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1. Introduction     

An essential element for many management decisions is an accurate forecasting. There are 
several methods and techniques to forecast time series that include traditional forecasting 
techniques with theoretical foundations in statistics. These methods present some obstacles 
and complexities to overcome; one of the most important ones is the difficulty to select the 
model that can provide the best adjustment for a specific dataset, many attempts have to be 
usually done until the best model can be obtained. Considering this scenario, different 
machine learning techniques have been recently used in this problem, such as Artificial 
Neural Network (ANN), Evolutionary Computation (EC), in particular, Genetic 
Programming (GP), which is considered a promising approach to forecast noisy complex 
series (Kaboudan, 2000), there are many other works founded in the literature that use (GP) 
to Time Series Prediction. On the other hand, recently advances in the machine learning 
field show that the application of the Boosting algorithm is a powerful approach to increase 
the accuracy of forecasting methods. Boosting algorithm was proposed and developed by 
Freund and Schapire (1996). According to Allwein et al. (2000), Boosting is a method of 
finding a highly accurate hypothesis by combining many "weak" hypotheses, each of which 
is only moderately accurate. Paris et al. (2004) proposed GPBoost that uses the Boosting 
algorithm with the GP as base learner. We have proposed a new formula for the updating of 
the weights and for obtain the final hypothesis of the predictor. This algorithm was called of 
Boosting Correlation Coefficients (BCC) and it is based on the correlation coefficient instead 
of the loss function used by traditional Boosting algorithms. To evaluate this approach we 
conducted three experiments. In the first one, the BCC was used to forecast real time series, 
in this experiment the mean squared error (MSE) has been used to compare the accuracy of 
the proposed method against the results obtained by GP, GPBoost and the traditional 
statistical methodology (ARMA). In the second, to prove the efficiency of the proposed 
methodology a widespread Monte Carlo simulation was done covering the entire ARMA 
spectrum, in which artificial series were generated from the parametric space of the 
principal ARMA models, they are AR(1), AR(2), MA(1), MA(2) e ARMA(1,1). The database 
generated was composed by 214.000 time series with 150 observations each one. The 
training set was composed by 90% of date and the others 10% composes the test set. The 
results were compared out of sample and the BCC showed better performance than ARMA O
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methodology, Genetic Programming and GPBoost. Finally, the BCC algorithm was also 
applied to multiple regressions problem and the results obtained from this method were 
compared with the results from Artificial Neural Network, Model Tree and Boosting. This 
comparison showed that the BCC supplied better results than other ones. In way compare 
the performance of the BCC methodology with other methods, many statistical tests were 
performed such as Median Square Error (MSE), Root Median Square Error (RMSE) and a 
non parametric test Friedman. The results were compared out of sample and the BCC 
methodology  had been presented accurate forecasts. Future research Considering that GP is 
able to provide solutions of high quality, and after the success of our own experiments 
(Souza et al., 2007a), we are encouraged to further explore GP towards finding solutions to 
the problem of modeling and pattern discovery of complex time series and in additional we 
will investigate the procedure BCC using GP as a base learner to analyze probabilistic and 
stochastic processes. We will investigate new tools that can work GP to more effectively 
solve this problem. One of the most important applications for the time series analysis is in 
stock markets. The goal of this task is to choose the best stocks when making an investment, 
and to decide which is the best strategy at the moment. Therefore, we will investigate the 
appropriate means for using GP in this task, as well as other general problems in financial 
time series. An another application that we must investigate is in Biological Networks, for 
example, gene regulatory network. 

2. Genetic programming 

Genetic Programming (GP) is an Evolutionary Computation Technique in which the 
individuals are computational programs. This theory was developed by John Koza (1992) 
and it is based on Genetic Algorithm (GA) presented by John Holland (1975). In accordance 
to Banzhaf (1998) and Kaboudan (2000)  GP is known as an effective research paradigm in 
Artificial Intelligence and Machine Learning, and have been studied in the most diverse 
areas of knowledge, such as: digital cirucuits, data mining, molecular biology, optimization 
taks and another ones. In nature, those individuals that better adapt to the environment that 
surrounds them, have greater chance to survive. They pass their genetic characteristics to 
their descendents, who will suffer modifications to better adapt to the environment. After 
many generations, this population reaches a natural evolution. In Genetic Programming 
(GP), the evolutionary algorithm operates over a population of programs that have different 
forms and sizes. The initial population must have enough diversity, that is, the individuals 
must have most of the characteristics that are necessary to solve the problem, because 
characteristics that do not exist in the initial population will probably not appear during the 
evolutionary process. The evolutionary process is guided by a fitness function that measures 
the individual’s ability to solve the problem. Those individuals that better solve the problem 
will receive a better fitness value and consequently, will have a better chance to be selected 
for the next generation. The choice of this function depends on the domain of the problem. 
A good choice is essential to provide good results. Once the individuals are selected, it is 
time to apply the genetic operators. These are: Reproduction – an individual is replicated to 
the next generation, with no modification in its structure; Crossover – two programs are 
recombined to generate two offspring and Mutation – a new sub-tree replaces a randomly 
selected part of a program. This process is repeated until a satisfactory solution or a stop 
criterion is reached. Instead of a population of beings, GP works with a population of 
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computer programs. The goal of the GP algorithm is to select, through recombination of 
“genes”, the program that better solves a given problem. The main elements of GP are:  
- Program Structure: a tree is the most used structure to represent programs in GP. Each 

node can be a function or a terminal. A function has to be evaluated considering its 
parameters while a terminal has its own value. The terminal (T) and function (F) 
datasets must be provided by the user in accordance to the current problem. For 
example, if the datasets are: F = {+, −, *, /} and T = {x, 2} are one simple variable 
arithmetic expression can be generate, such as x * x + 2 or (x2+2). Figure 1 shows the 
abstract syntax tree for that expression.  

