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1. Introduction 

Artificial development takes it's inspiration from the processes of biological development 
(Wolpert; 2002). The process of mapping genetic information in the genotype to a phenotype 
that express structure, behaviour and functions (Hall; 2003). In nature this is the processes 
making a zygote (fertilised egg) develop to a multicellular organism. As all living systems 
and their subsystems are evolved, developmental processes are also a product of evolution. 
In biological development, an initial unit – a cell, holds the complete building plan (DNA) 
for the organism. It is important to note that this plan is generative – it describes how to 
build the system, not what the system will look like. Units have internal state, can 
communicate locally, can move, spawn other units or die. Groups of units may also exhibit 
group-wise behaviour i.e. a group state. The developmental stages from the zygote to the 
multicellular organism, although interdependent and not strictly sequential, may be 
categorized as pattern formation; morphogenesis; cell differentiation and growth (Wolpert; 2002). 
Information carried in the ever evolving genome is the information that passes from 
generation to generation and the genetic information is contained within a cell that serves as 
both the constructor and construct of the phenotype. 
An important feature of natural development is that the developing organism develops and 
operates within an environment. The environment is not only the arena in which the 
behaviour and function of the organism unfolds, it is also an important source of 
information for the outcome of the developmental process. As stated, the genome may be 
considered information exploitable by the developmental process to “build” the organism. 
In biology the environment also serves as a source of information for the development of the 
organism. As such, the developmental process can include the environmental information as 
an input information source enabling adaptation through the developmental process. This 
implies that natural organisms include developmental plasticity, i.e. phenotypic plasticity 
(West-Eberhard; 2003). As such, the evolved organism is a product of the information in the 
genome, the present environment and the cellular developmental processes that is 
initialised in the zygote. 
Recently developmental approaches have once again come to the front in the area of 
bioinspired systems. The motivation for moving towards developmental system is 
multitudinous ranging from early work on self-reproduction (von Neumann; 1966), to more 
recent attempts in overcoming limitations in Evolutionary Computation (EC), e.g., scaling O
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and complexity (Kitano; 1990) or towards a desire to include properties inherent in living 
organisms that may be favourable for artificial systems, e.g. robustness (Miller; 2004) or 
adaptation (Tufte; 2008). 
Artificial developmental mapping include various techniques and methods ranging from 
rewriting systems, e.g. L-Systems (Lindenmayer; 1971), to cellular approaches, where the 
genome is present and processed autonomously in every cell (Laing & Arbib; 1971). Further, 
the information available to the mapping process can be varied from systems depending 
only on the genotype and an axiom (Bentley & Kumar; 1999), to systems including 
environmental information where exploitation of this information form the phenotypic 
structure and behaviour together with information carried in the genome (Tufte & Haddow; 
2007b). 
In a system including a developmental mapping the role of the genome is radically changed 
from a system where the genome is considered a description, e.g. a blueprint, to a system 
where the genome may be viewed as information on how to build the system. That is, the 
genome contains information that is exploited in the generative process of development. 
The processing of the genome may be based on gene regulation Lantin and Fracchia (1995). 
Each development step, or stage in the mapping, produces a candidate phenotype which 
emerges during development. Gene regulation implies that different parts of the genome are 
expressed in different cells at different times cued in context with the environment and the 
emerging phenotype. As such, the genome size may not reflect the size or complexity of the 
phenotype and opens for systems that can generate very large scale repetitive structures 
(Kitano; 1998), or even structure of arbitrary size (Sekanina & Bidlo; 2005). 
The generative process of development is not limited to the process of development of an 
adult organism, or in the artificial domain a finalized phenotype. A developmental mapping 
is not a process that is “turned off” when the finalized adult stage is reached. The process is 
working on the organism throughout it's lifetime. This ever lasting process is important to 
keep the organism healthy and functional. Damage, e.g. at the cellular level, can be repaired 
by regenerating the damage tissue and cells may be replaced if they fail to fulfil their 
purpose. In artificial systems an ever ongoing developmental process can, as in it's natural 
counterpart, obtain robustness. Such robustness is the product of a system that can 
regenerate itself if it is disturbed or damage (Miller; 2004). In the artificial domain, if 
included, the plasticity property of the artificial organisms can be exploited to target systems 
that based on the present environment can adapt their structure (Tufte; 2008) to obtain a 
target functionality despite changes in the environment in witch they operate and/or 
artificial organisms that can change their computational function based on the present 
environment (Tufte & Haddow; 2007b). 
In this chapter the main topics are robustness and adaptation in evolved artificial 
developmental systems. The chapter includes a discussion on principles for artificial 
development. Possible environmental influence is described before a developmental model 
is covered for use in following examples. There are three examples covering robustness, 
plasticity and adaptation in an environmental context. Further a discussion on scalability, 
complexity and evolvability in developmental systems is included. 

