
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

24

An Empirical Study
of Graph Grammar Evolution

Martin Luerssen and David Powers
Flinders University

Australia

1. Introduction

Finding an optimal topology for a graph is relevant to many problem domains, as graphs

can be used to model a variety of systems. Evolutionary algorithms (EAs) constitute a

popular class of heuristic optimization algorithms, but have mainly been applied to what

constitutes just a small subset of graphs, namely string and trees. Methods for evolving

graphs typically involve the interpretation of a string or tree into a graph (e.g. Shirakawa et

al., 2007). Accordingly, they rely on classical variation operators that are proven and easy to

implement, but were fundamentally never designed for graphs and may struggle with their

intrinsically greater complexity. Yet operating directly on graphs does not necessarily

address this problem either. What is needed is a representation that facilitates the discovery

and reuse of design dependencies within graphs. Graph grammars are the key to this, and

their application to evolutionary graph building will be the focus of this chapter.

Grammars have mainly performed two distinct roles in the context of evolutionary

comptuation: (1) as a means of establishing search bias, both declarative and preferential,

which restrict and guide the search process, respectively; and (2) as a scalable representation

that separates the complexity of the genotype from that of the phenotype. Both of these are

eminently useful capabilities that are rarely found in conjunction. We therefore start by

reviewing past research and trends in these fields and then describe the technique of Shared

Grammar Evolution (SGE), which synergistically combines both roles into one coherent

framework. SGE is subsequently applied to evolve a Cellular Graph Grammar, a graph

representation tailored for evolutionary change. We experimentally explore the impact of

diversity and spatial separation on evolutionary convergence, and propose a new

evolutionary model inspired by swarm intelligence. Finally, the issue of graph bloat and the

efficacy of the representational model are analysed so as to provide a practical insight into

this unique scheme.

2. Grammar-Based evolution

For clarity, let us establish some introductory concepts first. In formal terms, a grammar ܩ is

a quadruple ሺܰ, ܶ, ܲ, ሻ, where ܰ is a finite set of nonterminal symbols, ܶ is a finite set ofܣ

terminal symbols (disjoint from ܰ), ܲ is a set of production rules, and ܣ א ܰ is the axiom (or

starting symbol). Each production rule is an ordered pair ݌ ൌ ሺܲ, ܵሻ, where predecessor ܲ א ሺܰ ׫ ܶሻכ denotes a string of symbols to be replaced by the successor ܵ א ሺܰ ׫ ܶሻכ. O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Evolutionary Computation, Book edited by: Wellington Pinheiro dos Santos,
 ISBN 978-953-307-008-7, pp. 572, October 2009, I-Tech, Vienna, Austria

www.intechopen.com

Evolutionary Computation 446

Context-free grammars (CFGs) are a popular class of grammars constrained to ܲ א ܰ, so that

the predecessor can only be formed by a single nonterminal. A derivation involves applying

a sequence of productions, starting from the axiom and typically generating a string.

2.1 Grammatical bias
Grammatical Evolution (GE) is a well-studied method for guiding evolution with a

grammar (Ryan et al., 1998). The evolved genome in GE is a linear sequence of choices that

are applied to a pre-defined CFG, which acts as a declarative bias, i.e. it restricts the search

space to a limited set of predetermined, “sensible” possibilities. The GE grammar can itself

be evolved using the meta-Grammar Genetic Algorithm (mGGA) (O’Neill, 2005). It thereby

models a preferential bias, which dynamically adapts to the search process, i.e. produces

better derivations with each generation. For this purpose, a pre-defined universal CFG is

employed from which GE grammars are derived that then generate the actual solutions.

The use of a linear representation makes GE straightforward to implement, but a major

drawback is the lack of guarantee that a sequence of choices will end in a terminal. The

standard solution is to wrap the genome and repeat the choice sequence, but this can lead to

never-ending derivations. CFG-GP is an alternative scheme based on Genetic Programming

(GP) does not have this drawback as it derives trees rather than strings from a CFG

(Whigham, 1995; Koza, 1992). CFG-GP is also capable of evolving its grammar by creating

new productions from subtrees of the fittest solutions in the population. Grammatical GP

(Augusto et al., 2008) is a recent, simplified variant of CFG-GP, where subtrees can be

replaced only by other type-compatible subtrees. The grammar is not directly modified here,

but subtree quantities will implicitly affect derivation probabilities.

Hoai et al. (2003) further formalize the tree-based approach by employing Lexicalized Tree-

Adjunct Grammars (LTAGs). Each production in an LTAG consists of elementary trees, each

of which must have at least one terminal node. The broad objective of this work is to extend

the notion of probabilistic model building from string representations to trees (Mühlenbein

& Paaá, 1996). Grammar Model-based Program Evolution (GMPE) correspondingly

performs a hill-climbing search to learn a stochastic CFG from the best solutions in an

existing population (Shan et al., 2004). A grammar that specifically describes only the fittest

population members is established at each generation and then generalized by merging

rules with the goal of minimizing the minimum description length of the grammar. A

fraction of the next generation is then sampled using this grammar, and the procedure

repeated, with novelty arising from the intermediate addition of random solutions.

2.2 Grammatical development
Grammars have also found popular use as models of developmental processes in biology

and as such can provide further benefits to evolutionary search. A developmental process,

or embryogeny, separates the representation of what is modified during evolution (the

genotype) from the actual solution (the phenotype). If one merely applies a one-to-one

mapping from genotype to phenotype, then the complexity of the former has to match the

complexity of the latter. Large solutions therefore become difficult to optimize, even if they

exhibit symmetry, which is common in many useful designs. Biological designs exploit

symmetries by employing a highly indirect, developmental representation that has DNA

transcribed into RNA, translated into polypeptides, and then processed into proteins which

self-organize into phenotypic traits (Futuyma, 1998). Complex feedback loops within this

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 447

system produce iterative and recursive algorithms of development that are characterized by

polygeny (multiple genes define a single phenotypic variable) and pleiotropy (changes to a

single gene affect multiple phenotypic variables). Two desirable properties in evolutionary

search are facilitated by this: neutrality and modularity. Neutrality is defined by genotypic

variations that fail to affect the phenotype, which may lead to a build-up of hidden genetic

variation that, once exposed, may produce a more rapid directional change than would

otherwise be expected to occur. Neutral variations therefore allow distinct exploration

strategies to be encoded in – and ultimately evolved with – the genotype (Toussaint, 2003).

Modularity concerns the effective partition of sets into distinct subsets that are more tightly

coupled internally than externally (Simon, 1996). The indirection of embryogeny enables the

encoding of modules and of graph designs in terms of these modules, thus potentially

reducing the configuration space that must be searched.

Embryogenic models that wish to be faithful to the biological archetype must establish

detailed developmental mechanisms based on chemical, mechanical, and genetic regulatory

factors. Yet the complexity of such a system implies not only a considerable computational

cost, but also a general difficulty in analyzing it. In comparison, modelling embryology as a

grammar can combine much of the power of a realistic model with the practicality of

something simpler. A popular instance thereof is the L-system, which uses a grammar to

rewrite all the symbols in a string in parallel and was originally introduced by Lindenmayer

(1968) for replicating the growth characteristics of plants. Kitano (1990) evolved neural

networks using a matrix L-system, where each production rewrites a node or edge symbol

within a node or edge matrix into a 2 × 2 node or edge matrix. Boers and Sprinkhuizen-

Kuyper (2001) used a string L-system to likewise evolve neural networks by interpreting a

rewritten string as a graph. The grammar of GENRE (Hornby, 2003), an evolutionary design

framework based on a parametric L-system, is evolved by a simple EA with specialized

operators. Strings are rewritten and then translated into solutions, with successful

applications to table designs, neural networks, and robot controllers.

