
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



17 

Optimization of Structures under Load 
Uncertainties Based  

on Hybrid Genetic Algorithm 

Nianfeng Wang and Yaowen Yang 
Nanyang Technological University 

Singapore 

1. Introduction    

Today with the development of industry and research, reliability is more and more 
emphasized. However in some analysis of engineering problem, uncertainty inevitably 
exists. For example, wind loading on structures often varies over certain range instead of 
one determined value. The design of such systems should take into account the intervals of 
deviation of variables from their nominal values. In some uncertainty cases, the variety in 
the system parameters is neglected for the convenience of analysis. In certain situation it is 
possible to obtain the response which is valid and reasonable. However, sometimes the 
uncertainty analysis of system can not be neglected because the uncertainty would 
significantly affect the system performance. 
Real structures are designed for numerous combinations of loads and load cases. In 
structure design it is typical that there may be several hundred important design load cases, 
which implies uncertainty in the loading conditions. A number of approaches have been 
developed to tackle such problems. According to the different types of uncertainty, several 
distinct methods were introduced to handle the analysis: fuzzy sets and fuzzy logic, interval 
analysis, and probabilistic approach. Fuzzy set theory was firstly introduced in (Zadeh 
1978).  The application of fuzzy sets concept into structural analysis was studied in (Ayyub 
1997) systematically. In his work, a fuzzy set was utilized to describe every objective 
function. Some mechanical systems can be analyzed through this method (Qiu and Rao 
2005). Fuzzy set theory has several advantages including the fact that the mathematics is 
formally defined and it can provide a potentially simple approach. The disadvantages of 
fuzzy set theory include validation necessary, justification of each step necessary, 
complexity when using many variables and the fact that the membership function may be 
heuristically defined. When less information is given and only range of each uncertainty 
quantity can be specified, interval method is widely used. Bounded uncertainty approach 
(Ben-Haim and Elishakoff 1990), a convex model of uncertainty was an extension to the 
interval analysis (Moore 1966). Some disadvantages of interval analysis are: (1) Interval 
arithmetic computations are slower than floating point operations, roughly by a factor of 
three, though there are problems that are solved faster when implemented using interval 
arithmetic; (2) There are no additive or multiplicative inverses for intervals; (3) There is no 
strict distributive law of multiplication over addition, only sub-distributivity; and (4) the O
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number of required subproblems is much larger than that of the underestimator algorithms 
(Han, Manousiouthakis et al. 1997; Ju, Vasilios et al. 1997; Agoston 2005). For problems with 
distribution description of the variety in the system parameters, probabilistic approach is 
often used (Au 2005). Probabilistic approaches offer an attractive framework for designing 
structures in the presence of uncertainty, but they require much information about 
probabilistic models. When such information is inaccurate, large errors could be incurred in 
the calculation of failure probabilities (Elishakoff 1995). 
Anti-optimization technique, on one hand, represents an alternative and complement to 
traditional methods, and on the other hand, it is a generalization of the mathematical theory 
of interval analysis (Qiu & Elishakoff 2001). When the available uncertainty data is limited, a 
probability distribution may not be able to be estimated accurately, but bounds for the 
uncertain variables may be at least estimated. The designer will generally seek for the least 
favorable solution for the structure within the domain defined by the bounds on the uncertain 
variables. This search for the worst condition for a given problem was named anti-
optimization (Elishakoff 1995). The term anti-optimization was also used in a more general 
sense, to describe the task of finding the worst scenario for a given problem.  A two species 
genetic algorithm (GA) was presented effectively reducing the two-level problem to a single 
level (Venter & Haftka 1996). The maximum strength of laminated composites was optimized 
under bounded uncertainty of material properties by GA (Maenghyo & Seung Yun 2004). 
In recent years, hybrid genetic algorithms (GAs) have become more homogeneous and some 
great successes have been achieved in the optimization of a variety of classical hard 
optimization problems. Hybrid algorithms of GAs and those local search algorithms were 
proposed to improve the search ability of GAs, and their high performance was reported 
(Ishibuchi & Murata 1998; Deb & Goel 2001; Jaszkiewicz 2003; Wang & Tai 2007; Wang & Tai 
2008). In these studies local search algorithms were suggested in order to reach a quick and 
closer result to the optimum solution. However, this work integrates a simple genetic local 
search algorithm as the anti-optimization technique with a constrained multi-objective GA 
proposed in (Wang & Tai 2007). A constrained tournament selection is used as a single 
objective function in the local search strategy. Section 2 outlines the proposed hybrid GA. 
And section 3 presents a morphological geometry representation scheme coupled with the 
GA. Formulations and numerical results of a target matching test problem in the context of 
structural topology optimization are presented in Section 4. Formulations and numerical 
results of the structural design problem are presented in Section 5. Finally, concluding 
remarks are given in Section 6. 