 

 

Fig. 1. Sintax tree for (x*x+2) 

- Fitness Function and Selection: in nature, individuals are selected based on how well 
they fit to the environment. The individuals that are able to better solve the problem 
have better chance to be selected.  

- Parameters: there are some parameters that will guide the evolutionary process, these 
parameters will limit and control the search performance. Some of them are: genetic 
operators rates (crossover rate, mutation rate), population size, selection rate 
(tournament size), maximum depth of the individual, etc. 

In GP the population is composed by individuals that are computational programs (Koza, 
1992). The first step of the algorithm is to create randomly the initial population that is the 
Generation 0. After that, there are two majors tasks processed in a loop with two main steps: 
1. The evaluation of each program by using a fitness function: the GP algorithm receives 

the set that includes the values that represent the solution for the problem. For example, 
in a Symbolic Regression problem, it is necessary to provide the set of values of x and f 
(x) to the GP algorithm. These values are applied to the programs generated with the 
defined sets of operators and terminals. At the end, the fitness value is obtained. 

2. The new population is created by selecting individuals that have better fitness value 
and by applying the genetic operators. 

 

 

Fig. 2. Pseudo code of Genetic Programming 

+

*

xx

2

1. Randomly create an initial population 
2. Repeat until a good solution or a stop criterion is reached. 

2.1 Evaluate of each program by means of the fitness function 
2.2 Select a subgroup of individuals onto which applies the genetic operators 
2.3 Apply the genetic operators 
2.4 Replace the current population by this new population 

3. End 
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Each run of this loop represents a new generation of individuals, that are the new 
population that will substitute the previous one. This process is repeated until a solution is 
found or until a maximum number of generations is reached. At the end, the GP algorithm 
presents the best tree that is able to solve the given problem in the best way. The pseudo 
code of the GP algorithm is showed in the Figure 2. 

3. Boosting algorithms 

The Boosting algorithm was proposed and developed by Freund and Schapire (1996) for 
binary problems. According to Schapire and Singer (1997) Boosting is a method to find a 
highly accurate hypothesis by combining many weaker hypotheses, each of which is only 
moderately accurate. It manipulates the training examples to generate multiple hypotheses. 
In each iteration the learning algorithm uses different weights on the training examples and 
returns a hypothesis ht. The weighted error of ht is computed and applied to update the 
weights on the training examples. The result of the change in weights is to place higher 
weights in training examples that were misclassified by ht, and lower weights on examples 
that were correctly classified. The final classifier is composed by the weighted vote of the 
individual classifiers. Freund and Schapire (1996) introduced the AdaBoost algorithm 
commonly referred to as the Discrete Boosting algorithm, Ridgeway (1999) developed for 
binary classification problems. Freund and Schapire (1997) extended AdaBoost to a multi-
class case, which they called AdaBoost.M1 and AdaBoost.M2. In order to solve regression 
problems, Schapire (2002) extended the AdaBoost.M2 and called it AdaBoost.R. It solves 
regression problems by reducing them to classification ones. Drucker (1997) developed 
AdaBoost.R2 algorithm, which is an ad hoc modification of AdaBoost.R. He carried out 
some experiments with AdaBoost.R2 for regression problems and obtained some promising 
results (Solomatine and Shrestha, 2004). All these approaches follow the view of boosting as 
a gradient descent procedure (Breiman, 1997), or as residual-fitting, (Buhlmann and Yu, 
2003), (Mason et al. 1999). Instead of being trained on a different sample of the same training 
set, as in previous boosting algorithms, a regressor is trained on a new training set that has 
different target values (e.g., the residual error of the sum of the previous regressor) (Assad 
and Bone, 2003). Bone et al. (2003) adapted a Boosting algorithm to time series forecasting 
using neural networks as base learners. Their experiments showed that Boosting actually 
provides improved results in regression problems. Iba (1999) proposed a version of 
AdaBoost for GP and regression. In his work the distribution was implemented picking up 
examples to generate a new learning set for each Boosting round. The probability of an 
example being picked up is proportional to its weight, and any example can be picked from 
0,1 up to several times. According to Paris (2002), this approach makes the implementation 
easier, but the precision of weights is somewhat lost in the process.  