In most instances of grammatical development the grammar generates a string that is

interpreted as some solution construct. Data structures other than strings are less common; a

notable exception is Cellular Encoding (CE) (Gruau, 1995). CE represents graph rewriting

rules as a list of grammar trees, which can be evolved by GP. The nodes of the tree are

references to graph operators applied successively to develop a single ancestor cell into a

neural network or circuit design (Koza, 1999). Yet whether it is the choice of graph operators

or the interpretation function for strings, a bias is imposed on the evolvable outcomes that is

usually not well understood. It would therefore be desirable to operate as directly as

possible on the graph itself – without necessarily abandoning the benefits of a grammar.

3. Graph operations

A directed graph is a quadruple ሺܸ, ,ܧ ,ݏ is a finite set ofܧ ,ሻ where ܸ is a finite set of verticesݐ

edges, and ݏ, :ݐ ܧ ՜ ܸ assign a source ݏሺ݁ሻ and a target ݐሺ݁ሻ to each ݁ א Natural and .ܧ

artificial instances of systems that can be represented as graphs are ubiquitous, and many

problems of practical interest may be formulated as questions about graphs. Some graphs,

such as the circuit of a microprocessor, need to be designed, and this is where EAs can

assist. EAs traditionally operate on strings, with more recent methods such as GP operating

on trees, a larger subset of graphs. For proper graph evolution we need a way to manipulate

graphs. Just like sets of strings can be characterised by string grammars, sets of graphs can

www.intechopen.com

Evolutionary Computation 448

be characterised by graph grammars. Graph grammars therefore provide an intuitive

description for the manipulation of graphs and graphical structures in any applicable

domain. Over the last 30 years a great many graph rewriting mechanisms have been

devised; a comprehensive review is provided by Rozenberg (1997).

3.1 Hyperedge replacement
Hyperedge replacement constitutes one of the most elementary and frequently used

concepts of graph rewriting (Habel, 1992). Edges in a graph normally have arity two, that is,

they connect two vertices. A hyperedge may instead have multiple sources and targets, ݏ, :ݐ ܧ ՜ connecting several vertices via a set of incoming tentacles and a set of outgoing ,כܸ

tentacles. A graph with hyperedges is known as a hypergraph. Formally, a directed, labelled

hypergraph over a label set ܥ is a quintuple ሺܸ, ,ܧ ,ݏ ,ݐ ݈ሻ where ܸ is a finite set of nodes, ܧ is

a finite set of hyperedges, ݏ: ܧ ՜ ݁ ሺ݁ሻ to eachݏ assigns a sequence of sources כܸ א :ݐ ,ܧ ܧ ՜ ݁ ሺ݁ሻ to eachݐ assigns a sequence of targets כܸ א :݈ and ,ܧ ܧ ՜ labels each ܥ

hyperedge.

A multi-pointed hypergraph ܪ is a hypergraph with additional begin and end nodes, which

are also referred to as the external nodes of ܪ. Let ܪ஼ be the set of all multi-pointed

hypergraphs. A hypergraph production is an ordered pair ݌ ൌ ሺܣ, ܴሻ with predecessor ܣ א ܰ and successor ܴ א ஼ܪ . A hyperedge replacement grammar HRG is a quadruple ሺܰ, ܶ, ܲ, ܼሻ where ܰ א ܶ ,is a finite set of nonterminal symbols ܥ א is a finite set of terminal ܥ

symbols, ܲ is a finite set of hypergraph productions, and ܼ א .஼ is the axiomܪ

Hyperedges of a hypergraph may be replaced by other hypergraphs according to

hypergraph productions. Given a hyperedge ݁ in a hypergraph ܪ, if there is a hypergraph

production ݌ ൌ ሺ݁, ܴሻ and the begin and end nodes of the multi-pointed hypergraph ܴ

match the available attachments in ܪ, then ݁ may be replaced by ܴ. This occurs by removing

the hyperedge and adding the hypergraph ܴ, except for the begin and end nodes; each

tentacle of a hyperedge within ܴ that is attached to a begin or end node is handed over to

the corresponding source or target attachment node of the replaced hyperedge ݁ .

3.2 Cellular graph grammars
Evolution of graphs implies directed change, which can be perceived as either a change to

the graph, compliant with a grammar; or as a change to the grammar itself, as is common in

grammatical development models. These two choices are not exclusive, as graph operations

can be defined as graph replacements, i.e. grammatical operations, which can be evolved

like any other graph. However, in graph grammar theory it is generally presumed that a

replacement is well-typed, so that the hyperedge being replaced matches the external nodes

of the multi-pointed hypergraph. The classic handover operation fuses the i-th source with

the i-th begin node and the j-th target with the j-th end node, assuming these exist. In this

context, not fusing any nodes beyond those that are present can lead to ripple effects on the

topology of the final graph. Position independence resolves this problem and can be

achieved by allowing the ordering of nodes to evolve (Goldberg et al., 1989). An identifying

label ݈ א .ݒ ሻ is the label of nodeݒis assigned to each external and internal node, so that ݈ሺ ܥ

Additionally, we extend the mappings ݏ and ݐ so that the label ݈ of the external node of the

multi-pointed hypergraph is specified; the mappings hence become ݏ: ሺ݈ሻܧ ՜ :ݐ and כܸ ሺ݈ሻܧ ՜ .respectively ,כܸ

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 449

Fig. 1. A cellular production where nonterminal NA is replaced by a cellular graph; TA is a

terminal, NB is a nonterminal, b and e are begin and end nodes, and s and t are source labels

and target labels.

A directed hypergraph can be described by an incidence structure, which contains a point

for each vertex or hyperedge of the hypergraph and a line (i,j) if vertex i of the hypergraph is

in hyperedge j. Storing these structures in an adjacency list has the drawback that adding or

deleting a single structure would rarely be sufficient to substantially change the graph, as

e.g. adding a hyperedge does not imply that it connects to anything. We address this by

encapsulating those parts of a hyperedge or vertex that define how it attaches to other

components into a descriptive unit referred to as a cellular graph, illustrated in Figure 1. A

cellular production is a production with a cellular graph as its successor. It can be treated as

a simplified hypergraph production in a hyperedge replacement system, except that all

edges must be defined by cellular graphs, including those of the terminals. A graph is

constructed from a grammar of cellular productions by replacing each nonterminal (or

terminal wrapper) by the associated cellular graph, as shown in Figure 2. Fusion between

begin and end nodes is established by finding target labels that match source labels.

We previously argued that a system that can be decomposed into modules may be more

easily optimized. A module is expected to have minimal dependences with components

external to the module. These dependencies usually relate to a well-specified interface of the

module that acts as a dependency bottleneck. This way a successful design can be protected

from being affected by changes to other components of the system. In the graph domain,

achieving structural modularity translates into restricting the number of vertices inside a

module that have edges to vertices outside the module. The begin and end nodes of the

multi-pointed hypergraph provide a natural feature for restricting such edges, since it is

only these nodes that allow binding to components external to the hypergraph.

When matching labels, we thus restrict ourselves to a specific scope for each label type. No

label outside the scope boundary is visible from within the cellular graph, which, for a

graph composed of many cellular graphs, greatly reduces the number of possible sources

and targets for which labels must be matched. Labels are selected from a very large set (e.g.

www.intechopen.com

Evolutionary Computation 450

Fig. 2. A graph is derived from a cellular graph grammar over several iterations of

replacement.

real numbers) and matched with the nearest, not necessarily identical, label – arithmetic

difference is used here as the distance metric. Offset labels, which add to all the labels of

associated cellular graphs, can also be applied to terminals and nonterminals. Labels may

therefore change and combine in various ways without affecting the final solution.

Subgraphs can be partially or fully disconnected from the host graph, allowing building

blocks to neutrally accumulate and later be activated through possibly minor label changes.

