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Applied Mathematics and Optimisation Research Unit, Department of Mechanical 

Engineering, Faculty of Engineering, Khon Kaen University, 4000 
Thailand 

1. Introduction     

A framework or skeletal structure is one of the most used structures in engineering 
applications. Using such a structure is said to be advantageous since they are simple and 
inexpensive to construct. It can be employed in many engineering purposes e.g. 
transmission towers, wind turbine towers, communication towers, civil engineering 
structures, and mechanical parts. In the past, the design of such a structure was usually 
carried out in such a way that the conceptual design stage was somewhat ignored and the 
initial shape of a structure had been formed by an experienced engineering designer. The 
classical civil engineering design approach is then applied in the preliminary and detailed 
design stages.  
Recently topology optimisation, an efficient tool for structural conceptual design, has been 
studied and used in a wide range of engineering applications. Considerable research work 
on the conceptual design of truss and frame structures by means of topology optimisation 
has been conducted in the last two decades (e.g. Hajela & Lee,1995; Ohsaki, 1995; Zhou, 
1996; Yunkang & Xin, 1998; Hasancebi & Erbatur, 2002; Kawamura et al., 2002; Stolpe & 
Svanberg, 2003;  Ohsaki & Katoh, 2005; Achtziger & Stolpe, 2007; Svanberg & Werme, 2007; 
Hagishita & Ohsaki, 2009). By the use of such design technology, the optimised layout of a 
skeletal structure can be accomplished. Having a structural layout from this design process, 
the shape and sizing design processes are then implemented. Nevertheless, a more efficient 
design approach can be achieved if a design problem is posed to have topological, shape, 
and sizing design variables at the same time. Much research work has been conducted 
towards combining and performing topology, shape, and sizing optimisation at the same 
optimisation run (e.g. Wang et al., 2004; Zhou et al., 2004; Tang et al., 2005; Shea & Smith, 
2006; Achtziger, 2007; Martínez et al., 2007; Chan & Wong, 2008; Noiluplao & Bureerat, 2008; 
Zhu et al., 2008). The optimum design problem of the simultaneous topology/shape/sizing 
optimisation is usually structural weight minimisation subject to stress and other safety 
constraints. The optimisers employed can be a derivative-based method (Martínez et al., 
2007), an evolutionary algorithm (Tang et al., 2005; Shea & Smith, 2006; Noiluplao & 
Bureerat, 2008), and a hybrid method (Chan & Wong, 2008). From the literature, most if not 
all of the optimisation problems are formulated to have one objective function, whereas in a O
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practical design of an engineering system, there usually are several design objectives for 
decision making. If we have an optimiser that can deal with the design problem with such 
multiple design objectives, it could be useful and beneficial for designers. 
Evolutionary algorithms (EAs) have been developed and used for several decades. The 
methods can be viewed as optimisation methods that search for optimum solutions by 
imitating some kinds of natural behaviours, and relying on a random process. Most EA 
searches are based upon using a population or a group of design solutions; consequently, 
they are often called population-based optimisers. Compared to their gradient-based 
counterparts, the EAs have advantages in that their searching process can be performed 
without using function derivatives. The methods are robust and simple to use, and can deal 
with almost all kinds of optimum design problems. As they are dependent on 
randomisation, EAs however have some drawbacks since they have low convergence rates 
and lack search consistency. 
Evolutionary algorithms can deal with both single- and multiple-objective optimisation 
problems. The best known single-objective evolutionary optimiser is the genetic algorithm. 
Some other established single-objective EAs are: evolution strategies, particle swarm 
optimisation, and population-based incremental learning. EAs that can deal with multiple 
objective functions are called multiobjective evolutionary algorithms (MOEAs). As they use 
a set of design solutions for searching, on each generation those solutions can be sorted to 
find the so-called non-dominated design solutions. The set of non-dominated design 
solutions are improved iteratively, and the final set is taken as an approximate Pareto 
optimal set. This is the most outstanding and attractive ability of MOEAs as they can search 
for a group of non-dominated design solutions within one optimisation run. While the other 
conventional gradient-based optimisers need to be run as many times as the number of 
Pareto optimal solutions required.  
The use of EAs for structural optimisation has been investigated and studied by many 
researchers around the world. By using EAs, any kind of design variables, constraints, as 
well as objective function can be defined. With additional strong points i.e. the capability of 
reaching near global optima of EAs and their robustness, they are even more popular than 
their gradient-based counterparts. The methods can be used for structural weight or cost 
minimisation (Benage & Dhingra, 1994, Bureerat & Cooper, 1988), passive vibration 
alleviation (Keane, 1995; Ton et al., 1998; Moshrefi-Torbati et al., 2003; Alkhatib et al., 2004; 
Kanyakam & Bureerat, 2007), and other performance maximisation (Xu et al., 2003; 
Achtziger & Kocvara, 2007). 
The work in this chapter, consisting of two parts, is concerned with the demonstration of 

implementing MOEAs on the optimisation of skeletal structures. In the first part, the 

performance comparison of a number of MOEAs including non-dominated sorting genetic 

algorithm (NSGAII), strength Pareto evolutionary algorithm (SPEA2), population-based 

incremental learning (PBIL), Pareto archive evolution strategy (PAES), and multiobjective 

particle swarm optimisation (MPSO) are employed to solve seven simultaneous shape and 

sizing design problems of two structures. The comparative studies are carried out by using 

the so-called C-indicator. Also, a new indicator C′ is proposed to be used along with the C 

parameter. The Pareto optimum results obtained from using the various MOEAs are 

compared and discussed while some of the best performers are obtained. The second part 

involves the application of MOEAs to a simultaneous topology/shape/sizing optimisation 

of a skeletal structure. The design demonstrations are performed and illustrated. 
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2. Multiobjective evolutionary algorithms 