2. Artificial development 

Whatever the motivation for including a developmental mapping in a system is that there 
exists some target purpose for the system. As we are dealing with artefacts there is no 
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common purpose as reproduction is for living systems. Instead the purpose of the artificial 
evolved and developed organisms is connected to a specific problem domain. This implies 
that properties of artefacts are defined by the targeted problem. 
In the domains of Artificial Life and Evolutionary Computation the target involves some 
sort of computation. Even though it is not trivial to distinguish what is computation and 
what is not (Toffoli; 2004), the phenotype or the developmental process itself is 
computational. To get a better way of defining what the purpose of a developmental system 
is the outcome, or developed phenotype, may be categorised in two: a structure or a 
structure of computational units. Constructing such categories can not be said to be an exact 
classification. The different classes are overlapping and for many cases there exists no clear 
classification category. However, to be able to clearly know, or decide, what the purpose of 
the artificial system is, it is crucial to know what kind of system that is targeted. That is, to 
be able to reach a system that fulfil its purpose we must know what function, i.e. 
computation, is to be the emergent result of evolution. 
If systems targeting structures are considered the purpose of the system is the evolution and 
development of the structure itself. Here the process of development is used to create a 
structure from an initial condition, which may be some initial structural element(s). The 
structure may grow and/or reshape under some underlying developmental processes. 
In Figure 1 an example taken from the work of Steiner et al. (2009) illustrates development 
of a structural purpose. In this figure the cellular growth can be seen as the output of the 
generative process growing structure by cell division. The initial structure is shown at top 
left and the finalized structure is shown at the two last panels at the bottom right. In the last 
panel a top plate is added to the developed structure. The purpose of the structure is to be a 
light-weight mechanical structure that can support mechanical stress from a weight placed 
on the added top plate. 
 

 

Fig. 1. Development of a mechanical structure. The developmental process starts at the top 
left corner. The finalized developed structure is at the bottom right corner. (Courtesy of 
Steiner et al. (2009)) 

The developmental phenotypes in Figure 2 show two developmental steps in the process of 
developing a structure with a computational function. Here the structure is not the target; 
the target is a computational function. As such, the developmental process generates 
structures of computational elements, here addition (+), subtraction (–) and multiplication 

(∗). The developing structure includes input nodes, at the left, and an output node, the last 
block at the right. In the figure a block is marked DUP this is a special operator that can copy 
and insert parts of the current function into itself, i.e. development by self-modification. 
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Fig. 2. Development of a structure consisting of computational and self-modification 
elements. Snapshot of two structures created by a developmental process. (Courtesy of 
Harding et al. (2007)) 

The two given examples of development in Figure 1 and 2 share and show key elements of 
developmental mappings. The evolution of a genome that carry information that is 
exploited by a developmental iterative process and the exploitation of information in 
intermediate phenotypes for the creation of the next phenotype on the developmental path 
toward the finalized phenotype. 
In Figure 1 the genome, evolved by an Evolutionary Strategy (ES), is a short description of 
conditions and actions based on local cellular neighbourhood. Cell division is an action 
increasing the number of cells in the structure. The input information to the developmental 
process in a cell is local information in the cellular neighbourhood. This implies that the 
developmental process uses information from the emergent developing structure as 
information to decide the next cellular developmental action. As such, the structure emerges 
out of described conditions and actions in the genome regulated by information from the 
intermediate phenotypic structures. 
The second example presented in Figure 2 also used an ES for evolving the genome. 
However, here the genome is an initial structure in the form of a graph consisting of 
connected computational nodes and some special nodes for self-modification. The iterative 
process can copy parts of the graph into another position or delete parts of the graph. As 
such, the initial size of the graph-genome can be a fraction of the developed graph-
phenotype at end of development. The process of self-modification always operates on a 
current version of the graph generating the next intermediate graph-phenotype. This gives a 
system that can grow from a small graph to a large more complex graph based on self-
modification. 
Even though the two examples share basic principles that make them developmental they 
also clearly show the difference in evolutionary development of structures and 
computational structures. In the system of Steiner et al. (2009) the purpose was a lightweight 
structure that could resist mechanical stress. The structure of the phenotype itself is here 
directly evaluated. In the work of Harding et al. (2007) the actual structural composition is 
not measured. The result of an evaluation is based on the computation performed between 
the input nodes and the output node. As such, the developmental process works on a 
structure that may not reflect computational complexity of the phenotype. 
This section illustrates what artificial development can be and the principles of large 
systems that emerges as a result of a generative process exploiting information from an 
evolved genome and intermediate phenotypic properties. The two examples illustrates the 
large diversity of developmental models and target purposes. In the following section the 
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bio-inspired approach of artificial development will be further investigated and expanded 
toward a synthesis of evolution, development and environment, i.e. EvoDevo (Robert; 2004; 
Hall et al.; 2004). 