4. Shared Grammar Evolution

Shared Grammar Evolution (SGE) provides a framework for evolving grammars such as the

above (Luerssen & Powers, 2008). Each solution graph is described by its own individual

grammar, referred to as an i-grammar, which is composed of a set of productions from

which this graph (and only this graph) can be derived. Productions within an i-grammar

may refer to each other, leading to recursion and a high degree of pleiotropy, as individual

productions can trigger many other productions. This is comparable to the L-system

evolution discussed previously, but instead of representing each solution by a separate set

of productions, SGE combines these sets into a single set, the p-grammar. Productions with

identical successors can be eliminated from the p-grammar, as only one instance of a

particular production has to exist, even if it is involved in the derivation of different

programs. Depending on the reuse of productions, the total number of productions in the

population may thus be reduced, as shown in Figure 3.

Since a grammar with alternatives cannot uniquely represent – that is, describe

deterministically – a specific solution, no productions with identical predecessors are

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 451

Fig. 3. Each graph is derived from an associated grammar, but grammars may share

productions.

permitted in i-grammars. i-grammars are initially generated from a user-defined set of

template productions, which define the cellular graphs and terminals that are permissible.

Template productions can have alternatives, since their role is not as a representation, but as

a declarative bias. They delimit the range of graphs that can evolve, as every new

production is a variation of a template production. In case a priori knowledge about an

optimal static template grammar is poor, cellular graphs can also be mutated directly during

evolution. For this, the components of a cellular graph are organized into a list of

nonterminal symbols (hyperedges of the graph), a list of terminal symbols (terminal nodes

of the graph), and a list of (source, target, direction) label triples (begin and end nodes of the

graph). Three operators may be applied to each list:

• insert, which adds a new element into a random position in the list, where the new

element is defined by randomly selecting a new symbol and new labels from a global

set of all possible choices, including the template grammar

• remove, which randomly selects an element from the list and deletes it

• change, which combines the insert and remove operator

A probability is assigned to each (operation, list) pair, so that all probabilities sum to 1. A
mutation involves randomly selecting a pair from these probabilities. If an inserted label is
obtained from the template grammar, it is changed to point to a new production instance
(and its associated subgraph) generated from the template grammar. The above operators
are supplemented by the increase recursion and decrease recursion operators, which increase or
decrease the recursion limit of the cellular production by one. During derivation, a

production is redirected to an associated default terminal if it calls itself, directly or
indirectly, more often than specified by this limit.

SGE can be viewed as a repeated growing and pruning of the p-grammar; an illustration of

this is given in Figure 4. For every graph derived from its associated starting production, a

single expressed production is spontaneously replaced by a mutated variant. After testing

all the mutated graphs, the least fit solutions, both from the mutated set and the previously

evaluated graphs, are discarded by eliminating all associated productions that are not

involved in any fitter solutions. Conversely, if a mutation survived, the p-grammar is

modified so that the mutated graph becomes one of the graphs derivable from it.

www.intechopen.com

Evolutionary Computation 452

Fig. 4. Illustration of SGE with a maximum population of two graphs. Starting with an

empty production/ graph NS in generation (1), terminals are added to a copy NT of this

production in (2), then NT is added to itself, producing NU in (3), while the graph of NS has

least fitness f and is thus removed. NT in the graph of NU is then mutated in (4), producing

NV and a copy of NU, NW, with a reference to NV. The graph of NT is now uncompetitive,

but remains as a production used by NU. Further offspring is created in (5) and (6), leading

to NZ, which exhibits a recursive self-reference.

5. Promoting diversity

Diversity refers to the differences between members of a population. Genotypic diversity is

the diversity among genomes in the population, whereas phenotypic diversity is the

diversity among fitness values in the population. Since genetic lineages often reduce to one

lineage early in the evolutionary process (McPhee & Hopper, 1999), maintaining diversity in

a population is necessary for the long-term success of any evolutionary system, as it allows

the population to continue searching for productive regions of the search space and thus

avoid becoming trapped by local optima. Several methods have been proposed to improve

diversity and combat premature convergence in EAs; we will investigate two of these in the

context of graph grammar evolution: phenotypic diversity objectives and spatial separation.

5.1 Phenotypic diversity objectives
The principal drawback of any genotypic diversity measure is its limited applicability to a

grammar, as the extensive neutrality intrinsic to this representation would allow it to

improve diversity while remaining isomorphic. A possible solution is to employ a

phenotypic diversity objective instead (Luerssen, 2005). The error returned by the objective

function is the most available phenotypic trait of a solution and hence a solid basis for

measuring phenotypic diversity. To reduce any bias attributable to the nature of the specific

objective function used, the solutions can be ranked against each other on this function;

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 453

distances are then computed as differences of ranks. The mean distance of solution ݅ is the

absolute difference between ranks,

௜ܦ ൌ ∑ หோ೔ିோೕหೕಿసబ ே (5.1)

where ܰ is the number of other solutions. A measure less biased towards rewarding poor

performance is to compare whether two solutions ݅ and ݆ show non-identical performance,

 ௜ܵ௝ ൌ ൜ͳ ݂݅ ܴ௜ ് ௝ܴͲ (5.2) ݁ݏ݅ݓݎ݄݁ݐ݋

The diversity of solution ݅ can be defined as the proportion of solutions that are different in

performance,

௜ܦ ൌ ∑ ௌ೔ೕೕಿసబே (5.3)

This ‘difference’ measure is logarithmically related to the phenotypic entropy of the solution:

ሺ݅ሻܪ ൌ െlogሺͳ െ ∑ ௌ೔ೕೕಿసబே ሻ (5.4)

but since the diversity objective will also be ranked for selection purposes, we can use the

simpler difference measure while obtaining the same effect.

Solutions with equal mean performance can still be different, and the measures presented so

far do not recognise this. Distinguishing these solutions without comparing their genotypes

is only feasible if there are multiple fitness cases that can be compared separately. Then the

mean rank distance can be averaged across each case ܿ,

௜ܦ ൌ ∑ ∑ หோ೎೔ିோ೎ೕหೕಿసబ಴೎సబ ஼ൈே (5.5)

where ܥ is the number of fitness cases. Two solutions perform identically if

 ௜ܵ௝ ൌ ൜ͳ ݂݅ ∑ หܴ௖௜ െ ܴ௖௝ห஼௖ୀ଴ ൐ ͲͲ ݁ݏ݅ݓݎ݄݁ݐ݋ (5.6)

so that diversity may again be defined as the proportion of non-identical solutions,

௜ܦ ൌ ∑ ௌ೔ೕೕಿసబ஼ൈே (5.7)

5.1.1 Handling multiple objectives
Having both a performance and a diversity objective implies that there is not one optimal

solution, but a set of compromises known as a Pareto-optimal set. Multiobjective

evolutionary algorithms (MOEAs) are typically based on Pareto-domination, where a

solution ଵܵ is said to dominate another solution ܵଶ if ଵܵ is no worse than ܵଶ in all objectives

and better than ܵଶ on at least one objective (Deb, 2001). If the population size is smaller than

the size of the Pareto-optimal set, then the MOEA is meant to return solutions spread evenly

along the Pareto boundary. Most MOEAs apply some form of phenotypic niching to achieve

this: if individual ଵܵ is more nondominated than ܵଶ, ଵܵ is preferred regardless of niching,

www.intechopen.com

Evolutionary Computation 454

whereas if ଵܵ and ܵଶ have the same degree of nondominatedness, the one residing in the

most sparsely populated region of the search-space is preferred. In the multi-objective

implementation of SGE, we assess population density as simply the distance between a

chosen solution and its nearest neighbour, with a bias towards the lowest error solution in

case of a tie (or the newest solution, if this fails). Otherwise the MOEA for SGE matches the

NSGA-II presented by Deb et al. (2000).