A typical multiobjecitve optimisation problem can be defined as: 
 

                        find x such that 

Min: f = {f1(x),…,fm(x)} (1)

Subject to 

gi(x) ≤ 0 
hi(x) = 0 

where x is a vector of n design variables, fi are the m objective functions, gi are inequality 
constraints, and hi are equality constraints. 
If the problem has one objective, there will be one (global) optimum solution. In cases that 
the problem has more than one objective function, there will be a set of optimal solutions, 
which is called a Pareto optimum set. Figure 1 illustrates a particular 2-objective design 
problem where all the feasible solutions are plotted in the objective domain. The Pareto 
optimal solutions are the points on the bold frontier, which is called a Pareto frontier or 
Pareto front. Similarly to the 2-objective case, the Pareto front of a 3-objective design 
problem is a 3-dimensional surface and so on. 
 

 

Fig. 1. Pareto front 

The basic concept of exploring Pareto optimum points via MOEA search is that, in each 

generation while a new population is created, non-dominated solutions are classified and 

carried on to the next generation. The term non-dominated solutions define the local Pareto 

solutions among the members of the current population during evolutionary search. The 

definitions associated with non-domination (for minimisation) are given as: 

Definition 1 Dominance Given fi(x) for i = 1,…m are objective functions, if fi(x1) ≤ fi(x2) for 

every i ∈ {1,…,m} and there is j such that fj(x1) < fj(x2), then x1 dominates x2. 
Definition 2 Non-Dominated Solutions (Approximate Pareto Set) Given a set of solutions or 

population G size N, a solution xe ∈ G is a non-dominated solution in G if there does not 

exist x ∈ G such that x dominate xe. 
Figure 2 displays the plot of 7 design solutions on a 2-objective domain. The non-dominated 
solutions are x1, x3, and x7. 

feasible region

f1

f2

Pareto front

minf1

minf2 

www.intechopen.com



 Evolutionary Computation 

 

490 

 

Fig. 2. non-dominated solutions 

In this work, five MOEAs are used including PAES, NSGAII, SPEA2, PBIL and MPSO. The 
methods are briefly reviewed as follows: 

2.1 Pareto archive evolution strategy 

PAES was proposed by Knowles & Corne, 2000. The simplest version of PAES is the 
combination of (1+1)-ES with a Pareto archiving strategy. The algorithm starts with an initial 
solution called a parent and an external Pareto archive. A candidate solution is then created 
by mutating the parent. The parent will be replaced by the candidate based on a selection 
strategy. The decision to discard or add the candidate to the Pareto archive is made. In cases 
that the archive is full, the adaptive grid algorithm is activated to remove one of the non-
dominated solutions from the archive. As the procedure continues, the Pareto archive is 
iteratively updated until reaching the termination criterion. 

2.2 Non-dominated sorting genetic algorithm 

NSGA was proposed by Srinivas & Deb, 1994, and later the upgraded version NSGAII was 
presented by Deb et al., 2002. Starting with an initial population, selection, crossover and 
mutation operators are then used for exploring Pareto solutions. After crossover and 
mutation are operated with the given probabilities, the children are obtained and a new 
population is selected by performing non-dominated and crowding distance sorting 
algorithms on a union set of the parents and their children. The population is updated 
iteratively until the termination criterion is met. 

2.3 Strength Pareto evolutionary algorithm 

SPEA was proposed by Zitzler & Thiele, 1999, whereas its second version SPEA2 was 
presented in Zitzler et al., 2002. The search procedure starts with an initial population and 
an external Pareto set. Fitness values are assigned to the population based upon the level of 
domination. A set of solutions are then selected to a mating pool by performing the binary 
tournament selection operator. The new population are created by means of crossover and 
mutation on those selected solutions. The new external Pareto solutions are the non-

f1

f2 
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solutions 
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dominated solutions of the combination of the old external Pareto set and the new 
population. In cases that the number of non-dominated solutions in the Pareto archive 
exceeds its predefined size, the truncation operator also known as the nearest 
neighbourhood technique is executed to delete some design solutions from the archive. The 
Pareto archive is updated repeatedly until the termination criterion is met. 