2. Proposed algorithm –a hybrid GA 

A general constrained multi-objective optimization problem (in the minimization sense) is 
formulated as: 
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where f is a vector of m objectives, and [ ]1 2 nx x x=x A  is the vector of n  design 

variables.  jg  and kh are the equality and inequality constraints. L
x   and U

x define the 

lower bound and upper bound of x , respectively. 
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For anti-optimization, the robustness of the objective function can be achieved by 
maximizing the minimum value of the objective functions. It tends to move the uncertainty 
parameters to the desirable range and results in higher reliability with respect to 
uncertainty. Therefore an anti-optimization procedure implemented in this work by local 
search is employed to search for the values of the worst objective functions. Consider a 

problem subject to u uncertain variables ux  and n u−  normal design variables nx . The 

formulation can then be written as below: 

 

minimize    ( )
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where CN is a particular set of solutions which are related to generation number N. The 
formulation considered leads to a nested optimization problem which will be solved by 
means of a GA for optimization and a local search for anti-optimization. Generally speaking, 
this is a sort of minmax search, where the “max” part is dealt with by a local search 
algorithm, and the “min'' part is realized by a GA. 

2.1 Tournament selection for local search 

Since a local search strategy requires a tournament selection between an initial solution and 
its neighboring solution, a comparison strategy is needed. For multi-objective optimization 
without constraints, a single objective function converted from multiple objectives can be 
used. For constrained optimization, constraint handling mechanisms should be given first. 
In most applications, penalty functions using static (Srinivas & Deb 1994), dynamic or 
adaptive concepts (Michalewicz & Schoenauer 1996) have been widely used. The major 
problem is the need for specifying the right value for penalty parameters in advance. The 
method from (Ray, Tai et al. 2001) incorporates a Pareto ranking of the constraint violations, 
so it does not involve any aggregation of objectives or constraints and thus the problem of 
scaling does not arise. Note that Pareto ranking is not well suited for hybridization with 
local search. For an anti-optimization problem, when Pareto ranking is used, the current 
solution x is replaced with its neighboring solution y (i.e., the local search move from x to y 
is accepted) only when x dominates y (i.e., x is better than y). That is, the local search move 
is rejected when x and y are non-dominated with respect to each other. However, change of 
the rank of a given solution may require significant changes of the objective/constraint 
values, thus, many local moves will not degenerate the rank. 
A constraint handling method (Deb 2000) was proposed which is also based on the penalty 
function approach but does not require the prescription of any penalty parameter. The main 
idea of this method is to use a tournament selection operator and to apply a set of criteria in 
the selection process. For an anti-optimization problem, it can be easily changed to: 
i. Any infeasible solution is preferred to any feasible solution. 
ii. Between two feasible solutions, the one having worse objective function value is 

preferred. 
iii. Between two infeasible solutions, the one having bigger constraint violation is 

preferred. 
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According to these criteria, the constrained optimization can be constructed as 

 {
max

( )              if 
( )

( )    otherwise
f F

f
f vio

∈= +
x x

x
x

#  (3) 

where ( )f x#  is the artificial unconstrained objective function, F  is the feasible region of the 

design domain, maxf  is the objective function value of the worst feasible solution in the 

population, and ( )vio x  is the summation of all the violated constraint function values. 