Binomial-3

Regression

Random Bit Sequence

(RBS)
Pole Balancing

Computer

Network

Topology (CNT)

Objective

Infer the

mapping ݕ ൌ ݂ሺݔሻ, where ݂ሺݔሻ is the

binomial-3

polynomial ሺݔ ൅ ͳሻଷ
Reproduce a binary

time sequence

Optimize topology

and weights of a

neural network

balancing 2 poles

fixed to a cart

moving on a finite

track

Create a virtual

computer

network that

efficiently

connects data

sinks with sources

Terminals

0/ 1/ 2-ary: +, -, ×,

% (protected

division)

0/ 1/ 2-ary: AND, XOR

Neurons with

transfer function: ߮ሺݔሻ ൌ ͳͳ ൅ ݁ିସ.ଽ௫

Virtual sinks,

sources, and

switches

Fitness

Case(s)

21 equidistant

points generated

by the objective

function over ݔ ൌ ሾെͳ, ͳሿ
16-bit sequence given

by a 4-bit de Bruijn

Counter (with seed

0000)

Pole balancing setup

and simulation, see

Stanley &

Miikkulainen (2002)

10 randomly

pregenerated

unit/ data stream

configurations

Simulation
Graph relaxed

for 10 cycles

Simulation for 32

simulation cycles (+4

cycles lead-in),

sampled every 2

cycles; to allow many

different designs to be

synchronized with the

sampling rate, line

delays are assigned to

edges with a

geometric probability

of 0.5 of longer delays

Relaxed for 3 cycles;

weights are assigned

to edges by

randomization with

a standard Gaussian

distribution (μ = 0, σ
= 1), at 0.3 prob., or

by DE (Price, 1999),

at 0.7 prob., with

parameter F = 0.2

and a crossover prob.

of 0.9

Simplified

network

simulation, see

Luerssen (2009)

Error

Measure

Mean squared

error

Proportion of

incorrectly reproduced

bits

Reciprical number of

cycles both poles

remain balanced

Fraction of data

requests not

satisfied

Mutation

A single production is selected for mutation and a single mutation is applied at a

time, with a geometric probability of 0.5 that further mutations are applied to the

same production

Population
20 graphs, each defined by a maximum of 1000 productions and 1000 terminals per

production

Generations 1000

Table 1. Description and default parameters for all experimental problem tasks.

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 455

Fig. 5. A sample of graphs evolved by SGE on the four problem tasks. Connection weights

are shown for the pole balancing ANN and line delays for the sequence circuit.

5.1.2 Experiment
To evaluate the effect of diversity on graph grammar evolution, we selected four problem

tasks, which are described in Table 1. They are quick to evaluate, yet also challenging, and

encompass different natural requirements of the representation. Sample solutions for each

problem are shown in Figure 5. Solution candidates are evolved with a MOEA applied to

three objectives: the function error, the solution size (see also section 8), and one of four

diversity measures: entropy, fitness case entropy, distance, and fitness case distance. Results

are averaged over 100 runs. Statistical significance is determined using a Z-test or non-

parametric Wilcoxon rank sum test on the best solutions of the final generation of each run.

5.1.3 Results
The performance outcomes of using the different diversity measures are listed in tables 2

and 3 later in the chapter. On the Binomial-3 regression, the best results are obtained with

the simple entropy measure, which gives a mean error of 0.0155 for the best solutions.

Without a diversity measure, the mean error is 0.054, which appears a lot worse, yet the

difference is only borderline significant (p < 0.03). The success rates for both the simple

distance measure and fitness case Pareto are 57%, which is significantly worse than the 71%

without a diversity measure (p < 0.005) and also significantly worse on the less sensitive

non-parametric test than any of the entropy measures (all below p < 0.003).

All diversity measures improve performance on the RBS evolution, and this improvement is
significant except with the simple distance objective. The distance objective is significantly

better on the MSE if applied to fitness cases than otherwise (p < 4 × 10 -13), but solutions
obtained by use of any distance measure are also very large in size, typically more than 20
times of what is obtained otherwise. Only a single fitness case is used for pole balancing, so
the fitness case-based diversity measure is inapplicable. MSEs are generally low, but not all
solutions manage to balance the pole for the entire cycle sequence. The entropy measure

leads to an improvement, but this is not significant, whereas the distance measure (with
only 71% success rate) is significantly worse on the success rate (p < 0.02). The CNT design
problem benefits significantly from every diversity measure except the simple distance
objective, which had a negative, but not significant, influence on performance.
Overall, using phenotypic difference (i.e. entropy) as a diversity measure is generally quite
effective, particularly if differences between fitness cases are taken into account. Mean
distance measures are less effective; performance reductions are observed with the simple
phenotypic distance, but computing distance over fitness cases produces better results.
However, solutions arising from these measures are frequently much larger than otherwise,
with a correspondingly negative impact on evaluation time (not shown).

www.intechopen.com

Evolutionary Computation 456

Fig. 6. The island model as applied to graph grammar evolution: islands are arranged in a

ring, with offspring being allowed to move to neighbouring islands.

5.2 Island models
Separating individuals spatially may promote their diversity by allowing them to evolve

more independently of other parts of the population. The most popular model of this, the

island model, coarsely divides the population into several smaller subpopulations, called

demes (Martin et al., 1997). An EA evolves each deme independently, but, periodically,

information is exchanged by migrating individuals from one deme to another. The

migration rate is an important parameter here, as high rates cause global mixing, reducing

the isolation advantage, whereas a low rate may lead to each deme converging prematurely.

Production sharing in SGE complicates this migration of an individual – and all its

associated productions – to a different deme, so the island model will be applied to the

selection process alone: solutions compete only against those on the same deme, but

productions can refer to any others globally. There is no effect on the choice of productions

for new solutions, i.e. the mating aspect of the island model.

This latter aspect may be included by making production choices dependent on the deme.

Production choice matters only in two instances: when we choose a production for

mutation, and when we add a production to another production. Choosing a production for

mutation by a deme that matches that of the solution does not achieve any sort of

localisation; it just modifies the effective mutation rate for each production. Consequently,

we only explore choosing productions for insertion according to deme, which we will refer

to as local mating. The deme to match in this case is the deme of the production that is being

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 457

mutated, as this causes localisation along the call chain between productions – neighbouring

productions will tend be on the same deme and so will alternative choices for these

productions, which focuses the search along these choices. The various interactions of

productions across islands are visualised in Figure 6.

5.2.1 Experiment
Our model is based on a simple 2-neighbour cellular space forming a ring, where transition

is possible from any island to any of its two neighbours. We compare the island model with

local selection but a fully global production pool against the island model with local

selection and local mating. The number of demes in this case is fixed at 5, and there is no

limit to how many solutions or productions may exist in a deme. The population starts with

a single empty starting production in the first deme. The choice of mutations will be

expanded so that productions can transit randomly to one of the two neighbouring demes.

This transition mutation is applied at the same probability as any insert or remove mutation.

These models are tested against running 5 populations (of 4 members) in complete seclusion

to each other to establish whether there is any benefit to transitions at all. Each deme starts

with a single empty production, and productions are exclusive to each deme. Finally, the

effect of different deme numbers is also evaluated, but only on the model without local

mating. Rings with 2, 5, and a more fine-grained 20 demes are used. Note that multiobjetive

niching will be applied globally across all islands, so that being on a different island only

affects domination, not niching.

5.2.2 Results
Dividing the population into any configuration of islands leads to an improved MSE on

every problem – there are no instances in which the performance is actually diminished. The

improvements are not always significant, however, and the number of islands appears to

matter. For the Binomial-3 regression and the pole balancing, the best results are obtained

with 5 islands (with a significance of ݌ ൏ Ͳ.ͲͲͻ and ݌ ൏ Ͳ.ͲͲͲʹ, respectively, against the

single island). On the CNT design, the success rate of 35% is also best with 5 islands

൏ ݌) Ͳ.Ͳʹ). Choosing productions locally from an island rather than from a global

repository appears to have no significant impact on the tested 5 island configuration. Since

solutions that migrate from one island to another can still refer to the original, but now

remote, productions, the practical differences to a fully global production repository are

rather minor, so this is perhaps not a surprise. On the other hand, evolving populations on 5

isolated islands leads to worse performance than with the standard island model. Migration

between islands is clearly essential for gaining performance benefits from the island model.