2.4 Multiobjective particle swarm optimisation 

The particle swarm optimisation method uses real codes and searches for an optimum by 

mimicking the movement of a flock of birds, which aim to find food (Reyes-Sierra & Coello 

Coello, 2006). The search procedure herein is based on the particle swarm concepts 

combining with the use of an external Pareto archiving scheme. Starting with an initial set of 

design solutions as well as their corresponding particle velocities and objective function 

values, an initial Pareto archive is filled with the non-dominated solutions obtained from 

sorting the initial population. A new population is then created by using the particle swarm 

updating strategy where the global best solution is randomly selected from the external 

Pareto archive. Afterwards, the external archive is updated by the non-dominated solutions 

of the union set of the new population and the previous non-dominated solutions. In cases 

that the number of non-dominated solutions is too large, the adaptive grid algorithm 

(Knowles & Corne, 2000) is employed to properly remove some solutions from the archive. 

The Pareto archive is repeatedly improved until fulfilling the termination criteria. 

2.5 Population-based incremental learning 

Population-based incremental learning, probably the simplest form of an estimation of 

distribution algorithm (EDA), was first proposed by Beluja, 1994, for single-objective 

optimisation. The method was then extended for multiobjective optimisation (Bureerat & 

Sriworamas, 2007; Kanyakam & Bureerat, 2007). The algorithm of multiobjective PBIL starts 

with an external Pareto archive and initial probability matrix having all elements set to be 

0.5. A set of binary design solutions are then created corresponding to the probability matrix 

while their function values are evaluated. The Pareto archive is updated by replacing its 

members with the non-dominated solutions of the new population and the previous Pareto 

archive. In cases that the number of non-dominated solutions exceeds the predefined 

archive size, the normal line method is activated to remove some members from the archive. 

The probability matrix and the Pareto archive are iteratively updated until the termination 

criteria are fulfilled. 

3. Structural modelling 

A structural dynamic model can be described as a structure being in a dynamic equilibrium 
state. It is the state at which the system has minimum potential energy (potential energy 
herein includes structural elastic potential energy, the work done by external forces, and the 
work due to inertial forces). The equations of motion basically comprise of kinetic energy, 
structural restoration (spring and damping) and external dynamic forces. By using the finite 
element approach, the structural dynamic model is represented by 

 )(tFKδδM =+��  (2) 
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where δ is the vector of structural displacements, M is a structural mass matrix, K is a 

structural stiffness matrix, and F is the vector of dynamic forces acting on the structure. 

The computation is traditionally achieved by means of finite element analysis. With the 

given boundary conditions (say δb = 0) being given, Equation (2) can be partitioned as 

 ⎥
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where the subscript b indicates the known displacements and unknown reactions at the 

boundary conditions, and the subscript a denotes unknown displacements and predefined 

external forces.  

Equation (3) can be rearranged leading to 2 systems of differential equations as: 

 aaaaaaa FδKδM =+��  (4) 

and 

 babaaba FδKδM =+�� . (5) 

In the cases of free vibration analysis, Equation (4) can be written as 

 0δKδM =+ aaaaaa
�� . (6) 

By substituting ti
aa e ωδδ = to (6), we have an eigenvalue problem 

 0δMK =− aaaaa )( 2ω . (7) 

Solving such a system of equations leads to N natural frequencies { }Nωωω ,,, 21 …=ω  and 

their corresponding eigenvectors [ ]NφφφΦ ,,, 21 …= , where N is the size of the square 

mass and stiffness matrices. The orthogonality conditions can be written as 

 )( iaa
T diag μ=ΦMΦ  (8) 

)( 2
iiaa

T diag ωμ=ΦKΦ . 

By using the proportional (Rayleigh) damping concept, a damping matrix can be introduced 

to the model yielding 

 aaaaaaaaaa FδKδCδM =++ ���  (9) 

where Caa = αMaa + βKaa, and α and β are damping coefficients to be defined. 

From equation (9), by substituting ti
aa e ωδδ = and ti

aa e ωFF = , a frequency response function 

(FRF) matrix can be determined from the relation (Preumont, 2001) 
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where ω is the frequency of the input force and its output displacement, and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= i

i
i βω

ω
αξ

2

1
 is a damping ratio. FRF can be defined as the ratio of steady-state 

harmonic output to steady-state harmonic input, and here is the ratio of response 
displacement to input force or receptance. To reduce computational time in the optimisation 
process, the frequency response function matrix can be approximated using the first m 
modes as (Preumont, 2001) 

 ∑∑
=

−

=

−+
+−

≈
m

i ii

T
ii
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i iiii

T
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j
1

2

1

1

22 )2(
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ω

φφ
K
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H . (11) 

The relation between displacement response and input force can be expressed as  

 aa FHδ )(ω= . (12) 

Figure 3 illustrates how to measure H(r,s) which represents the ratio of a displacement 
response at the rth degree of freedom to a harmonic excitation at the sth degree of freedom. 