3.1 GPBoost 

Paris proposed a Boosting method that retains the precision of weights and operates on the 
whole set of examples for every round of Boosting. Their algorithm, named GPBoost, uses a 
weighted based fitness function in GP and the generic AdaBoost.R2 algorithm to update the 
weights its pseudo code is showed in the figure 3. The GP technique allows us to obtain 
accurate models from different datasets with diverse characteristics, and from the obtained 
model to estimate or predict the behavior of the system along time. On the other side, using 
Boosting, the results obtained with the merging hypothesis are always better than the results 
obtained with GP technique.  
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Algorithm 2 – GPBoost 

1. Given a training set S = {(x1, y1), (x2, y2), …, (xm, ym)}; xi ∈X, yi ∈R, GP is the base 
algorithm 

2. D1(i) is the weight of the example (xi, yi),  D1(i) : = 1 ∀ ∈i i(x ,y ) Sm   

 Repeat: t = 1 to T 

              Run GP over Dt using the function fitness: 

( )
1=

= −∑
m

i i t
i

fit f(x ) y * D (i) * m , 

             where f is a function in GP population and ft is the best individual in the run t. 

              Calculate: the loss function 
1=

−
=

−
t i i

i

i ...m t i i

f (x ) y
L

max f (x ) y
 

              Calculate the average loss function: 
1=

= ∑
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L L D  

              Let  
1
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L
 is the confidence given to the function ft  

             Update for  the next round: 

               distribution 
1

1

−

+ =
iL

t
t

t

D (i)
D (i) :

Z
, Zt is a normalization factor.              

3. Output: Final Hypothesis 
1

1 1 1

2≤ =

⎛ ⎞ ⎛ ⎞
= ∈ ≥⎜ ⎟ ⎜ ⎟

β β⎝ ⎠ ⎝ ⎠
∑ ∑
t

m

t:f (x) y tt t

F(x) min{y R : log log }  

Fig. 3. Pseudo code of GPBoost Algorithm 

3.2 Boosting Correlation Coefficients (BCC) 

After many studies through the Boosting algorithms, it is possible to point out that these 

algorithms have been sufficiently explored over classification problems. Less emphasis, 

however, has been given to regression problems. The Boosting algorithm for regression 

problems is an adaptation of the concepts used in classification. The traditional form of 

obtaining the weights of each example is based on error or loss function. However, the loss 

function is one of the possible information that can be used to obtain these weights.  

Recently, (Souza et al., 2007; 2009) used the BCC algorithm that is Boosting using 

Correlation Coefficients to time series forecasting and regressions problem.  The method is a 

new approach of the Boosting algorithm for regression and is empirically based. BCC uses 

the coefficients of correlation for the updating of the weights and it has been observed that 

this directly influences the minimization of the loss function. The same coefficients can also 

be used in the final combination of predictors. The correlation coefficient is a statistical 

measure of the interdependence of two or more random variables. Fundamentally, the value 

indicates how much of a change in one variable is explained by a change in another. The 

BCC method is based on this measure and will be described within this section, but firstly, a 

brief review on the definition of Correlation Coefficients is given.  

Definition: The correlation between two samples X and Y, with m observations, is 

calculated by using the Equation 1. 
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m
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i
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x x y y

(x,y)

x x y y

 (1) 

where x  and y  are the mean values of the samples X and Y respectively. The coefficient 

ranges from −1 to 1. If the coefficient has the value 1 it means that a linear equation 
describes the relationship perfectly and positively, with all data points lying on the same 
line and with Y increasing with X. A score of −1 shows that all data points lie on a single line 
but that Y increases as X decreases. 
The Boosting Correlation Coefficient is a metric function that measures the relation degree 
between two variables, in this case between the real and the predicted values. The structure 
of the BCC algorithm is similar to the GPBoost algorithm. First of all, the weight distribution 
Dt is initialized in Step 1 and the boosting iterations start (Step 2) by calling each time the GP 
algorithm. After the GP’s complete execution, the best individual ft in the run is chosen. 
After, the loss function is computed. To calculate the loss function different forms can be 
used, such as the exponential showed in Equation 2. Then, the correlation coefficients are 
calculated (Equation 3) and after the next weights are updated using the Equation 4. Finally, 
Step 3, the output must be computed as a combination of the different generated 
hypotheses. To calculate the final hypothesis F, T functions ft will be combined using again 
the correlation coefficients, see Equation 5. 
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T

t i
t

m

f x

F x
T

, i = m 

The intention in use the correlation coefficients is to promote a smoothness in the update of 
the weights, because it was observed that there is an inherent roughness on it, on the other 
hand the correlation coefficients were used to combine the obtained hypothesis in only one 
hypothesis that can be better than each one because of its goodness of estimation. 
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4. Time Series Forecasting 

Time Series Forecasting is an important area of the knowledge and there are many 
applications in the real world. Accurate forecasting is an essential element for many 
management decisions. There are several methods and techniques to find a good model that 
can be used to produce accurate forecasting the traditional techniques have your 
foundations in statistics. The most important model statistical methodology is the 
Autoregressive and Moving Average (ARMA) models. These methods presents some 
obstacles and complexities to overcome. The major difficulty is to select the good model that 
can best adjustment for a specific dataset, usually many attempts must be performed until 
the best model must be found. Because of these difficulties, many researchers have been 
done several efforts to overcome these problems, such as Artificial Neural Network (ANN), 
Evolutionary Computation (EC) and in special Genetic Programming (GP) that have been 
provided good results in time series forecasting.  