6. Adaptive search

Ant Colony Optimization (ACO) is perhaps the best-known implementation of swarm

intelligence (Dorigo et al., 1999). It is inspired by the ability of ants to establish shortest route

paths between their colony and food sources. In ACO, a set of simple computational agents

– artificial ants – explore a graph of states corresponding to partial solutions of the problem.

A solution to the problem is incrementally constructed by the ants moving between these

states. Ants lay down a pheromone trail that indicates how beneficial a move was, which

affects the probability distribution of future moves.

www.intechopen.com

Evolutionary Computation 458

EAs differ from ACO in that the former represents the knowledge about the problem as a

population of solutions, whereas the latter maintains a memory of past performance in the

form of pheromone trails. For graph grammar evolution, such a memory may provide

useful guidance in exploring the grammar. Productions can only survive if they are useful in

some existing solution – thus, unlike any random construct, such productions also have a

higher probability of being useful in a new solution. Naturally, this probability diminishes if

there are niches for many different solutions in the population, because we might randomly

pick a production and use it in a context for which it was not evolved. Reinterpreted for

ACO, each production is a partial solution, and the addition of a production constitutes a

move. Unlike ACO, SGE has no explicit probabilities assigned to each move. Consequently,

production choice is highly random and depends solely on the composition of the grammar.

Having an adaptable probability distribution as with ACO would provide superior

guidance, but partial solutions in SGE are exceedingly short-lived: productions are added

and removed with every generation. The path that one ant builds can rarely be followed by

another. SGE thus does not appear easy to adapt to swarm intelligence, but a more limited

model is possible and will be presented next.

6.1 Graph grammar swarms
At least two choices must be made when generating offspring from a graph. First, we must

choose one of the productions expressed during derivation of this graph. Instead of

randomly choosing from a uniform distribution, as in the existing framework, the following

heuristic inspired by PBIL (Baluja & Caruana, 1995) is implemented. The chance of a

production being chosen is decreased if it rarely results in successful offspring. A real value ߠ is stored with each production. When choosing a production to mutate, the chance of a

specific production ܴ௜being chosen from ݉ productions is

ܲሺܴ௜ሻ ൌ ∑௜ߠ ௝௠௝ୀଵߠ ߩ is multiplied or divided by a user-defined factor ߠ ൐ ͳ depending on whether the new

offspring of this production survives into the next generation or is eliminated, respectively.

No evaporation of ߠ occurs here. ߠ is simply reset to 1 for every new production, as the

expected success of mutating a new production may be independent of the success of

mutating the original production. The presented mechanism should globally reduce the

mutation of productions that rarely lead to good offspring (e.g. productions fully optimized

for their context) and focus on other productions that do.

Some of the graph grammar mutations involve novel choices, such as a choice of label and a

choice of production being added, all from potentially very large sets. As, in some cases,

multiple variations may be needed to produce fit offspring, a highly specific sequence of

such variations is not likely to occur. Yet if it does occur, it never needs to occur again, as it

will be stored as a new production. Our second proposal therefore is to make use of the

genetic lineage when applying variation. Recording a lineage from a production to all its

descendants provides a list of moves that are known to be successful. A descendant is likely

to be located in a context similar to its ancestors, so replacing an ancestor with a descendant

seems a promising move. Following this line, we replace a production, once chosen for

mutation, by one of its descendants – and then apply additional variations. The descendant

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 459

is chosen according to the above system of preferred mutation targets, as illustrated in

Figure 7. The upshot of this is that the replacement effectively applies previously successful

variations immediately, so the search can emphasise the neighbourhood of productions with

high offspring ratios.

Fig. 7. Adaptive production search: The probability of a production being chosen for

mutation is dependent on ࣂ; it is then replaced by a descendant also determined by ࣂ before

mutation is applied.

6.1.1 Experiment
We apply the above extensions separately and in combination. Choosing a production for

mutation according to real value θ will be referred to as the target choice; replacing a

production by a descendant is the lineage choice. The pheromone factor is ρ = 1.2 and the

probability of replacement by a descendant is φ = 0.9. These values were chosen a priori: ρ

should be set so that a production's respective θ is substantially different – but not

excessively different – after several successful (or failed) mutations, whereas φ should allow

for some cases where no descendant is chosen, but also have a large value so as to increase

the experimental effect here.

6.1.2 Results
No evident trend can be observed across the different problem tasks. Applying lineage

replacement results in better performance on all tasks compared to the default

configuration, but the difference is not significant. It is likely that characterising a

production through a single parameter θ is an oversimplification, as it fails to take the

dynamic context into account. Furthermore, most of the productions in the grammar do not

have many descendants, or in fact any: only 29.8% (averaged across all problem tasks) of

final generation productions had at least one descendant present in the grammar. Graph

evolution is characterised by a punctuated equilibrium, and only a few offspring survive

each generation, often to replace their parents in the same niche. Under these conditions any

production not replaced by a descendant is equal or better than its descendants. Although

the descendants are the only known successful mutation transitions, the results suggest that

a preference for offspring over parent is indeed not very beneficial to overall performance.

www.intechopen.com

Evolutionary Computation 460

Problem Parameters
Success

Rate

MCE

×1000

Min MSE Size

Min Mean Mean Min Err.