However, this approach is only suitable for single-objective constrained optimization 

problem if no further handling mechanisms for multiple objectives are given. And ( )vio x  as 

summation of constraint values cannot reflect the real relative comparison between them 
because of different orders of magnitude among the constraints, and in this sense, it is also 
based on the penalty functions where all the penalty parameters are set to 1. 
Extending the basic idea of Deb's method, a technique combining Pareto ranking and 
weighted sum is suggested in this work for the local search selection process. There are only 
3 combinations for the two solutions: both feasible, both infeasible, and one feasible and the 
other infeasible. The main idea of the technique is to use a tournament selection operator 
and to apply a set of criteria in the selection process. For an anti-optimization procedure, 
any infeasible solution is preferred to any feasible solution. When both solutions are 
feasible, Pareto ranking based on objectives is calculated. The one with bigger rank value is 
preferred. If the situation still ties, a more sophisticated acceptance rule is used for handling 
the situation. The fitness function of the solution x is calculated by the following weighted 
sum of the m objectives: 

 1 1 2 2( ) ( ) ( ) ( )m mf w f w f w f= + + +x x x xA  (4) 

where ( )f x  is a combined objective, and 1 2, , , mw w wA  are nonnegative weights for the 

objectives set according to different orders of magnitude among them. Constant weight 
values are used in this work to fix the search direction based on user's preference. The 

solution with a bigger ( )f x will survive. When both solutions are infeasible, Pareto ranking 

based on constraints is calculated. The one with bigger rank value is preferred. If the rank is 
same, the one with worse fitness value survives. A tournament selection criterion can be 
described as below to decide whether a current solution x should be replaced by a 
neighboring solution y: 
i. If x is feasible and y is infeasible, replace the current solution x with y (i.e., let x = y). 

ii. If both x  and y  are feasible, then if RankObj RankObj<
x y

, then x  = y , else if 

RankObj RankObj=
x y

and ( ) ( )f f<x y , then x  = y . 

iii. If both x  and y  are infeasible, then if RankCon RankCon<
x y

, then x  = y , else if 

RankCon RankCon=
x y

 and ( ) ( )f f<x y , then x  = y . 

2.2 Selection of initial solutions 
Local search applied to all solutions in the current population in the algorithm is inefficient, 
as shown in (Ishibuchi, Yoshida et al. 2002). In the proposed algorithm, the computation 
time spent by local search can be reduced by applying local search to only selected solutions 
in selected generations. If n  is the number of decision variables, the best n  number of 
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solutions from the current population (based on Pareto ranking) are selected. These n 
number of mutated solutions and elites from N-th generation after local search are then put 
into the next population. The generation update mechanism in the proposed algorithm is 
shown in Fig. 1. The implementation of the anti-optimization part is modularized. 
 

 

Fig. 1. Generation update mechanism. 

2.3 Local search procedure 
As explained in the above, a local search procedure is applied to elite individuals and new 
solutions generated by the mutation in selected generations. Generally, a local search 
procedure can be written as follows: 
Step 1. Specify an initial solution and its corresponding design variable under uncertainty. 
Step 2. Apply Hooke and Jeeves Method to determine the search path using the 

tournament selection criteria stated above as the function values. 
Step 3. If the prescribed condition is satisfied, terminate the local search. 

2.4 Main algorithm 
The overall algorithm uses a framework which combines the method stated in (Wang & Tai 
2007)  and the local search proposed above. The algorithm is given below: 

Step 1. Generate random initial population P of sizeM . 
Step 2. Evaluate objective as well as constraint functions for each individual in P. 
Step 3. Compute Pareto Ranking. 
Step 4. Select elite individuals. Elite individuals carried from the previous generation 

preserve the values of their objective and constraint functions. 
Step 5. Select n  best individuals from P, mutate and apply local search procedure in 

specified generation, then put them into new population P’.  
Step 6. Crossover. 
Step 7. If a prescribed stopping condition is satisfied, end the algorithm. Otherwise, return 

to Step 2.  

3. Enhanced geometric representation scheme for structural topology 
optimization 

The enhanced morphological representation was first introduced in  (Tai & Wang 2007), 
which in turn is an extension of the morphological representation scheme previously 

www.intechopen.com



 Evolutionary Computation 

 