5. Experiments using real time series 

This section will describe the experiments that have been accomplished using the BCC 
algorithm with GP as a base learner and the results are compared with other techniques 
such as Box & Jenkins; traditional GP and GPBoost. In the first experiment the algorithms 
were used in a group of academic series, in the second one (Section 6) we used a widespread 
Monte Carlo simulation covering the entire ARMA spectrum. First of all, we will describe 
the data sets that were used in the experiments, second the configuration of the 
methodology that were used and after the results are presented and the evaluate of the 
algorithms is done. 

5.1 Academic and Benchmark Time Series 

The academic series used in this experiment can be found at the website:  
(www.ime.usp.br/~pam/ST.html) and the Benchmark series at (www.economatica.com). A 
brief explanation about the series is presented at Table 1. Each data set was divided into two 
other data sets: training set that contains the 90% first values from the data set that were 
used to train the methods and the second one that contains the remaining values. 

5.2 Box and Jenkins methodology- ARMA models 

The Box & Jenkins methodology is one of the most important and recognized work in Time 
Series area. The research was made by George Box and Gwiliyn Jenkins (1970) and it is 
based on the Wold (1954) studies, who proved that any time series can be represented by a 
structure of infinity moving average . The methodology adjust Autoregressive and Moving 
Average Models ARMA(p, q) to the data set, where p is the parameter of the Autoregressive 
and q is the parameter of the Moving Average models and they represent the order of the 
model to be used. The Box and Jenkins methodology is composed by four steps. 
Step 1. Identification of the model to be used on the dataset, the best model is selected by 

using Akaike (1974) Information Criterion (AIC), see Equation 6, where k is the 
number of parameters in the statistical model, and L is the maximized value of the 
likelihood function for the estimated model.  

 ( )LkAIC ln22 −=  (6) 
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Real Time Series 

Atmosphere: daily measurements of the temperature in degrees centigrade, at twelve 
o’clock from 1/1 to 12/31/1997, São Paulo, Brazil, 365 examples. 

Beverages: monthly figures of drinks industrial production, from 1/1985 to 7/2000, 
Brazil, 187 examples. 

Consumption: monthly figures of product sales, from 1/1984 to 10/1984, São Paulo, 
Brazil, 154 examples. 

Fortaleza: annual measurements of atmospheric precipitation, from 1849 to 1997, 
Fortaleza, Brazil, 149 examples. 

ICV: monthly figures, pricing index, from 1/1970 to 6/1980, São Paulo, 
Brazil, 126 examples. 

IPI: monthly observations of Food products (Industrial Production index), 
from 1/1985 to 7/2000,187 examples. 

Lavras: monthly measurements of atmospheric precipitation, from 1/1966 to 
12/1997, Lavras, Brazil, 384 examples. 

Sunspots: annual observations of the Wolfer Sunspots, from 1749 to 1924, 176 
examples. 

Djiad, 
Nasdaq 
Ibovd 

daily figures of the Stock returns from their respective financial 
markets, from 13/08/2001 to17/08/2005, 1100 examples each dataset. 

Table 1. Real Time Series 

Serie 
Dataset 
(100%) 

Training set
(90%) 

Test set 
(10%) 

Atmosphere 365 329 36 

Beverage 187 169 18 

Consumption 154 139 15 

Fortaleza 149 135 14 

ICV 126 114 12 

IPI 187 169 18 

Lavras 384 346 38 

Sunspots 176 159 17 

Djiad 1100 990 110 

Ibovespa 1100 990 110 

Nasdaq 1100 990 110 

Table 2. Number of examples of each data set 

Step 2. Estimation of the parameters to adjust the order of the model to be used. 
Step 3. Adaptability verification of the model. Trough the residual analysis is verified if the 

model has a good fit to the dataset. 
Step 4. Forecasting is made using the chosen model. 

5.3 Configuration of GP, GPBoost and BCC 

To apply these algorithms, we chose the tool Lil-GP 1.0 (Zongker, 1995) which is a free and 
easily configurable software, implemented according to Koza’s GP (1992). To solve the 
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problems it is necessary to provide the configuration files, standard GP parameters, 
functions and variables used to generate the models, input and output files (training and 
test set), as well as to specify the fitness function. The parameters used in this work to 
configure GP tool are showed at Table 3. These parameters have been gotten empirically 
after many tests have been accomplished. The terminal set used was T = { Zt−1, Zt−2, Zt−3, 
Zt−4} that is, the last four observations are used to make a prediction at the time t. Beside 

these a constant α is also used and the functions set is F = {+, −, *, /, log, cos, sin, exp, root}. 
This Function set allows us to obtain non linear models that have better adjust to the 
complex series than linear models. The fitness function used was defined as the Weighted 
Root Mean Square Error (WRMSE) that is, in general, used to measure the accuracy of a 

forecasting method. The WRMSE is showed in Equation 7, where xi is the real value, ix̂  is 

the estimated value, Di is the weight of each example and n is the size of the dataset. In this 
experiment, individuals with WRMSE equal to 0 or near to 0 are the best.  