B
in

o
m

ia
l-

3
 R

e
g
re

ss
io

n

 Default 71% 55 0.000 0.054േ0.106 18േ͹ 25േ͹

Diversity

Entropy 82% 46 0.000 0.016േͲ.Ͳ͵ͻ 21േͳ͸ 30േʹͺ

Case Entropy 79% 45 0.000 0.029േͲ.Ͳ͹Ͷ 19േͷ 30േͳͳ

Distance 57% 104 0.000 0.064േͲ.ͳͲͲ 41േ͹ͻ 29േͳͳ

Case Distance 64% 84 0.000 0.060േͲ.ͳͲ͹ 72േͳͳͲ 39േ͸Ͷ

Island

Model

2 Islands 76% 62 0.000 0.035േͲ.Ͳͺ͸ 15േ͵ 25േͺ

5 Islands 84% 51 0.000 0.015േͲ.ͲͶ͵ 20േ͸ 39േʹͳ

20 Islands 71% 77 0.000 0.030േͲ.ͳͲ͵ 30േͻ 46േʹʹ

5 Isl. (Local) 78% 63 0.000 0.020േͲ.ͲͶ͹ 20േͷ 35േͳͷ

5 Isl. (Isolated) 66% 83 0.000 0.051േͲ.ͳ͵Ͳ 17േͶ 28േͳͲ

Adaptive

Search

Target 64% 77 0.000 0.079േͲ.ͳʹ͸ 18േͷ 24േ͹

Lineage 79% 50 0.000 0.035േͲ.Ͳͺ͸ 20േͷ 28േͺ

Target+Lineage 74% 53 0.000 0.043േͲ.ͲͻͶ 19േͷ 26േͻ

Size

Objective

Size Shared 21% 360 0.000 0.451േͲ.͸ͶͶ 9േ͸ 51േͷͶ

No Primary

Size
31% 399 0.000 0.189േͲ.ʹͶ͸ 47േ͵͹ 47േ͵͹

C.Entr.+No Size 86% 20 0.000 0.009േͲ.Ͳ͵͵ 378േͺͷͲ 360േͻͲͲ

R
a
n

d
o
m

 B
it

 S
e
q

u
e
n

ce
 C

ir
cu

it

 Default 1% 36390 0.000 0.134േͲ.Ͳͷ͹ 13േͷ 14േ͹

Diversity

Entropy 4% 7874 0.000 0.109േͲ.Ͳͷ͹ 13േͶ 14േ͸

Case Entropy 21% 1442 0.000 0.065േͲ.ͲͶͶ 16േ͸ 17േͳ͵

Distance 2% 12522 0.000 0.119േͲ.Ͳͷͳ 375േʹ͵Ͳ 32േ͵͸

Case Distance 24% 1321 0.000 0.063േͲ.ͲͶͷ 342േʹͶͲ 27േͳ͹

Island

Model

2 Islands 4% 6970 0.000 0.124േͲ.Ͳͷͺ 15േͻ 17േͳͳ

5 Islands 6% 4687 0.000 0.116േͲ.Ͳͷͺ 16േͻ 17േͳͳ

20 Islands 10% 2944 0.000 0.102േͲ.Ͳ͸Ͳ 20േͺ 21േͳ͵

5 Isl. (Local) 6% 5046 0.000 0.109േͲ.Ͳͷͻ 16േ͹ 16േͺ

5 Isl. (Isolated) 8% 4395 0.000 0.119േͲ.Ͳ͸ͷ 14േͺ 16േ20

Adaptive

Search

Target 3% 8044 0.000 0.123േͲ.Ͳͷ͵ 14േ͹ 14േͺ

Lineage 4% 8416 0.000 0.113േͲ.Ͳͷͷ 14േ͹ 15േͺ

Target+Lineage 3% 9685 0.000 0.134േͲ.Ͳ͸͵ 12േͷ 13േͷ

Size

Objective

Size Shared 0% N/ A 0.063 0.156േͲ.Ͳ͸ͳ 18േͻ 27േ͵ͺ

No Primary

Size
18% 1376 0.000 0.084േͲ.Ͳ͸ͳ 23േͳͻ 23േͳͻ

C.Entr.+No Size 96% 79 0.000 0.003േͲ.Ͳͳʹ 89േ͹͵ 79േͶ͵

Table 2. Performance statistics for experiments, averaged over 100 runs. MCE denotes

minimum computational effort for a success probability of 99% (see Koza, 1992).

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 461

Problem Parameters
Success

Rate

MCE

×1000

Min MSE Size

Min Mean Mean Min Err.

P
o
le

 B
a
la

n
ci

n
g

 Default 82% 40 0.001 0.002േͲ.ͲͲʹ 8േͳ 9േ͵

Diversity
Entropy 90% 32 0.001 0.001േͲ.ͲͲͳ 7േͳ 8േʹ

Distance 71% 71 0.001 0.002േͲ.ͲͲʹ 6േͳ 9േʹ

Island

Model

2 Islands 96% 26 0.001 0.001േͲ.ͲͲͳ 7േͳ 9േʹ

5 Islands 98% 20 0.001 0.001േͲ.ͲͲͳ 8േʹ 10േͶ

20 Islands 95% 23 0.001 0.001േͲ.ͲͲͳ 12േͻ 13േͳͲ

5 Isl. (Local) 100% 20 0.001 0.001േͲ.ͲͲͲ 8േͳ 10േ͵

5 Isl. (Isolated) 96% 32 0.001 0.001േͲ.ͲͲͲ 8േʹ 9േʹ

Adaptive

Search

Target 77% 48 0.001 0.002േͲ.ͲͲʹ 8േͳ 8േʹ

Lineage 86% 34 0.001 0.002േͲ.ͲͲʹ 7േͲ 7േʹ

Target+Lineage 84% 37 0.001 0.002േͲ.ͲͲʹ 8േͳ 8േʹ

Size

Objective

Size Shared 87% 46 0.001 0.002േͲ.ͲͲʹ 8േͳ 8േʹ

No Primary

Size
42% 76 0.001 0.003േͲ.ͲͲ͵ 35േͶʹ 36േͶ͵

C.Entr.+No

Size
51% 47 0.001 0.003േͲ.ͲͲ͵ 91േͳͳͻ 31േ͵͸

C
o
m

p
u

te
rN

e
tw

o
rk

 T
o
p

o
lo

g
y
 D

e
si

g
n

 Default 23% 1366 0.000 0.180േͲ.ͳ͸͹ 5േʹ 7േ͹

Diversity

Entropy 32% 932 0.000 0.127േͲ.ͳ͵͵ 6േͶ 8േͺ

Case Entropy 39% 1051 0.000 0.112േͲ.ͳʹ͹ 6േʹ 8േͶ

Distance 20% 1463 0.000 0.141േͲ.ͳʹͲ 6േͶ 9േͳ͵

Case Distance 25% 1293 0.000 0.134േͲ.ͳ͵͵ 6േ͵ 8േ͸

Island

Model

2 Islands 21% 1570 0.000 0.169േͲ.ͳͶͻ 6േ͵ 8േͺ

5 Islands 35% 722 0.000 0.126േͲ.ͳͶ͵ 6േͶ 9േͳͶ

20 Islands 28% 935 0.000 0.102േͲ.ͳͲͺ 6േͷ 10േͳͶ

5 Isl. (Local) 30% 1041 0.000 0.144േͲ.ͳ͸ͳ 6േͷ 8േͻ

5 Isl. (Isolated) 27% 1081 0.000 0.131േͲ.ͳʹͺ 6േ͵ 8േ͹

Adaptive

Search

Target 26% 1281 0.000 0.145േͲ.ͳ͹͸ 5േ͵ 7േͷ

Lineage 21% 1506 0.000 0.172േͲ.ͳͷʹ 5േ͵ 7േ͸

Target+Lineage 24% 1378 0.000 0.161േͲ.ͳͷͶ 6േʹ 7േ͵

Size

Objective

Size Shared 1% 30882 0.000 0.400േͲ.ͳ͹͸ 0േͳ 6േ͵

No Primary

Size
37% 450 0.000 0.089േͲ.ͳͲͺ 13േʹͶ 12േͳ͹

C.Entr.+No

Size
54% 202 0.000 0.047േͲ.Ͳ͸ͺ 120േͳ͵͵ 42േ͸͵

Table 3. (Continued from Table 2) Standard deviations are listed after each േ. Italic success

rates are signifantly different from default (Z-test, ࢖ ൏ Ͳ.Ͳͷሻ; italic MSEs are significantly

different from default (Wilcoxon rank sum test, ࢖ ൏ Ͳ.Ͳͷሻ

www.intechopen.com

Evolutionary Computation 462

7. Complexity growth

Solutions may grow during evolution more so than necessary, a phenomenon referred to as

bloat (Langdon & Poli, 1997). Targeting solution size as an evolutionary objective is an

effective means of addressing this and also leaves the user with a Pareto-optimal set of

solutions balancing performance and size. This has been our default setup so far. In most

instances this is desirable; in others only the best performing solution is acceptable and

searching the entire Pareto boundary would then seem a disproportionate effort. A viable

alternative is provided by having size become a secondary objective: only solutions with

equal performance will compete on the size objective, so any solution with better

performance will dominate another solution independent of its size.

Size is defined here as the sum of the terminals, nonterminals, and external nodes (i.e. label

triples) of each cellular production expressed during the derivation of the graph. This is not

the same as a node + edge count of the graph, but any less inclusive measure would permit

bloat. With any form of size constraint, however, some degree of redundancy will be needed

to balance exploitation, i.e., greedy search, against exploration, i.e., diversity in the

population. Hidden variation can accumulate within redundant code and, once revealed,

fuel the kind of rapid adaptation needed to escape from any suboptima that have trapped

the search (Hansen, 2006). We suggest to accommodate this by sharing the size of a

production among all the solutions in the population that make use of this production

(excluding recurrency, which is still scored cumulatively). A production contributing to

many graphs therefore becomes in effect cheaper, which facilitates its reuse.