3. Evolution, development and environment 

In the previous section the mapping process itself was discussed and exemplified. However, 
the mapping process was taken out of context. In an evolutionary developmental system the 
evolutionary process include an evaluation function together with the developmental 
phenotype and the environment. Further, if adaptation and robustness are issues, the 
question of robustness and adaptation to what must be answered. The obvious answer, if 
looking to biology, is the environment. For an artificial system this answer may not be 
obvious. However, here we stick to the same answer for the artificial systems considered. 

3.1 Environmental influence 
Let us consider artificial developmental systems in relation to environmental information. In 

Figure 3 three different ways of treating an environment in artificial developmental systems 

are presented. Figure 3(a) shows a system that does not include an environment. In this 

approach an Evolutionary Algorithm (EA) is used to evolve genomes that are mapped from 

genotype to phenotype taking the information in the genome and possible intermediate 

phenotypic properties into the mapping process. The phenotype that is produced by the 

mapping process is evaluated by a fitness function. In the illustration the double arrow 

between the mapping process and the emerging organism (phenotype) shows that there is a 

possibility for the mapping process to exploit information from the emerging phenotype. In 

this system the phenotype is given by the information in the genome and the mechanisms in 

the mapping processes, a totally deterministic system. If the system in Figure 3(b) is 

considered. An environment is explicitly included. The organism develops within an 

environment and the fitness evaluation is based on the organism's performance in the 

environment present. As such, the feedback of fitness depends on the environment. In this 

system the fitness is connected to the organism and the environment. As such, the system 

depends not only on the genome and the developmental mechanisms, the environment 

influence on the evolutionary path of the system. 
 

 

Fig. 3. Possible environmental influence on artificial EvoDevo systems. 

In the last system illustrated in Figure 3(c) the environment is, as illustrated by the extra 
arrow from environment to the mapping, available and can influence on the outcome of the 
mapping process. This implies that the emergent phenotype is a product of the genome, the 
emergent phenotype and the environment. This implies that the fitness feedback is based on 
a phenotype that depends on specific environmental conditions. As such, the phenotype 
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here can change structure and/or function depending on environmental conditions. Further, 
the double arrow between organism and environment in Figure 3(b) and 3(c) indicate that 
there can exist a mutual dependency between an organism and it's environment, i.e. mutual 
perturbatory channels (Quick et al.; 1999). 
Now lets return to the question “robustness and adaptation to what”? As stated, the answer 

is the environment. In the presented systems the environment in all systems can be 

considered as information. The environment can serve as information enforced into the 

operating conditions of the artificial organism (Figure 3(b)). It is also possible to exploit the 

environmental information in the mapping process influencing on the phenotypic outcome 

(Figure 3(c)). Further, the environmental information is included in the evolutionary process 

by the possible influence of the fitness feedback to the EA. In Figure 3 the environment is 

termed external. External implies that environmental information is independent of the 

EvoDevo system and can change or fluctuate beyond the control of the EvoDevo system. 

3.2 Robustness 
If robustness is targeted in this context the system presented in Figure 3(b) featuring an 

environmental influence on the evolutionary outcome, systems with robustness to 

environmental fluctuations can be obtained. A system can be evolved to operate in different 

environmental conditions. However, this ability is based on a system operation that is 

robust in itself, i.e. not influenced by fluctuations in the environment. It is important to note 

that the view on environment as information include enforced disturbance or changes to the 

organism itself. As an example of this is shown by Miller (2004) where a developmental 

system evolved to generate a flag structure that was externally disturbed by changing parts 

of the structure. The system was able to regenerate itself through development. 