326 

developed in (Tai & Akhtar 2005; Tai & Prasad 2007). As in any structural topology 
optimization procedure, the geometry of the structure has to be represented and defined by 
some form of design variables. The enhanced morphological representation efficiently cast 
structure topology as a chromosome code that makes it effective for solution via a GA. In 
the proposed scheme, the connectivities and the number of curves used are made variable 
and to be optimized in the evolutionary procedure. The process of the scheme definition is 
illustrated as follows. 
A square design space shown in Fig. 2(a) is discretized into a 50 by 50 mesh of identical 
square elements. While it is initially unknown how the design space will be occupied by the 
structure, there must exist some segments of the structure such as the support and the 
loading that have functional interactions with its surroundings. The support point is some 
segment of the structure that is restrained (fixed, with zero displacement) while the loading 
point is where some specified load (input force) is applied to deform the structure. 
Collectively, the support and loading points represent the input points of the structure. 
There is also usually an output point which is some segment of the structure where the 
desired output behavior is attained. As shown in Fig. 2(a), the problem is defined with four 
I/O locations, each made up of one element in black. Six connecting curves in the 
illustration of Fig. 2(b), three of which are active and three of which are inactive, are used 
such that there is one connecting curve between any two points (i.e. every I/O point is 
directly connected to the other three). Before continuing, it is important to make a clear 
distinction between the active and inactive curves. The active curves are the curves which are 
in the ‘on’ state. The structure is generated based only on the active curves. Although the 
inactive curves, which are in the ‘off’ state, temporarily contribute nothing to the current 
structure, they are still very important in subsequent generations because they may be 
turned ‘on’ later through the crossover or mutation operations. In Fig. 2(b), the active curves 
are marked with thick lines and the inactive with thin dotted lines. The connectivity of the 
I/O points is based on all connecting active curves joining one point to another. Each curve 
is a Bezier curve defined by the position vector which can be derived from the element 
number of control point. The set of elements through which each active curve passes form 
the ‘skeleton’ (Fig. 2 (c)). Some of the elements surrounding the skeleton are then included 
to fill up the structure to its final form (Fig. 2 (d)) based on the skeleton's thickness values. 
Each curve is defined by three control points, and hence each curve has four thickness 
values. And the union of all skeleton, surrounding elements and I/O elements constitute the 
structure while all other elements remain as the surrounding empty space. 
In order to use a GA for the optimization, the topological/shape representation variables 
have to be configured as a chromosome code. Hence the structural geometry in Fig. 2 (d) can 
be encoded as a chromosome in the form of a graph as shown in Fig. 3. Each curve is 
represented by a series of nodes connected by arcs in the sequence of start element number, 
thickness values alternating with control element number and end point. For identification 
purpose, the active curves are shown by solid lines and the inactive curves are represented 
by dotted lines. Altering the curve states can vary the connectivity of the I/O regions, and 
therefore the representation scheme can automatically decide the connectivity. The resulting 
scheme therefore increases the variability of the connectivity of the curves and hence the 
variability of the structure topology. 
Two of the important operations in a GA are the crossover and mutation. In this 
implementation, the crossover operator works by randomly sectioning any single connected 
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subgraph from a parent chromosome and swapping with a corresponding subgraph from 
another parent (as shown in Fig. 3.). As a result, two offsprings are produced which have a 
mix of the topological/shape characteristics of the two parents, and the advantages of the 
representation (such as no checkerboard patterns and single-node hinge connections) are 
maintained in the offspring. The ‘on’ and ‘off’ state of different curves which are crossed by 
the loop are also swapped. If the ‘on’ variables dominate a curve, i.e. when the number of 
‘on’ variables is more than the number of ‘off’ variables, the curve of in the child 
chromosome will be active. Otherwise, the child curve will be inactive. As for mutation, the 
mutation operator works by randomly selecting any vertex of the chromosomal graph and 
altering its value to another randomly generated value within its allowable range. Mutation 
about the on-off state is simple, which is altering the state of curves. When the selected 
curve is active, it will be inactive after mutation, and vice verse. 
 

I/O points  

curve1
curve2
curve3
curve4
curve5
curve6
control points of curve 1
control points of curve 2
control points of curve 4
I/O points

 
(a) (b) 

  
(c) (d) 

Fig. 2. Definition of structural geometry by enhanced morphological scheme (a) FE 
discretization of design space (I/O element marked in black) (b) Connecting I/O elements 
with Bezier curves (c) Skeleton made up of elements along curves (d) Surrounding elements 
added to skeleton to form final structure. 
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Fig. 3. Chromosome of final structure 

 

Fig. 4. Illustration of crossover operation 

In summary, this morphological representation scheme uses arrangements of skeleton and 
surrounding material to define structural geometry in a way that will not render any 
undesirable design features such as disconnected segments, checkerboard patterns or single-
node hinge connections because element edge connectivity of the skeleton is guaranteed, 
even after any crossover or mutation operation. Any chromosome-encoded design 
generated by the evolutionary procedure can be mapped into a finite element model of the 
structure accordingly. 

