to
the characteristics of the datasets. The meta-learning approach will help us to better
understand the problems that better fit to one algorithm or another. Other future works are
the investigation of other application domains like Software Reliability. Also, an interesting
idea is to extend the work for classification problems, however, the correlation coefficient
can be used only for continuous variables, and then, other metrics must be considered.

9. References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans Autom
Control, Vol. 11, pp. 716–723.

Allwein, E. L.; Schapire, R. E. & Y. Singer. (2000). Reducing multiclass to binary: A unifying
approach for margin classifiers, Journal of Machine Learning Research, Vol.1, pp. 113-
141.

Assad, M. and Bone, R. (2003) Improving time series prediction by recurrent neural network
ensembles. Universite de Tours, Tech. Rep., 2003.

Banzhaf, F.; W. Nordin, Keller, P.; and Francone, F. D. (1998). Genetic Programming: An
Introduction, Morgan Kaufmann.

Bone, R.; Assad M. and Crucianu, M. (2003). Boosting recurrent neural networks for times
series prediction. In: Proceedings of the international conference in Roanne. Springer
Computer Science, Springer, Roanne, pp 18–22

Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis: forecasting and control, Rev. ed. San
Francisco: Holden-Day.

www.intechopen.com

Genetic Programming and Boosting Technique to Improve Time Series Forecasting

119

Breiman, L. (1997). Prediction Games and Arcing Algorithms. Neural Computation, Vol. 11, N.
7, pp. 1493-1518.

Buhlmann, P and Yu, B. (2003). Boosting with the loss: Regression and classification. Journal
of the American Statistical Association, Vol. 98, no 462, pp. 324–339, June 2003.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res
Vol. 7, pp. 1–30.

Drucker, H. (1997). Improving regression using boosting techniques. In: Proceeding of
International Conference on Machine Learning, ICML97, Orlando, 1997.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm.
Proceedings of the Thirteenth Conference, pp. 148-156, Ed. Morgan Kaufmann.

Freund, Y. and Scahpire, R. E. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, Vol. 55, pp.
119–139.

Kaboudan, M. A. (2000). Genetic programming prediction on stock prices, Journal
Computational Economics, Vol. 16, pp. 207–236.

Koza, J. (1992). Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge.

Holland, J. (1975). Adaptation in Natural and Artificial Systems, MIT Press.
Iba, H. (1999). Bagging, boosting, and bloating in genetic programming. In: Proceedings of the

Genetic and Evolutionary Computation conference, pp. 1053–1060
Mason, L.; Baxter, J.; Bartlett, P. and Frean, M. (1999). Advances in Large Margin Classifiers.

MIT Press, Functional gradient techniques for combining hypotheses, Cambridge,
MA, pp. 221–247.

Moretin, P; Toloi, P. A. and Toloi, C. M. C. (2004). Análise de séries temporais. Ed. Edgard
Blucher LTDA. São Paulo.

Paris, G.; Robiliard, D. and Fonlupt, C. (2002). Applying boosting techniques to genetic
programming. In: Selected papers from the 5th European conference on artificial evolution.
Springer, London, pp 267–280.

Ridgeway, G. (1999). The state of boosting. Computing Science And Stastic, vol. 31, pp. 172–
181.

Schapire, R. (2002). The boosting approach to machine learning: An overview. In: MSRI
Workshop on Nonlinear Estimation and Classification, March 2002, Berkeley, CA.

Siegal, S. and Castellan, N. (1988). Non-parametric statistics for the behavioural sciences.
McGraw–Hill, New York

Solomatine, D. P and Shrestha, D. L. (2004). Adaboost.RT: a Boosting Algorithm for
regression Problems. IEEE, pp. 1163-1168.

Souza, L. V.; Pozo, A. R. T; Da Rosa, J. C. M. and Chaves Neto, A. (2007). The Boosting
Technique using Correlation Coefficient to Improve Time Series Forecasting
Accuracy, Proceedings of Congress on Evolutionary Computation (CEC 2007), pp. 1288-
1295. IEEE Transactions.

Souza, L. V.; Pozo, A. R. T; Da Rosa, J. C. M. and Chaves Neto, A. (2009). Applying
Correlation to enhance boosting technique using genetic programming as a base
learner. Applied Intelligence. Vol. 30, No. 7, (Feb, 2009).

Souza GA, Vergilio SR (2006). Modeling software reliability growth with artificial neural
networks. In: Proceedings of the IEEE. Latin American test workshop, Buenos Aires,
Argentina, pp 165–170

www.intechopen.com

 Evolutionary Computation

120

Wold, H. (1954). A Study in the analysis of Stationary Time Series. Almguist & Wiksell. 1st. ed.,
Stocolm.

Zongker, D. and Punch, B. (1995). Lil-gp 1.0 user’s manual. Michigan State University, East
Lansing.

www.intechopen.com

Evolutionary Computation

Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7

Hard cover, 572 pages

Publisher InTech

Published online 01, October, 2009

Published in print edition October, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based

optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern

recognition and bioinformatics. This book also presents new algorithms based on several analogies and

metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In

this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to

discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on

the field of evolutionary computation and applied sciences. The intended audience is graduate,

undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luzia Vidal de Souza, Aurora T. R. Pozo, Anselmo C. Neto and Joel M. C. da Rosa (2009). Genetic

Programming and Boosting Technique to Improve Time Series Forecasting, Evolutionary Computation,

Wellington Pinheiro dos Santos (Ed.), ISBN: 978-953-307-008-7, InTech, Available from:

http://www.intechopen.com/books/evolutionary-computation/genetic-programming-and-boosting-technique-to-

improve-time-series-forecasting

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