Furthermore, by defining force transmissibility (FT), denoted by T(ω), as the ratio of output 
harmonic reaction forces to the input external harmonic forces, it can be written as 

 ab FTF )(ω= . (13) 

 

Fig. 3. Measurement of FRF 

By letting the reaction force be ti
bb e ωFF = , and substituting (12) & (13) in (5), force 

transmissibility can be obtained as 

 ( )HKMT baba +−= 2)( ωω . (14) 

In structural vibration design, FRF and FT determine structural merit. The lower FRF or FT 
at a particular frequency means the better structural vibration suppression design. 
Therefore, a design objective can be assigned in such a way that frequency responses at a 
frequency range of interest are minimised. Moreover, maximising structural natural 
frequency is an alternative criterion for design of structures under dynamic loadings. 
Apart from dynamic analysis, structural static analysis can be carried out by using Equation 
(3) ignoring the structural kinetic energy or the mass matrix. The system of equations then 
becomes 

sth d.o.f. excitation 

rth d.o.f. response 
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The solutions of (15) are 

 )(1
babaaaa δKFKδ −= −  (16) 

and 

 bbbabab δKδKF −= . (17) 

The displacement vector δ is used for displacement constraints as well as for computing 
stresses on structural elements. The reaction Fb is also an important factor since the reaction 
force can affect a structural foundation. In an optimisation process, it is also common to use 
many load cases since, in real-world problems, there are many aspects of applied loads 
acting on one structure. 

4. Numerical experiment 

4.1 Design problems 

The optimisation problems assigned in this study are to find a Pareto optimal set that 
optimises multiple objective functions subject to stress constraints, which can be expressed as 
 

f
x

min (18)

subject to 

               σi ≤ σa, i = 1, …, Ne 

where σi is a stress on the ith element, σa is an allowable stress, and Ne is the total number of 
elements. 
The multiobjective design problems presented here are similar to the work in Kanyakam & 
Bureerat, 2007, where the objective functions include structural mass, a natural frequency, 
an FRF crest parameter, and an FT crest parameter. Figure 4 displays the term FRF crest 
parameter, which determines the shaded area in a frequency range of interest. As we need 
 

 

Fig. 4. FRF crest parameter 
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to reduce the magnitude of the FRF for vibration suppression, the frequency range is thus 
the interval that bounds a particular natural frequency. Seven design criteria are defined as:  

f1: structural mass 

f2: 
2
1/1 ω  

f3: )/(1 2
3

2
2

2
1 ωωω ++  

f4: FRF crest parameter at ω1 

f5: mean value of FRF crest parameters at ω1, ω2 and ω3 

f6: FT crest parameter at ω1 

f7: mean value of FT crest parameters at ω1, ω2 and ω3 

where ωi is the ith natural frequency. 
The sets of objective functions can be arranged as: 

P1: min f1, min f2 
P2: min f1, min f3 

P3: min f1, min f4 
P4: min f1, min f5 
P5: min f1, min f6 
P6: min f1, min f7 
P7: min f1, min f5, min f7. 

As a result, we have seven multiobjective design problems with the above sets of objective 
functions and stress constraints. It should be noted that some of these objective function sets 
have been implemented and examined in Kanyakam & Bureerat, 2007, and it is shown that 
using P2, P4 and P6 leads to a more effective design based on vibration alleviation. All seven 
design problems are however used to benchmark the performance of the MOEAS.  
We apply the above-mentioned problems to design three frame structures made of material 

with E = 209×109 N/m2, and ρ = 7000 kg/m3. The structures are named as: 
ST1: a 2D bridge (Figure 5). The structure has 12 nodes and 21 elements where nodes 1 and 
12 are fixed. The vertical loads are applied to nodes 2, 4, 6, 8, and 10. The design variables 
consist of element diameters, and the vertical positions of nodes 3, 5, 7, 9, and 11. Both shape 
and sizing design variables are treated as being symmetric; as a result, there are 14 
continuous design variables. The FRF used as design criteria is the point receptance in the 
vertical direction of node 7. The FT is the vertical direction transmission from node 7 to the 
fixed support node 1. 
 

 

Fig. 5. 2D bridge ST1 

ST2: a walking tractor handlebar (Figure 6). The finite element model of the handlebar 
structure (Kanyakam & Bureerat, 2007) consists of 16 nodes and 27 elements with four nodes 
being fixed. The structure is subjected to two static load cases, one is the load for turning the 
tractor and the other is the load for balancing and controlling the tractor. The total number 
of continuous shape and sizing design variables is 24. The FRF being used is the point 
receptance in the vertical direction of node 6. The FT is the vertical direction transmission 
from node 6 to the fixed support node 1. 
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Fig. 6. Walking tractor handlebar structure ST2 

ST3: a 2D bridge (Figure 7). The ST3 structure is modified from ST1 for the demonstration of 
simultaneous topology/shape/sizing optimisation. The structure in Figure 7, which is set as 
a ground structure for topology optimisation, has 12 nodes and 25 elements. The design 
variables are element diameters, and the vertical and horizontal positions of nodes 3, 5, 7, 9, 
and 11, which have a total of 18 variables after symmetry treatment. The diameters are 
discrete and allowed to have nearly zero size so that we can have various structural 
topologies. The position of FRF and FT measures are the same as that of ST1. 
Finite element analysis is carried out by using the 2-node 3-dimensional 12 d.o.f. beam 
element. The ST1 and ST2 structures are used for the investigation of a comparative 
performance of MOEAs, while the ST3 structure is assigned for the demonstration of 
performing topology/shape/sizing optimisation at the same time. 
 