7.1 Experiment
Experiments are performed using our standard set of problem tasks and parameters, with

four variations being tested: 1) size is targeted as an evolutionary objective (the

experimental default); 2) size is shared among that solutions that utilize it; 3) size is

consulted only on equally performing solutions (denoted No Size for brevity); and 4) fitness

case entropy is included as a primary objective when size is secondary (see reasons below).

7.2 Results
Allowing production size to be shared among solutions triggers a significant decline in

performance across all tasks where reuse would be expected to matter (i.e. all except pole

balancing, which is structurally trivial). At first this may seem puzzling, but analysis of the

solutions provides a clue. Using shared size causes the evolution of a grammar where some

productions call on many more (10+) other productions than is otherwise typical. A

coevolution appears to happen where solutions minimise their effective size by maximising

references to each other's productions. Part of the population is thus optimized on the size

objective at the expense of actual task performance.

Significant performance differences are also observed when making size a secondary

objective, with the Binomial-3 regression and the pole balancing performing worse (݌ ൏ ͷ ൈͳͲି଼), yet the RBS and the CNT design performing better (݌ ൏ ͵ ൈ ͳͲି଼). These

contradictory results reflect a problem-dependent trade-off between the general benefit of

not selecting against size and the detriment of losing diversity as a consequence of this. In

line with this, both the Binomial-3 regression and the pole balancing have a relatively much

lower diversity than the RBS and CNT design when using a secondary size objective.

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 463

Fig. 8. Verbosity box plots for final generation that show median, quartiles, and outliers.

Verbosity is defined as the ratio of the total production number expressed when deriving all

graphs over the total production number in the population. If verbosity is 1, each

production would belong to a single graph and there is no recursion, whereas low verbosity

indicates high reuse.
Presumably, if a diversity objective were to be employed in conjunction with a secondary,

rather than primary, size objective, performance improvements should be observed for any

problem where size might be constraining factor.

Results indeed corroborate this hypothesis. Performance on the Binomial-3 regression, RBS,

and CNT design improves significantly compared to the default configuration and also

compared to the previous outcomes of using diversity measures (except for the regression,

where p = 0.11). Particularly noteworthy is the improvement with the RBS, where the

success rate rises to 96% from just 1% for the default. The disadvantage of this setup is the

increase in solution size and hence computational cost: while using a secondary size

objective approximately doubles the mean solution size, in combination with the diversity

objective it increases almost 7× on the RBS – and more than 20× for the regression and CNT

design. The large mean size is caused by a small number of very big solutions, as suggested

by the large standard deviation.

www.intechopen.com

Evolutionary Computation 464

7.3 Reuse
SGE is unique in sharing productions between multiple solutions. A measure of this reuse is

shown in Figure 8. Problems previously identified as making more use of multiple

productions – the Binomial-3 regression and the RBS – exhibit a moderate degree of reuse,

while pole balancing shows very little. Some extreme outliers are noted; the occurrence of a

small number of large recursive solutions in the population could be a possible explanation

for this. We noted earlier that the use of adaptive search (target + lineage in this experiment)

has little impact on performance, but this figure reveals that it encourages reuse on the

problems where reuse should matter, resulting in much smaller grammars for the same

graph size. Also noteworthy is the significant increase in reuse associated with removing the

size objective as a primary objective. Reuse appears to scale with the size of the evolved

solutions, which indicates that the efficiency of the grammar representation would be most

evident with problems that require larger solutions than the ones evaluated here.

8. Generational trends

Figures 9 to 12 depict the changes of various population and solution statistics over 1000

generations for the major different configurations. The individual plots show, in clockwise

order starting from the legend: the MSE of the best performing solution; the mean entropy

of all population members (across all different fitness cases); the proportion of solutions that

are replaced by new solutions each generation; the total number of productions in the

population; the mean size of all solutions; and the size of the best performing solution.

Graph evolution without a primary size objective but with a diversity objective (denoted C.

Entr. + No Size) converges most quickly among all alternative configurations and produces

the best outcome on the majority of problem tasks, with the exception of pole balancing,

where the small size of the optimal solution actually penalises any relaxation of the size

constraint. Without either a primary size or a diversity objective the growth of solution size

is much more contained, but solutions also exhibit inferior performance. Reductions in size

during evolution seem to be uncommon, particularly when applying the primary size

objective, which suggests that either the optimization towards a minimum size is quite

ineffective, or, more likely, that solutions much larger than the current performance

optimum have a propensity to do poorly on the performance objective. Nevertheless, it is

apparent from the success of the C. Entr. + No Size configuration that the best outcomes are

obtained when such solutions make up part of the population.

The total production numbers are dependent on solution size and the extent of reuse. The

smallest grammars are obtained with the adaptive production search model, which

encourages reuse without penalty to performance, although there seem to be no practical

benefits to this. It was originally expected that adaptive search could accelerate convergence,

yet as the plots indicate, adaptive search behaves very similarly to the default configuration.

On the entropy statistic, we note that using the entropy as an objective improves average

entropy of the solutions, but also not nearly as much as the island model does. An

explanation for this may be found in the comparatively low rate of solution replacement that

we observe with the entropy objective. It suggests that not much opportunity is given for

introducing the kind of structural novelty into the population that is not directly reflected in

phenotypic diversity. However, it is not clear why the replacement ratio for the island

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 465

Fig. 9. Generational development for the Binomial-3 regression problem. (MSE and size are

shown on a logarithmic Y-axis to improve readability.)

www.intechopen.com

Evolutionary Computation 466

Fig. 10. Generational development for the RBS circuit problem. (Size is shown on a

logarithmic Y-axis to improve readability.)

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 467

Fig. 11. Generational development for the pole balancing problem. (MSE and size are shown

on a logarithmic Y-axis to improve readability.)

www.intechopen.com

Evolutionary Computation 468

Fig. 12. Generational development for the CNT design problem. (MSE and size are shown

on a logarithmic Y-axis to improve readability.)

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 469

model is so high – this may have nothing to do with the island model par se, but with our

attempt at establishing a Pareto frontier across the islands. The resultant asymmetric

elimination of solutions from the islands should cause new niches (in the shape of

underpopulated islands) to arise with each generation, allowing otherwise unfit, but

potentially novel, solutions to survive for more than one generation.

At any rate, the phenotypic entropy is not a reliable indicator of performance. The least

entropy is observed with the secondary size objective on its own, which reflects the loss of

the diversity that was provided by having a Pareto frontier of different solutions, but this

configuration is not the worst performer. However, in the Binomial-3 regression and the

CNT design it is inclined to flatten out early, which is indicative of a premature

convergence of many runs. Adding the diversity objective raises entropy (and, of course,

greatly raises performance), but in both the Binomial-3 regression and pole balancing

tasks the entropy still remains below the corresponding configuration with a primary size

objective.

9. Conclusion

The system presented in this chapter is a significant step towards achieving a simple,

formal, comprehensive basis for graph evolution. Its main significance arises from

simplifying hypergraph grammars for the purpose of evolutionary optimization, which

avoids many of the complexity pitfalls of “biologically realistic” models. Yet unlike other

simpler models, the graph transformations are not predefined and fixed here, but fully

evolvable, allowing for an automatic optimization of the graph design bias and thus a

greater degree of domain independence. It assumes, however, that we have a method for

evolving such grammar. Shared grammar evolution unites several aspects of grammatical

bias and developmental systems into an effective method that can evolve anything

derivable from a CFG, including graphs. The success of this approach is governed by a

number of factors, and through application to a diverse set of design problems, we have

gained some perspective on these. Firstly, significant performance improvements can be

obtained when emphasizing diversity in the grammar population. This can be

accomplished most effectively by adding an entropy measure of phenotypic diversity as

an evolutionary objective. Further significant improvements are obtained in combination

with a less restrictive size objective, but notable increases in solution size become an issue

here. Alternatively, we have also presented a multi-objective island model that exhibits

performance benefits comparable to the entropy method. We further propose the

application of concepts from swarm intelligence to accelerate convergence, but associated

experiments fail to produce significant performance improvement, although they reveal

significant increases in production reuse that lead to a more compact grammar. In relation

to this, we ascertained that the search process is severely constrained by co-optimization

towards a size objective, yet excessive bloat occurs as soon as the effective importance of

size is reduced. The representational effectiveness of graph grammars becomes evident

with the latter, but at great computational cost; a proper balance has not yet been found.