 

( )

n

mDxx

Fitness

n

i

iii∑
=

−

= 1

2ˆ

 (7) 

The Boosting algorithm with the different output hypotheses has been implemented in C 

computer language. For each data set, ten models of each algorithm (GP, GP-Boost and 

BCC) were obtained using a different random initial seed and for the GPBoost and BCC 

algorithm it was used ten Boosting iterations. After that, each generated model was used to 

forecast the values in the test set. 

 

Parameters Value
Population Size 4,000 
Population initialization method  Full 
Number of generations 250 
Selection method Best 
Initial depth 2 - 10 

Maximum depth limit  10 
Maximum number of nodes  50 
Crossover rate  0.7 
Reproduction rate 0.2 
Mutation rate 0.1 

 

Table 3. Parameters of GP, GPBoost and BCC 

5.4 Results 

In order to evaluate the performance of these methods, we used the average of the Mean 

Square Error (MSE) obtained by using 10 initial seeds over the test set. This measure was 

used as a parameter of comparison because it is accepted by the statistical community. For 

the ARMA model, there is only one prediction and then the value of n is one. The results of 

this experiment are summarized in Table 4. The BCC algorithm presented the best 

performance, in almost all the data set the MSE average was the lowest.  
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Serie ARMA GP GPBoost BCC
Atmosphere 38.98 38.08 36.72 7.59 
Beverage 308.25 245.65 231.76 62.59 

Consumption 137.76 236.15 140.52 60.86 

ICV 445,690.37 423,083.18 400,212.40 209,855.37 

IPI 624.96 130.99 124.45 17.05 

Lavras 5,335.99 13,788.93 8,249.27 4,623.50 

Sunspots 902.70 320.85 318.76 329.10 
Djiad 0.05 0.00 0.00 0.00 
Ibovd 0.26 0.00 0.00 0.00 

Nasdaq 0.06 0.00 0.00 0.00 

Table 4. Average values of MSE from 10 run of the algorithms. 

Beside the MSE, it was applied a non parametric test, Friedman Test (Siegal, 1988) and 
(Demsar, 2006), to estimate the BCC performance against the other methods. The null 
hypothesis that all the algorithms are equivalent was tested and rejected, after that the post-
hoc multiple comparisons were performed. The results are summarized in Table 5. The 
algorithms ARMA, GP, GP-Boost and BCC and the result of the test shows that there is a 
significant difference between ARMA and BCC and between GPBoost and BCC all the other 
algorithms have no significant difference. 
 

Algorithms Statistical Difference
ARMA – GP FALSE
ARMA – GPBoost FALSE 
ARMA – BCC TRUE 
GP – GPBoost FALSE 
GP – BCC FALSE 

GPBoost – BCC FALSE

Table 5. Multiple comparisons among evaluated methods after Friedman test 

6. Experiment using Monte Carlo simulation 

A widespread Monte Carlo simulation has been done to exhaustively evaluate the 
performance of the BCC algorithm with GP as a base learner, in which we simulated 
artificial time series that belong to the entire spectrum of the structures AR(1), MA(1), AR(2), 
MA(2) and ARMA(1,1). To generate these series we used the free statistical software R). The 
parameters were put through variations within their respective parametric spaces and a 
noise component was added. The noise has normal distribution with mean 0 and standard 
deviation 1.  

6.1 Parameters setting 

In order to setting the parameters that were used in this simulation, it was considered the 
stationary region in the parametric space of the principal structure of the ARMA models: 
AR(1), AR(2), MA(1), MA(2), ARMA(1, 1). The stationary region of the AR(1) and MA(1) 

structure are represented by the Equation 8. Where φ1 is the autoregressive parameter and θ1 
is the moving average parameter, both of them are defined from -1 to 1. This space was 
divided using step 0.1 
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The parametric space of the stationary region of the AR(2) structure is defined by the 

Equation 9. Where φ1 and φ2  are the autoregressive parameters, for the MA(2) structure 
there is no restriction of the stationary (Morettin and Toloi, 2004), but its invertibility region 
is the same of the stationary region of the AR(2) structure. This region was divided using 
step 0.2 on the x and y axes. 
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Finally, the parametric space of the stationary region of the ARMA(1, 1) structure is defined 

by the Equation 10. Where φ1 is the autoregressive parameter and θ1 is the moving average 
parameter.  
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Using this criterion, the data set included 214.000 series distributed for each structure as 
showed in the Table 6. For each set of parameter, 500 series were created, for example, the 
AR(1) structure has 19 parameters, then the number of series is 500 × 19 = 9,500. Each data 
set was divided in training and test set in the same way that was made for the real time 
series. The number of the examples of each data set was 150, then the training set contain 
135 examples and the test set 15. 
 