 

Fig. 7. 2D bridge’s ground structure for simultaneous topology/shape/sizing optimisation 
ST3 

4.2 Performance assessment 

Seven multiobjective evolutionary strategies are employed in this study, which are 
designated as: 

BPBIL: PBIL using binary codes with 0.05 mutation rate, and 0.2 mutation shift 
BPAES: PAES using binary codes 
BNSGA: NSGAII using binary codes with crossover and mutation rates as 1.0 and 0.5 
respectively 
BSPEA: SPEA2 using binary codes with crossover and mutation rates as 1.0 and 0.5 
respectively 
RSPEA: SPEA2 using real codes (Sirsomporn & Bureerat, 2008) with crossover and 
mutation rates as 1.0 and 0.5 respectively 
RNSGA: NSGAII using real codes with crossover and mutation rates as 1.0 and 0.5 
respectively 
RMPSO: MPSO (Reyes-Sierra & Coello Coello, 2006) using real codes with a starting 
inertia weight, an ending inertia weight, a cognitive learning factor, and a social 
learning factor as 0.5, 0.01, 0.5, and 0.5 respectively. 
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For the comparative performance study of optimising ST1 and ST2, starting with the same 
initial population, the number of generations of MOEAs is set to be 100 while both the 
population and archive size are set as 50. Each optimiser is applied to solve each design 
problem for designing each structure with 10 optimisation runs. The last updated Pareto 
archive is set to be a Pareto optimal set. For the design of ST3, one of the best MOEAs 
obtained from the first two design case studies is employed to solve the P2, P4, and P6 
design problems with the number of generations being 150 while the population and the 
external archive are sized 100. The non-dominated sorting scheme proposed in Deb et al. 
(2001) is used to handle the stress constraints. 
The performance assessment is accomplished by using the C-parameter (Zitzler et al., 2000). 
Having two particular non-dominated fronts {A} and {B}, CA,B determines the number of 
solutions in {B} that are dominated or equal to some solution in {A} divided by the total 
number of solutions in {B}. On the other hand, CB,A determines the number of solutions in 
{A} that are dominated or equal to some solution in {B} divided by the total number of 
solutions in {A}. From the definition, if CA,B > CB,A,  we can say that front {A} is better than 
front {B} or vice versa. Figure 8 displays two approximate Pareto fronts {A} and {B} where 
CA,B = 0.5000 and CB,A = 0.4000. This implies that {A} is better than {B}. However, we can 
observe from the shaded areas between the two fronts dominating each other that the 
dominating area of {B} is larger than {A}. These shaded areas are also meaningful for front 
comparison.  Nevertheless, it is difficult or even impossible to calculate such areas of 
hundred pairs of Pareto fronts directly. We can laterally calculate them and define a new 
performance indicator as: 

 
BA

A
BA

VV

V
C

+
=′ ,  (19) 

ABAB CC ′−=′ 1,  
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B
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b

aab . 

If VA = VB = 0, C′A,B = C′B,A = 0.5. 

1Â is the set of some members of {A} that dominate the set of }{ˆ
1 BB ⊆ and 2B̂ is the set of 

some members of {B} that dominate }{ˆ
2 AA ⊆ . Similarly to the C parameter, if C′A,B > C′B,A,  it 

means {A} is better than {B}. From the definition, the C′-indicator also has the effects of front 

extension and the number of dominant points. 

From Figure 8, we have C′A,B = 0.4556 and C′B,A = 0.5444, which means {B} is the better front 

than {A}. Based on these two indicators, we have two different views of comparing 

approximate Pareto fronts. The special characteristic of the C′ parameter is illustrated in 

Figure 9, which shows three particular non-dominated fronts {A1}, {A2}, and {A3}. The C and 
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C′ comparisons of the three fronts are given in Table 1. In the Table, the value in the ith row 

and jth column represents CAi,Aj. From the C comparison, it can be concluded that the front 

{A3} is the best method while the second best is {A1}. However, in cases of C′ comparison, we 

can see that {A2} is better than {A1}, {A1} is better than {A3}, and {A3} is better than {A2}. This 

scenario can be called a scissor-paper-stone situation, which can happen in comparing 

approximate Pareto fronts obtained from using MOEAs. The two indicators, in fact, are not 

always conflicting to each other but they should be used together to provide different 

aspects of front comparing.  
 

 

Fig. 8. Comparing two non-dominated fronts 
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Fig. 9. Scissors-paper-stone situation 
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C-indicator C′-indicator 

{A1} 0.5714 0.1667 {A1} 0.4929 0.5029 

0.4286 {A2} 0.5000 0.5076 {A2} 0.4908 

0.4286 0.5714 {A3} 0.4971 0.5092 {A3} 

Table 1. C and C′ indicators of {A1}, {A2}, and {A3} 

5. Design results 

The performance comparison of 7 MOEAs is displayed in Figures 10 – 17. In Figure 10, the 

box-plots of C parameters comparing the various MOEAs when solving the P1-P7 design 

problems for the case of ST1 are illustrated. Each box-plot represents 10×10 C values of 

comparing 10 fronts obtained from using a method X to 10 fronts obtained from using a 

method Y when solving a particular design problem. The box-plots at the ith row and jth 

column display the C values comparing non-dominated fronts of the seven design problems 

obtained from the ith optimiser with respect to those obtained from using the jth optimiser. 