4. Target matching problem 

Before a GA is relied upon for solving a structure design problem with unknown solutions, 
it is important that the performance of the GA be tested and tuned by using it to solve a 
problem with known solutions. Various kinds of test problems (Michalewicz, Deb et al. 
2000; Schmidt & Michalewicz 2000; Martin, Hassan et al. 2004) have been established for 
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testing multi-objective GAs. They were created with different characteristics, including the 
dimensionality of the problem, number of local optima, number of active constraints at the 
optimum, topology of the feasible search space, etc. However, all of these test problems 
have well-defined objectives/constraints expressed as mathematical functions of decision 
variables and therefore may not be ideal for evaluating the performance of a GA intended to 
solve problems where the objectives/constraints cannot be expressed explicitly in terms of 
the decision variables. In essence, a GA is typically customized to tackle a certain type of 
problem and therefore `general-purpose' test problems may not correctly evaluate the 
performance of the customized GA. The test problem should, therefore, ideally suit (or be 
customized to) the GA being used. 
In numerous real-life problems, objectives/constraints cannot be expressed mathematically 

in terms of decision variables. One of such real-life problems is structural topology 

optimization, where a procedure (structure geometry representation scheme) first 

transforms decision variables into the true geometry of the designed structure and then 

finite element analysis of the designed structure is carried out for evaluating the 

objectives/constraints. The GA solving such problems may have special chromosome 

encoding to suit the structure geometry representation used and there may also be specially 

devised reproduction operators to suit the chromosome encoding used. As such, the 

structure geometry representation scheme, the chromosome encoding and the reproduction 

operators introduce additional characteristics to the search space and, therefore, they are 

very critical to the performance of the GA. The test problem for such GAs, therefore, must 

use the same structure geometry representation scheme, chromosome encoding and 

reproduction operators. The conventional test problems found in literature cannot make use 

of the GA's integral procedures such as structure geometry representation scheme and 

therefore they are not suitable for testing such GAs. 

Ideally, the test problem should emulate the main problem to be solved. The test problem 
should be computationally inexpensive so that it can be run many times for the GA 
parameters to be changed or experimented with and the effect thereof can be studied for the 
purpose of fine-tuning the GA. However, the main problem in the present work, being a 
structural topology optimization problem under uncertainty, requires structural analysis 
which consumes a great deal of time. Taking the running time into consideration, the test 
problem needs to be designed without any need for structural analysis. A test problem 
emulating structural topology optimization does not necessarily need structural analysis as 
the main aim of topology optimization is to arrive at an optimal structural geometry. 
Without using structural analysis, if a GA is successfully tested to be capable of converging 
the solutions to any arbitrary but predefined and valid `target' structural geometry, then it 
may be inferred that the GA would be able to converge design solutions to the optimal 
structural topology when solving an actual topology optimization problem. Based on this 
inference, a test problem can be designed such that simple geometry-based (rather than 
structural analysis based) objectives/constraints help design solutions converge towards the 
predefined target geometry. This type of test problem may be termed as ``Target Matching 
Problem", which is capable of using exactly the same GA (including structural geometry 
representation scheme, chromosome encoding and reproduction operators) as that intended 
for solving the actual topology optimization problem. The present problem is similar to the 
Target Matching Problem solved in (Wang & Tai 2007; Tai et al. 2008; Wang & Yang 2009). 
The target matching problems are defined here as multiobjective optimization problems 
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under uncertainty which are more difficult (e.g. more nonlinear problem) and 
computationally intensive. 

4.1 Formulation 

The test problem makes use of the design space shown in Fig.5, which has one support 
point, two loading points and one output point. The problem does not represent a structural 
analysis problem, but the original terms ‘support’, ‘loading’ and ‘output’ are still used for 
ease of reference. The loading point 1 is positioned anywhere along the left boundary and 
loading point 2 is positioned anywhere along the right boundary. The position of output 
point is fixed as shown in Fig.5. The support point is positioned in a specified area marked 
as ‘’under uncertainty’’ and its position is random in the area. In this problem, the target 
geometry is shown in Fig. 6. The aim is therefore to evolve structures that match as closely 
as possible this target geometry. The problem presented here is more difficult than the 
original problem described in (Wang & Tai 2007), since the support point is under 
uncertainty that makes the geometry more complex and not easy to converge to the target. 
 