Structures Parameters Series 

AR(1) 19 9,500 
AR(2) 90 45,000 
MA(1) 19 9,500 
MA(2) 200 100,000 

ARMA(1, 1) 100 50,000 

Table 6. Monte Carlo Simulation Series 

6.2 Evaluation metrics 

Despite using MSE as a comparison measure, this is not enough to guarantee that the 
algorithm is better than another one. To analyze more precisely the performance of the 
proposed algorithm against other, the Friedman test was performed. The null hypothesis 
that states that all the algorithms are equivalent was rejected and then, the post-hoc multiple 
comparisons were performed. The analysis was made for each structure considering the 
MSE results of each set of parameters. For example, the MA(2) structure has two hundred 
different sets of parameters, for each of them, one MSE result is obtained for each algorithm. 
In this simulation, only one seed was used to GP due to the largest of the data set. The 
training set contains the first 90% of the values from the data set and was used to train the 
methods. The testing set contains the remaining values and was used to evaluate the methods. 
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6.3 Computational implementation 
For each series from the data set (214,000) it was run 10 Boosting algorithm (GPBoost and 
BCC). The data sets have been run in a computational platform that includes 42 dual 
processor computers. The computer language used to implement the algorithms GPBoost, 
BCC and GP was C++ that used the Lil-GP 1.0 to run the GP as a sub routine. The data set 
was divided into 428 groups each one containing 500 series. Each group ran 10 Boosting 
algorithms including GPBoost and BCC. The computational time to run each group was 32 
hours. 

6.4 Results 
The results were analyzed through the MSE in the test set, the MSE was calculated in 
accordance with Equation 11. Where serie(xi) are the real values, ARMA(xi) are the 
predicted values from ARMA models, GPBoost(xi) are the predicted values from GPBoost 
and BCC(xi) are the predicted values from BCC algorithm. 
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In Table 7 is presented the MSE in the forecasted values for all the algorithms. Table 8 shows 
the results of the MSE for all the structure, due to space reasons only the sum of the MSE is 
presented. Table 9 shows the pos-hoc multiple comparisons results. In this Table, the symbol 
“FALSE” is used to denote that there is no statistical difference between the methods 
ARMA, GP, GP-Boost and BCC. From these Tables it is possible to conclude that: 
- For AR(1) structure, the BCC is significantly better than the other algorithms; GP and 

GPBoost algorithms have no difference, as well as, ARMA and GP algorithms. 
- For AR(2) structure, the BCC is significantly better than ARMA and GP algorithms, and 

equal to GPBoost; ARMA and GP have no difference. 
- For MA(1) structure, the BCC is significantly better than the other algorithms; there is 

no difference between: ARMA and GP algorithms, ARMA and GP-Boost algorithms, 
and GP and GP-Boost algorithms. 

- For MA(2) structure, the BCC is significantly better than the other algorithms; there is 
no difference between ARMA and GP algorithms; GP-Boost is better than GP and 
ARMA algorithms. 

- For ARMA(1,1) structure, the BCC is significantly better than the other algorithms; 
there is no difference between ARMA and GP algorithms; GP-Boost is better than GP 
and ARMA algorithms. 

Concluding, in almost all the cases the BCC method is the best and when the method is not 
the best, there is no statistical differences between the methods. GP-Boost is significantly 
better than GP and ARMA algorithms in many cases, but GP and ARMA algorithms have 
no difference. 
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Forecasting MSE Average AR(1) AR(2) MA(1) MA(2) ARMA(1, 1) 