For example the box-plots at the first row and second column in the figure present the C 

values of the fronts obtained from using BNSGA to those obtained from using BSPEA. We 

also need the box-plots in the second row and first column to compare these two optimisers. 

From the Figure, it can be concluded that BPBIL is the best for all the design problems. The 

C′ comparison of these four methods is given in Figure 11. It can be shown that BPBIL is the 

best method except for the P7 design problem, which BNSGA gives the best results. 

The best multiobjective evolutionary algorithm using binary codes BPBIL is taken to be 

compared with the methods using real codes as shown in Figures 12-13. From the C 

comparison in Figure 12, the overall best method is BPBIL with RSPEA being the second 

best. In Figure 13, it can be seen that RSPEA is as good as BPBIL based on C′ comparison. 

This occurrence is probably similar to that illustrated in Figure 8. However, when taking an 

account of both indicators, the best method for designing ST1 is BPBIL. 
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Fig. 10. Box-plot of C indicator of ST1 – I 
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Fig. 11. Box-plot of C′ indicator of ST1 – I 
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Fig. 12. Box-plot of C indicator of ST1 – II 
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Fig. 13. Box-plot of C′ indicator of ST1 - II 
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The comparative performance of MOEAs for solving the P1-P7 optimisation problems for 
the case of ST2 is illustrated in Figures 14-17. The best method that use binary codes based 
on the C indicator is BPBIL whereas the second best method is BNSGA as shown in Figure 

14. Based on the C′ indicator, the best method is BPBIL while the close second best is 
BNSGA. BNSGA even outperforms BPBIL in cases of the P3 and P4 design problems. This 
situation is similar to that displayed in Figure 8. 
The best evolutionary optimiser among the methods using binary codes (BPBIL) is taken to 
be compared with the optimisers using real codes as shown in Figures 15 and 16. Based on 
the C indicator, the best optimiser is RSPEA whereas the second best is BPBIL. For the C′ 
comparison, the best optimiser is still RSPEA with BPBIL being the second best. From both 
ST1 and ST2 case studies, it can be concluded that BPBIL tends to be more efficient when 
dealing with design problems with a smaller number of design variables while RSPEA is the 
better optimiser for the design problems with a greater number of design variables. 
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Fig. 14. Box-plot of C indicator of ST2 – I 
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Fig. 15. Box-plot of C′ indicator of ST2 - I 
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Fig. 16. Box-plot of C indicator of ST2 – II 
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Fig. 17. Box-plot of C′ indicator of ST2 - II 

The BPBIL algorithm is chosen to solve the P2, P4 and P6 design problems where the 
structure to be optimised is ST3. In this design case, some structural elements are allowed to 
be removed if their diameters are too small. The Pareto optimum results of P2 for optimising 
ST3 obtained from using BPBIL are plotted in Figure 18. Some selected non-dominated 
solutions are labelled whereas their corresponding structures are given in Figure 19. It can 
be seen that the structures have various layouts and shapes as well as various element sizes. 
The approximate Pareto front of P4 is plotted in Figure 20 whereas some selected structures 
from the front are illustrated in Figure 21. Similarly to the P2 design case, there consist of 
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various structural topologies, shape and element sizes. The non-dominated front of P6 
obtained from using BPBIL is given in Figure 22 whilst the selected solutions are shown in 
Figure 23. Similarly to the first two cases, the structures have various topologies, shapes, 
and element sizes. The obvious advantage of using MOEA for solving the simultaneous 
topology/shape/sizing optimisation is that they are robust and simple to use, and we can 
have a set of Pareto optimal solutions for decision making within one simulation run. 
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Fig. 18. Pareto front of P2 problem and ST3 structures 
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Fig. 20. Pareto front of P4 problem and ST3 structures 
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Fig. 21. Some selected structures of P4 
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Fig. 22. Pareto front of P6 problem and ST3 structures 
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Fig. 23. Some selected structures of P6 

5. Conclusions and discussion 

The search procedures of the various MOEAs as well as the static and dynamic analysis of 
skeletal structures are briefly detailed. Seven multiobjective optimum design problems are 
posed for benchmarking the performance of the MOEAs. The design problems are applied 

www.intechopen.com



 Evolutionary Computation 

 

506 

to three skeletal structures. The first two structures have simultaneous shape/sizing design 
variables while the third structure is used for design demonstration of simultaneous 
topology/shape/sizing optimisation. From the optimum results, it can be concluded that 
SPEA2 using real codes is the best performer for the ST2 structure which has greater number 
of design variables. The PBIL using binary string is said to be the best method for ST1, 
which has a smaller number of design variables. From the design demonstration of using 
topological, shape, and sizing design variables at the same time, it is shown that BPBIL is an 
efficient and effective optimisation tool for such a type of structural optimum design. The C 

and C′ indicators should be used together to provide some insight that is missing from using 
either of them solely. The application of MOEAs for design optimisation of skeletal 
structures is said to be advantageous since they are robust and simple to use. The method 
can cope with all kind of design criteria as demonstrated in this work. Most importantly, we 
can have a set of non-dominated solutions for decision making within one optimisation.  