 
 

 
 

Fig. 5. Design space of Target Matching Problem. 
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Fig. 6. Target geometry. 
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Fig. 7. Formulation of Target Matching Problem 1. 

The problem is formulated with the following two objectives and two constraints: distance 
objective, material objective, forbidden area constraint and prescribed area constraint. Such 
a problem is defined with the help of Fig.7. The distance objective is given by 

 tandis ce lf d=  (5) 

where ld  is the centroid-to-centroid Euclidean distance between the actual loading point 1 

and the actual support point. 
The material objective is given by  

 
1

n

material i

i

f x
=

=∑  (6) 

where ix  is the material density of the i -th element in the design space, with a value of 

either 0 or 1 to represent that the element is either void or material (solid), respectively. n  is 

the total number of elements in the discretized design space. In other words, this objective 

function is defined as the summation of the material density of all elements in the current 

geometry. 
The forbidden area constraint can be written as 

 
1

0
fn

forbidden i

i

g y
=

= ≤∑  (7) 

where iy  is the material density of the i -th element in the forbidden area, and fn  is the 

total number of elements in the forbidden area. In other words, the summation of the 

material density of elements in the forbidden area is required to be less than or equal to 

zero. 
The prescribed area constraint can be written as 

 
1

0
pn

prescribed p i

i

g n z
=

= − ≤∑  (8) 
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where iz  is the material density of the i -th element in the prescribed area, and pn  is the 

total number of elements in the prescribed area. In other words, the summation of the 

material density of elements in the prescribed area is required to be more than or equal to 

the total number of elements in that area. 

4.2 Main results 

The target matching problem to be solved is defined by the design space shown in Fig. 5. 
The optimization was run for 1001 generations with a population size of 100 per generation. 
The local search procedure is triggered once every ten generations. By the end of 
evolutionary process 132,113 objective function evaluations have been performed. One of 
the solutions at the end of 1001 generations is shown in Fig. 8. It is the same as the target 
solution shown in Fig. 6. 

As can be seen from the result, the support point is on the extreme point where the element 

number is 37. The following Fig. 9 illustrates how the solution shown in Fig. 8 is obtained by 

applying local search. Apply the Hooke and Jeeves method to determine the search path 

using the tournament selection criteria stated in Section 2. Each data point is labeled with its 

index where some indexes are coincided. At the start point, tandis cef  is 37.6 and materialf  is 118. 

After the local search, the worst case labeled as 9 is obtained with a distance objective tandis cef  

value of 49.5 and a material objective materialf  value of 142. This figure demonstrates the 

Hooke and Jeeves direct search method for function maximization. 

Fig. 10 shows a plot of the best distance objective tandis cef  and the corresponding solution's 

materialf  versus generation number. tandis cef  and materialf  values on the plot corresponding to 

any particular generation number belong to that generation's non-dominated feasible 

solution having the best distance objective. The plot starts at generation number 6, as until 

this generation there is no feasible solution in the population. 

Fig. 11 shows plots of the best material objective materialf  and the corresponding solution's 

distance objective tandis cef  versus generation number. 
 

 

tan 49.5
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dis ce
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f
f

=
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Fig. 8. The optimal solution at 1001st generation. 
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Fig. 10. History of the best distance objective ( tandis cef ). 
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Fig. 11. History of the best distance objective ( materialf ). 
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Fig.12 shows a plot in objective space, where the solid shape markers are used to denote the 

feasible non-dominated solutions at any particular sample generation, viz. the 51st, 101st, 

301st, 501st and 1001st generation. Although Fig.12 shows all the non-dominated solutions at 

any particular generation, only one or two distinct points (in the objective space) can be seen 

for that generation. However, a few distinct solutions in the design variable space may have 

the same objective function values and therefore, such solutions would coincide in the 

objective space. The number shown in parenthesis next to every point marker indicates the 

total number of such coincident solutions. 
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Fig. 12. History of the best distance objective ( materialf ). 

4.3 Discussion 

For the test problem, the results are summarized in Section 4.2. The hybrid GA proves its 

efficiency by converging the two objective function values ( tandis cef  and materialf ) to the 

optimal values. The recurrent fluctuations in Fig. 10 and Fig. 11 show the effect of local 

search to the hybrid algorithm. Fig. 9 shows how the local search works. 