ARMA 2.3702 4.3479 2.3150 3.0335 1.7917 

GP 1.0567 1.3176 5.6063 2.2456 1.8133 

GPBoost 1.0118 1.1906 1.1318 2.0985 1.1327 
e136 

BCC 0.9282 1.0997 1.0781 1.9234 1.1087 

ARMA 2.3527 4.1828 1.8223 2.7355 2.0809 

GP 1.9907 1.5090 1.6281 2.1690 1.2657 

GPBoost 1.1842 1.3537 1.1394 2.0773 1.1427 
e137 

BCC 1.0924 1.2563 1.0260 1.8843 1.0553 

ARMA 2.0450 4.0820 1.8098 2.6617 2.2494 

GP 1.0470 1.3674 1.1456 3.2616 1.3300 

GPBoost 1.0311 1.1733 1.0935 2.0698 1.1277 
e138 

BCC 0.9583 1.4734 0.9838 1.9117 1.0897 

ARMA 2.1817 4.1294 1.9132 2.6473 2.3892 

GP 1.3314 1.4605 1.2253 3.0242 1.6402 

GPBoost 1.2955 1.2963 1.1898 2.0711 1.1417 
e139 

BCC 1.2194 1.5489 1.0972 1.9318 1.0871 

ARMA 2.0486 4.2354 1.7691 2.6666 2.4768 

GP 1.5099 1.6394 1.2392 2.1816 1.3522 

GPBoost 1.3779 1.4485 1.1130 2.0828 1.1416 
e140 

BCC 1.2547 1.4844 1.0077 1.8970 1.0806 

ARMA 1.9550 4.5942 1.8326 2.6444 2.5734 

GP 1.4487 1.5345 1.1601 2.3654 1.2922 

GPBoost 1.2907 1.3558 1.1285 2.0613 1.1399 
e141 

BCC 1.4669 1.3466 1.0123 1.9397 1.1006 

ARMA 1.6495 4.5034 1.8526 2.6580 2.6567 

GP 2.2842 1.6545 1.2233 2.3011 1.6019 

GPBoost 1.1341 1.1711 1.1996 2.0800 1.1467 
e142 

BCC 1.0966 1.2458 1.0695 1.9264 1.2413 

ARMA 1.4880 4.7462 1.8323 2.6514 2.6738 

GP 2.0030 1.7681 1.2425 3.1361 1.2913 

GPBoost 0.9834 1.3549 1.1424 2.0581 1.1375 
e143 

BCC 0.9053 1.4738 1.0188 4.4017 1.0651 

ARMA 1.2274 3.6964 1.7596 2.6497 2.7013 

GP 0.8461 5.0540 1.3345 2.7877 1.3619 

GPBoost 0.8106 1.2776 1.1668 2.2478 1.1386 
e144 

BCC 0.7475 1.5608 1.0914 2.6743 1.0664 

ARMA 1.4540 3.6346 1.8127 2.6596 2.7278 

GP 1.1212 1.4859 1.4670 3.0190 1.3692 

GPBoost 1.1029 1.2636 1.1852 2.0717 1.1365 
e145 

BCC 1.3978 1.2616 1.0703 2.4415 1.4385 

ARMA 1.6769 3.3792 1.8306 2.6673 2.7513 

GP 1.4171 2.4862 1.1538 2.5006 10.2940 

GPBoost 1.3755 1.2689 1.1349 2.0858 1.1417 
e146 

BCC 1.2677 1.2078 1.0377 2.4169 1.1677 

ARMA 1.2946 3.4343 1.8601 2.6690 2.7759 

GP 1.0576 1.5164 1.2334 2.7557 1.8779 

GPBoost 1.0276 1.3071 1.1368 2.0776 1.1450 
e147 

BCC 0.9326 1.2561 1.0224 2.5989 1.1471 

ARMA 1.3387 3.3868 1.7664 2.6551 2.7658 

GP 1.1235 2.2805 1.2059 2.7182 6.5438 

GPBoost 1.0967 1.2308 1.0886 2.0734 1.2860 
e148 

BCC 1.0049 1.1477 1.0428 2.1184 1.2057 

ARMA 1.2239 3.5028 1.7232 2.6740 2.8048 

GP 1.0304 1.5118 1.1609 2.7705 1.3648 

GPBoost 1.0237 1.2823 1.1196 2.1262 1.1386 
e149 

BCC 0.9286 1.8203 1.0069 1.9977 1.0578 

ARMA 1.7268 3.4916 1.7436 2.6571 2.8316 

GP 1.7379 1.6753 1.1366 2.5503 3.4325 

GPBoost 1.5064 1.4174 1.0936 2.0637 1.1398 
e150 

BCC 1.5922 1.4630 0.9879 2.0916 1.0977 

Table 7. MSE average in the test set 
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Model ARMA GP GPBoost BCC 

AR(1) 29.99 25.24 20.48 15.29 
AR(2) 356.08 169.57 116.35 123.88 
MA(1) 35.01 29.34 21.61 19.70 
MA(2) 537.74 530.49 417.93 455.41 

ARMA(1,1) 255.00 252.21 114.91 113.40 

Table 8. Sum of MSE average in the test set 

Friedman Test Comparison 

Structure 
ARMA 

GP 
ARMA 

GPBoost 
ARMA 

BCC 
GP 

GPBoost 
GP 

BCC 
GPBoost 

BCC 

AR(1) FALSE TRUE TRUE FALSE TRUE TRUE 

AR(2) FALSE TRUE TRUE TRUE TRUE FALSE 

MA(1) FALSE FALSE TRUE FALSE TRUE TRUE 

MA(2) FALSE TRUE TRUE TRUE TRUE TRUE 

ARMA(1, 1) FALSE TRUE TRUE TRUE TRUE TRUE 

Table 9. Multiple comparisons among evaluated methods Friedman test 

7. Regression problems 

In this section we describe an experiment applying the BCC algorithm for Multivariate 
Regressions Problems. The goal is to evaluate the proposed method in this kind of problem. 
In order to compare with other techniques, we used the same datasets and evaluation 
measures described in Souza and Vergilio (2006). In their work, they presented the results 
obtained with the application of Neural Networks (multi-layer perceptron, ANN), M5 
Model Tree (MT), Adaboost.R2 (R2) and Adaboost.RT (RT), here replicated for comparison 
purposes with our approach. 

7.1 Data sets 

The dataset´s features are described in Table 10, these datasets are used as a benchmark for 
comparing results with the previous research. The dataset was divided into training (70%) 
and test (30%). The subsets were obtained using a random selection without replacement 
strategy. The procedure was repeated for ten times with different seeds in order to obtain 
ten statistically different subsets of data. These ten subsets were prepared to obtain 
consistent results. The BCC algorithm was implemented using the software R and as base 
learner the Cart (Classification and Regression Tree) algorithm was used. The reason to 
select this learning technique is that it is simple, easy and fast to train. 
 