Future performance improvements should arise from a better understanding of how the

grammar establishes a preferential bias. We need to develop a more intelligent selection

scheme that makes exploratory mutations into distant search regions viable, which, in

www.intechopen.com

Evolutionary Computation 470

combination with ACO-like exploitation, could ultimately improve the convergence

characteristics of graph grammar evolution.

10. References

Augusto, D. A.; Barbosa, H. J. C. & Ebecken, N. F. F. (2008). Coevolution of data samples

and classifiers integrated with grammatically-based genetic programming for data

classification. Proceedings of the 10th annual conference on Genetic and evolutionary

computation (GECCO'08), Atlanta, USA, pp. 1171-1178, ACM Press.

Baluja, S. & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.

Proceedings of the Twelfth International Conference on Machine Learning, ML-95, pp. 38-

46, Morgan Kaufmann.

Boers, E. & Sprinkhuizen-Kuyper, I. (2001). Combined biological metaphors. Advances in the

evolutionary synthesis of intelligent agents, pp. 153-183, MIT Press.

Deb, K.; Agrawal, S.; Pratab, A. & Meyarivan, T. (2000). A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II. Proceedings of the

Parallel Problem Solving from Nature VI Conference, LNCS 1917, pp. 849-858,

Springer-Verlag.

Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. Wiley.

Dorigo, M.; Di Caro, G. & Gambardella, L. (1999). Ant algorithms for discrete optimization.

Artificial Life, vol. 5, no. 2, pp. 137-172.

Futuyma, D. (1998). Evolutionary biology (3rd ed.), Sinauer Associates, Inc.

Gruau, F. (1995). Automatic definition of modular neural networks. Adaptive Behaviour, vol.

3, no. 2, pp. 151-183.

Goldberg, D.; Deb, K. & Korb, B. (1989). Messy genetic algorithms: motivation, analysis, and

first results. Complex Systems, vol. 3, pp. 493-530.

Habel, A. (1992). Hyperedge Replacement: Grammars and Languages. LNCS 643, Springer-

Verlag.

Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology Evolution

and Systematics, vol. 37, no. 1, pp. 123-157.

Hoai, N.; McKay, R. & Abbass, H. (2003). Tree adjoining grammars, language bias, and

genetic programming. Proceedings of the 6th European Conference on Genetic

Programming (EuroGP 2003), LNCS 2610, pp. 335-344, Springer-Verlag.

Hornby, G. (2003). Generative representations for evolutionary design automation. Ph.D. thesis,

Dept. of Computer Science , Brandeis University.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph

generation systems. Complex Systems, vol. 4, no. 4, pp. 461-476.

Koza, J. (1992). Genetic Programming: on the programming of computers by means of natural

selection. MIT Press.

Koza, J.; Bennett III, F.; Andre, D. & Keane, M. (1999). Genetic Programming III: Darwinian

invention and problem solving, Morgan Kaufmann.

Langdon, W. & Poli, R. (1997). Fitness causes bloat. Second On-line World Conference

on Soft Computing in Engineering Design and Manufacturing, pp. 13-22, Springer-

Verlag.

www.intechopen.com

An Empirical Study of Graph Grammar Evolution 471

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development, parts

I and II. Journal of Theoretical Biology, vol. 18, pp. 280-315.

Luerssen, M. (2005). Phenotype diversity objectives for graph grammar evolution. Recent

Advances in Artificial Life, vol. 3, pp. 159-170, World Scientific.

Luerssen, M. & Powers, D. (2008). Evolving encapsulated programs as shared grammars.

Genetic Programming and Evolvable Machines, vol. 9, no. 3, pp. 203-228.

Luerssen, M. (2009). Experimental Investigations into Graph Grammar Evolution: A novel

approach to evolutionary design. VDM Verlag Dr. Müller.

Martin, W.; Lienig, J. & Cohoon, J. (1997). Island (migration) models: evolutionary

algorithms based on punctuated equilibria. Handbook of Evolutionary Computation,

pp. 1-16, Oxford University Press.

McPhee, N. & Miller, J. (1995). Accurate replication in genetic programming. Proceedings of

the Sixth International Conference on Genetic Algorithms (ICGA’95), pp. 303-309,

Morgan Kaufmann.

McPhee, N. & Hopper, N. (1999). Analysis of genetic diversity through population history.

Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1112-1120,

Morgan Kaufmann.

Miller, J. (2001). What bloat? Cartesian Genetic Programming on Boolean problems.

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’01) Late

Breaking Papers, pp. 295-302, ISGEC Press.

Mühlenbein, H. & Paaá, G. (1996). From recombination of genes to the estimation of

distributions I, binary parameters. Parallel Problem Solving from Nature (PPSN IV),

LNCS 1411, pp. 178-187, Springer-Verlag.

O'Neill, M. (2005). mGGA: The meta-Grammar Genetic Algorithm. Proceedings of the 8th

European Conference on Genetic Programming, Lausanne, Switzerland, LNCS 3447,

pp. 311-320, Springer-Verlag.

Price, K. (1999). An introduction to differential evolution. New Ideas in Optimization, pp. 79–

108, McGraw-Hill.

Rozenberg, G. (1997). Handbook of Graph Grammars and Computing by Graph Transformation:

volume I. Foundations. World Scientific.

Ryan, C.; Collins, J. & O'Neill, M. (1998). Grammatical evolution: evolving programs for an

arbitrary language. Proceedings of the First European Workshop on Genetic

Programming (EuroGP'98), pp. 83-95, Springer-Verlag.

Shan, Y.; McKay, R.; Baxter, R.; Abbass, H.; Essam, D. & Nguyen, H. (2004). Grammar

model-based program rvolution. Proceedings of the 2004 IEEE Congress on

Evolutionary Computation (CEC 2004), Portland, Oregon, vol. 1, pp. 478-485.

Shirakawa, S.; Ogino, S. & Nagao, T. (2007). Graph structured program evolution.

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’07), pp.

1686-1693, ACM Press.

Simon, H. (1996). The Sciences of the Artificial (3rd ed.), MIT Press.

Stanley, K. O. & Miikkulainen, R. (2002). Evolving neural networks through augmenting

topologies. Evolutionary Computation, vol. 10, no. 2, pp. 99-127.

Toussaint, M. (2003). On the evolution of phenotypic exploration distributions. Foundations

of Genetic Algorithms 7 (FOGA VII), pp. 169-182, Morgan Kaufmann.

www.intechopen.com

Evolutionary Computation 472

Whigham, P. (1995). Rosca, J. (ed.) Grammatically-based genetic programming. Proceedings

of the Workshop on Genetic Programming: From Theory to Real-World Applications,

Tahoe City, USA, pp. 33-41, Morgan Kaufmann Publishers.

www.intechopen.com

Evolutionary Computation

Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7

Hard cover, 572 pages

Publisher InTech

Published online 01, October, 2009

Published in print edition October, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based

optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern

recognition and bioinformatics. This book also presents new algorithms based on several analogies and

metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In

this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to

discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on

the field of evolutionary computation and applied sciences. The intended audience is graduate,

undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Martin Luerssen and David Powers (2009). An Empirical Study of Graph Grammar Evolution, Evolutionary

Computation, Wellington Pinheiro dos Santos (Ed.), ISBN: 978-953-307-008-7, InTech, Available from:

http://www.intechopen.com/books/evolutionary-computation/an-empirical-study-of-graph-grammar-evolution

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