6. References 

Achtziger, W. (2007). On simultaneous optimization of truss geometry and topology. 
Structural and Multidisciplinary Optimization, Vol. 33, 285–304 

Achtziger, W. & Kocvara, M. (2007). On the maximization of the fundamental eigenvalue in 
topology optimization. Structural and Multidisciplinary Optimization, Vol. 34,181–195 

Achtziger, W. & Stolpe, M.(2007). Truss topology optimization with discrete design 
variables—Guaranteed global optimality and benchmark examples. Structural and 
Multidisciplinary Optimization, Vol. 34,1–20 

Alkhatib, R.; Jazar, G. N. & Golnaraghi, M. F. (2004). Optimal design of passive linear 
suspension using genetic algorithm. Journal of Sound and Vibration, Vol. 275, 665-691 

Baluja, S. (1994). Population-Based Incremental Learning: A Method for Integrating Genetic 
Search Based Function Optimization and Competitive Learning. In: Technical Report 
CMU_CS_95_163, School of Computer Science, Carnagie Mellon University, 
Pittsburgh 

Benage, W.A. & Dhingra, A.K. (1994). Single and multiobjective structural optimization in 
discrete-continuous variables using simulated annealing. International Journal of 
Numerical Methods in Engineering, Vol. 38, 2753-2773 

Bureerat, S. & Cooper, J. E. (1998). Evolutionary methods for the optimisation of engineering 
systems. IEE Colloquium Optimisation in Control: Methods and Applications, pp. 1/1-
1/10, IEE, London, UK 

Bureerat, S. & Sriworamas K. (2007). Population-based incremental learning for multi-
objective optimisation. Advances in Soft Computing, Vol. 39, 223-232 

Chan, C.M. & Wong, K.M. (2008). Structural topology and element sizing design 
optimization of tall steel frameworks using a hybrid OC–GA method. Structural and 
Multidisciplinary Optimization, Vol. 35, 473–488 

Deb, K.; Pratap, A.; Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective 
genetic algorithm: NSGAII. IEEE Transactions on Evolutionary Computation, Vol. 6, 
No. 2, 182-197 

Deb, K.; Pratap, A. & Meyarivan, T. (2001). Constrained test problems for multi-objective 
evolutionary optimisation. Lecture Notes in Computer Science, Vol. 1993/2001, 284-
298 

www.intechopen.com



Simultaneous Topology, Shape and Sizing Optimisation of Skeletal Structures  
Using Multiobjective Evolutionary Algorithms  

 

507 

Hagishita, T. & Ohsaki, M. (2009). Topology optimization of trusses by growing ground 
structure method. Structural and Multidisciplinary Optimization, Vol. 37, 377-393 

Hajela, P. & Lee, E. (1995). Genetic algorithms in truss topology optimization. International 
Journal of Solids and Structures, Vol. 32, No. 22, 3341-3357 

Hasancebi, O. & Erbatur, F. (2002). Layout optimisation of trusses using simulated 
annealing. Advances in Engineering Software, Vol. 33, 681–696 

Kanyakam, S. & Bureerat, S. (2007). Passive vibration suppression of a walking tractor 
handlebar structure using multiobjective PBIL. IEEE Congress on Evolutionary 
Computation (CEC 2007), pp. 4162-4169, Singapore 

Kawamura, H.; Ohmori, H. & Kito, N. (2002). Truss topology optimization by a modified 
genetic algorithm. Structural and Multidisciplinary Optimization, Vol. 23, 467–472 

Keane, A. J. (1995). Passive vibration control via unusual geometries: the applications of 
genetic algorithm optimization to structural design. Journal of Sound and Vibration, 
Vol. 185, No.30, 441-453 

Knowles, J.D. & Corne, D.W. (2000) Approximating the non-dominated front using the 
Pareto archive evolution strategy. Evolutionary Computation, Vol. 8, No. 2, 149-172 

Martínez, P.; Martí, P. & Querin, O.M. (2007). Growth method for size, topology, and 
geometry optimization of truss structures. Structural and Multidisciplinary 
Optimization, Vol. 33, 13–26 

Moshrefi-Torbati, M.; Keane, A.J.;  Elliott, J.; Brennan, M. J. & Rogers, E. (2003). Passive 
vibration control of a satellite boom structure by geometric optimization using 
genetic algorithm, Journal of Sound and Vibration, Vol. 276, 879-892. 