Data Base Number of Instances 
Number of 
Atributtes 

CPU 209 6 

Housing 506 13 

Auto-Mpg 398 7 

Friedman #1 1500 5 

Table 10. Multiple Regression Dataset 
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7.2 Results 

The performances of the different algorithms are presented in the Table 11. By analyzing the 
results we can conclude that there is no technique that will always present the best results. 
For some datasets the best model was obtained by using one approach, for other datasets 
the best model was obtained with another one. In order to analyze more precisely the 
algorithm’s relative performance some quantitative measurement is needed rather than just 
subjective comparison. For this reason, following the methodology used by Souza and 
Vergilio (2006), we used the so-called scoring matrix. It shows the average relative 
performance (in %) of one technique over another technique for all the data sets considered. 
Element of scoring matrix SMij should be read as the ith machine’s average performance 
(header row in Table 12) against machine j (header column in Table 12) and is calculated for 
a N number of datasets as is showed in the Equation 12 (for i ≠ j ). From Table 12 it can be 
clearly observed that BCC scores highest. 
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1

=

−
= ∑ ,

max ,

N
k j ki

ij

k kj ki

RMSE RMSE
SM

N RMSE RMSE
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Bases BCC MT Bagging ANN AdaBoost.R AdaBoost.RT 

CPU 22.48 34.65 32.64 13.91 24.45 26.52 
Housing 1.12 3.62 3.24 3.54 3.23 3.23 
Auto-Mpg 0.85 3.01 2.86 3.79 2.84 2.96 
Friedman 0.7 2.19 2.06 1.51 1.82 1.72 

Table 11. Performance comparison (RMSE) between the different algorithms in the test set 

Machine MT Bagging ANN R2 RT BCC Total 

MT 0.0 -6.8 -18.1 -11.5 -14.3 -61.0 -117.7 
Bagging 6.8 0.0 -12.8 -9.4 -8.0 -58.2 -81.6 
ANN 18.1 12.8 0.0 6.6 7.3 -40.4 4.4 
R2 11.5 9.4 -6.6 0.0 1.6 -51.2 -35.3 
RT 14.3 8.0 -7.3 -1.6 0.0 -52.8 -39.4 
BCC 61.0 58.2 40.4 51.2 52.8 0.0 263.6 

Table 12. Scoring matrix for different machines 

8. Conclusion 

In this paper we present the BCC algorithm that uses the correlation coefficients between the 
real and the forecasting value obtained using GP as a base learner. The correlation 
coefficient is used for update the weights and for the generation of the final formula. 
Differently from works found in the literature, in this paper we investigate the use of the 
correlation metrics as a factor, besides the error metric. This new approach, called Boosting 
using Correlation Coefficients (BCC), has been empirically obtained when trying to improve 
the results from the other methods. The correlation coefficient was considered because two 
algorithms could present the same mean error and different correlation coefficients for a 
dataset. This difference on behavior of the two algorithms can be measured by the 
correlation coefficient. A good correlation coefficient results in small errors for each 
example. The correlation coefficient is used in the proposed algorithm with two purposes: 
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the first use of the correlation coefficient is for the update of the weights, here the intent is to 
promote a smoothness of the update, because it has been observed that the original equation 
has an inherent roughness. The second use is to combine the final hypothesis, and in this 
case the intent is to allow that each hypothesis contributes to the final hypothesis according 
to its goodness of estimation. This idea was evaluated through two groups of experiments. 
In the first group of experiments, we explore the BCC for time series forecasting, using 
Genetic Programming (GP) as a base learner. Differently from works found in the literature 
a great number of series were used considering academic series and a widespread Monte 
Carlo simulation. In the Monte Carlo Simulation, series were generated 
in the entire parametric space for the main ARMA structures: AR(1), AR(2), MA(1) MA(2) 
and ARMA(1,1). From all these experiments we can conclude that in almost all cases the 
BCC method is the best and when the method is not the best, there is no statistical difference 
between the compared methods. The goal of the second group of experiments was to 
evaluate the proposed method in multivariate regression problems. We have compared the 
BCC algorithm with the results reported by other authors, comparing a M5 model tree (MT), 
bagging, AdaBoost.R2, AdaBoost.RT and Artificial Neural Networks (ANN). For our work, 
a model tree was chosen as the base learner. We use a scoring matrix to analyze the 
algorithms’ relative performance. It shows the average relative performance (in%) of one 
technique over another technique. Like in time series forecasting it can be clearly observed 
that BCC scores the highest. We can conclude that the proposed algorithm is very 
advantageous for regression problems. The BCC algorithm was evaluated using two 
different base learners and it always showed good results. These results encourage us to 
carry out future experiments to explore other base learners. We intend to better evaluate the 
proposed approach and to explore meta-learning to select the best algorithm according to 
the characteristics of the datasets. The meta-learning approach will help us to better 
understand the problems that better fit to one algorithm or another. Other future works are 
the investigation of other application domains like Software Reliability. Also, an interesting 
idea is to extend the work for classification problems, however, the correlation coefficient 
can be used only for continuous variables, and then, other metrics must be considered. 
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