5. Optimization of structures under load uncertainties 

In this work, the structural optimization problem is defined in a design space shown in Fig. 
13 using 4-noded quadrilateral elements.  The present problem is similar to design problem 
solved in (Wang, Yang et al. 2008). The characteristics of the material aluminium used are as 

follows: the Young's Modulus E  is 68948 MPa, and the mass density ρ  is 2768 kg/m3. The 

maximum allowable vertical displacement 2,allowabled  at loading point 2 is 0.000635m. Loading 

point 1 is subjected to a vertical load 1P  while loading point 2 is subjected to both a vertical 

load 2P  and a horizontal load 3P  as shown in Fig. 13. 2P  and 3P  are normal loads with 

constant values of 222N and 44.4N respectively while 1P  is an uncertain load varying 

between 44.4N and 55.5N. 
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Fig. 13. Design domain. 

The optimization problem can be formulated as follows: 
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g d
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= − ≤
≤
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n n
x p

n n
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x C

x p x p

x p x p
 (9) 

where w is the weight of the structure and d  is the displacement of the loading point 2. p is 

the vector of loads under uncertainty, that is 1P  in this problem. Local search which is 

triggered every 10 generations in this work is only applied to selected NC  solutions. A 

constraint on the vertical displacement, dg , is used to prevent big deformations which are 

supposed likely to occur. A constraint on the maximum stress in the structure (to prevent 

fatigue or failure) is important. A dimensionless expression for the stress constraint may be 

written as 

 0
peak von Mises y

stress

y

g
σ σ

σ
− − −

= ≤  (10) 

where peak von Misesσ − −    is the peak von Mises stress and yσ   is the tensile yield strength of the 

material. 
The optimization procedure and finite element analysis have been implemented through a 

C++ program running in the Windows environment of a PC. Values of the objective and 

constraint functions for every design are derived from the results of a FE analysis of the 

designed structure. 

The optimization was run for 501 generations (with a population size of 100 per generation), 
by the end of which 46,415 objective function evaluations have been performed. The values 

of 1w  and 2w  in Equation 4 are 1 and 100 respectively. Three of the non-dominated solutions 

at the end of 501 generations are shown in Fig. 14. Fig. 14 (a) shows the solution with best 

weight objective under the worst load case where 1P  is 55.5N. Fig. 14 (c) shows the solution 

with the best displacement objective under the worst load case where 1P  is 55.4N. One 

solution with median weight and displacement objective is given in Fig. 14 (b).  
Fig. 15 shows a plot of the best weight objective ( w ) and the corresponding solution's 

displacement objective ( d ) versus generation number. w  and d  values on the plot 

corresponding to any particular generation number belong to that generation's non-

dominated feasible solution which has the best weight objective. 
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Fig. 14. Three non-dominated solutions at 501st generation. 
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Fig. 15. History of the best weight objective ( w ). 
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Fig. 16. History of the best displacement objective( d ) 
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Fig. 16 shows plots of the best displacement objective (d) and the corresponding solution's 

weight objective ( w ) versus generation number. As can be seen from Fig. 15 and Fig. 16, 

there are some fluctuations because of anti-optimization. 

Fig. 17 shows a plot in the objective space, where the solid shape markers denote the feasible 

non-dominated solutions at any particular sample generation. 
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Fig. 17. Plot of non-dominated solutions and elites at some sample generations. 

6. Conclusion 

The versatility and effectiveness of the topology optimization methodology developed in 

this work rest on three key components: an efficient morphological geometry representation 

that defines practical and valid structural geometries, a compatible graph-theoretic 

chromosome encoding and reproduction system that embodies topological and shape 

characteristics, and a multiobjective hybrid GA with local search strategy as the worst-case-

scenario technique of anti-optimization. The use of local search strategy helps to direct and 

focus the genetic search in uncertainty design variable space. A multiobjective target 

matching problem with known solutions has been formulated and solved to demonstrate 

the validity of presented algorithm.  Simulation results of the structure optimization under 

load uncertainty are encouraging, which indicates that the hybrid algorithm integrates local 

search as anti-optimization is applicable. The proposed tournament constrained selection 

method works well and the computation cost is reasonable.  
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