Noiluplao, C. & Bureerat, S. (2008). Simultaneous topology and shape optimisation of a 3D 
framework structure using simulated annealing. Technology and Innovation for 
Sustainable Development Conference (TISD2008), Faculty of Engineering, Khon Kaen 
University, Thailand, 28-29 January 2008 

Ohsaki, M. (1995). Genetic algorithms for topology optimization of trusses. Computers and 
Structures, Vol. 57, No. 2, 219-225 

Ohsaki, M. & Katoh, N. (2005). Topology optimization of trusses with stress and local 
constraints on nodal stability and member intersection. Structural and 
Multidisciplinary Optimization, Vol. 29, 190–197 

Preumont, A. (2001). Vibration control of active structures: an introduction, Kluwer Academic 
Publishers 

Reyes-Sierra, M. & Coello Coello, C.A.(2006) Multi-objective particle swarm optimizers: a 
survey of the state-of-the-art. International Journal of Computational Intelligence 
Research, Vol. 2, No. 3, 287-308 

Shea, K. & Smith, I.F.C. (2006). Improving full-scale transmission tower design through 
topology and shape optimization. Journal of Structural Engineering, Vol. 132, No. 5, 
781–790 

Srinivas, N. & Deb, K. (1994). Multiobjective optimization using non-dominated genetic 
algorithms. Evolutionary Computation, Vol. 2, No. 3, 221-248 

Srisomporn, S. & Bureerat, S. (2008). Geometrical design of plate-fin heat sinks using 
hybridization of MOEA and RSM. IEEE Trans on Components and Packaging 
Technologies, Vol. 31, 351-360. 

Stolpe, M. & Svanberg, K. (2003). A note on stress-constrained truss topology optimization. 
Structural and Multidisciplinary Optimization, Vol. 25, 62–64 

www.intechopen.com



 Evolutionary Computation 

 

508 

Svanberg, K. & Werme, M. (2007). Sequential integer programming methods for stress 
constrained topology optimization. Structural and Multidisciplinary Optimization, 
Vol. 34, 277–299 

Tang, W.; Tong, L. & Gu, Y. (2005). Improved genetic algorithm for design optimization of 
truss structures with sizing, shape and topology variables. International Journal for 
Numerical Methods in Engineering, Vol. 62, No. 13,  1737 – 1762 

W. H. Tong, J. S. Jiang and G. R. Liu, “Dynamic Design of Structures under Random 
Excitation,” Computational Mechanics, vol. 22, 1998, pp. 388-394. 

Wang, X.; Wang, M.Y. & Guo, D. (2004). Structural shape and topology optimization in a 
level-set-based framework of region representation. Structural and Multidisciplinary 
Optimization, Vol. 27, 1–19 

Xu, B.; Jiang, J.; Tong, W. & Wu, K. (2003). Topology group concept for truss topology 
optimization with frequency constraints. Journal of Sound and Vibration, Vol. 261, 
911–925 

Yunkang, S. & Xin, Y. (1998). The topological optimization for truss structures with stress 
constraints based on the exist-null combined model. ACTA MECHANICA SINICA 
(English Series), Vol.14, No.4, 363-370 

Zhou, M. (1996). Difficulties in truss topology optimization with stress and local buckling 
constraints. Structural Optimization, Vol. 11,134-136 

Zhou, M.; Pagaldipti, N.; Thomas, H.L. & Shyy, Y.K. (2004). An integrated approach to 
topology, sizing, and shape optimization. Structural and Multidisciplinary 
Optimization, Vol. 26, 308–317 

Zhu, J.; Zhang, W.; Beckers, P.; Chen, Y. & Guo Z. (2008). Simultaneous design of 
components layout and supporting structures using coupled shape and topology 
optimization technique. Structural and Multidisciplinary Optimization, Vol. 36, 29–41 

Zitzler, E.; Deb, K. & Thiele, L. (2000). Comparison of multiobjective evolutionary 
algorithms: empirical results. Evolutionary Computation, Vol. 8, No. 2, 173-195 

Zitzler, E.; Laumanns, M. & Thiele, L. (2002). SPEA2: improving the strength Pareto 
evolutionary algorithm for multiobjective optimization. Evolutionary Methods for 
Design, Optimization and Control, Barcelona, Spain 

Zitzler, E. & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case 
study and the strength Pareto approach. IEEE Transactions On Evolutionary 
Computation, Vol. 3, No. 4, 257-271 

www.intechopen.com



Evolutionary Computation

Edited by Wellington Pinheiro dos Santos

ISBN 978-953-307-008-7

Hard cover, 572 pages

Publisher InTech

Published online 01, October, 2009

Published in print edition October, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book presents several recent advances on Evolutionary Computation, specially evolution-based

optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern

recognition and bioinformatics. This book also presents new algorithms based on several analogies and

metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In

this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to

discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on

the field of evolutionary computation and applied sciences. The intended audience is graduate,

undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this

field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chaid Noilublao and Sujin Bureerat (2009). Simultaneous Topology, Shape and Sizing Optimisation of Skeletal

Structures Using Multiobjective Evolutionary Algorithms, Evolutionary Computation, Wellington Pinheiro dos

Santos (Ed.), ISBN: 978-953-307-008-7, InTech, Available from:

http://www.intechopen.com/books/evolutionary-computation/simultaneous-topology-shape-and-sizing-

optimisation-of-skeletal-structures-using-multiobjective-evol



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