Robustness through regeneration in developmental system is highly connected to 
selforganization. A system is in a state of stability and even if it is disturbed it will return to 
this state by regeneration. 

3.3 Adaptation 
Developmental adaptation is highly connected to plasticity, the ability for the individual in a 

species to respond to environmental conditions. Such response may materialise in form of 

individuals that can develop different structural and/or behaviour properties based on 

environmental conditions, i.e. plasticity. In an artificial developmental system plasticity 

gives a single genome several possible developmental paths. Witch path an organism 

follows is given by the specific environmental conditions present during development. 

Further, due to the possibility to have an active developmental process throughout the 

lifetime of an individual fluctuations in the environment can cue reorganisation of structur 

and behaviour through gene activation as to be able to operate (Tufte; 2008). 

Adaptation by plasticity may also be viewed in a context of self-organizing systems. In 
contrast to robustness making a system capable of returning to the same state after 
perturbations plasticity in a system allow the system to leave it's state and there after move 
to a different state whilst maintaining it's operation. 
Robustness and adaptation on the evolutionary and developmental level is further 
explained and investigated in Section 5. 
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3.4 Levels of environmental information 
In this section environment has been seen as an external information source that can be 
exploited by evolution and possible environmental sensitive mechanisms in the 
developmental mapping. However, environment is present in developmental systems at 
different levels. At the cellular level environment exists as an intra-cell environment that the 
artificial DNA resides in, also referred to as the cell's metabolism (Federici; 2004; Gordon & 
Bentley; 2005). The next level of environment, found in most development models, is the 
neighbour environment referring to the inter-cell environment, enabling communication 
between neighbouring cells (Bongard & Pfeifer; 2003; Tufte & Haddow; 2003; Miller; 2004; 
Federici; 2004). Further, the external environment influence discussed affecting the 
phenotype may be part of the available information for a development process. 

4. Example: a cellular approach 

In this section a developmental model is presented for later use in examples and to relate the 
topics in the previous sections to developmental mechanisms and features. The system as a 
whole is close to an Evolutionary Developmental (EvoDevo) approach. This implies a 
developmental system with a possibility to include information from the environment, 
intermediate structures and behaviour in addition to the genetic information carried in the 
genome. The artificial organisms the model target are developing structures capable of 
computation. The computational architecture is based on Cellular Automata (CA) 
originating from von Neumann (1966). von Neumann's Self-Reproducing Automata is in 
itself close to artificial development (Sipper et al.; 1998), cells with a finite number of states 
that can selfreplicate, i.e. an expanding cellular structure. The developmental phenotypes 
are based on the cellular computational machine paradigm (Sipper; 1997). A non-uniform 
CA is developed, i.e. the structure/form, emerges out of the set of developmental rules 
capable of cellular growth, differentiation and cell death. The details of the system are only 
discussed in brief. For a complete description of the system – see Tufte (2008) 
(developmental model) and Tufte (2006) (evolutionary algorithm). 

4.1 Developmental model 
The development model is based on cellular development. This implies that the genome is 
present and processed autonomously in every cell. In the model, the cell also contains the 
functional building blocks. For the experiments herein the application sought is that of a 
digital circuit (phenotype). Figure 4(a) illustrates the developmental system – the cell. The 
cell is divided into three parts: the genome (the building plan); the development process 
(mechanisms for cell growth and differentiation) and the functional component of the cell. 
The information in the functional components represents the type of the cell and the cell's 
state is described by the outputs of the functional components. 
The genome consists of a set of rules. Rules are restricted to expressions consisting of the 
type and state of the target cell and the types and state of the cells in its von Neumann 
neighbourhood. There are two types of rules i.e. change and growth rules. Cell growth is a 
mechanism to expand the organism. A growth rule result provides the direction of growth: 
grow from north Gn; east Ge; south Gs or west Gw. It is important to note that these rules 
are expressed in terms of where the source of the cell growing into the target cell is. 
Describing where a cell is growing from enables a fully parallel implementation of the 
system to be created whilst retaining the possibility that cells in effect may grow in all four  
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Fig. 4. The basic cell and a rule showing the gene regulation in the cellular development 
model. 

directions simultaneously. Growth rules have two restrictions. First, the target cell must be 
empty – this is to prevent growing over an existing cell and thus specialising the cell with a 
new cell type. Secondly, the cell to be copied into the target can not be empty. 
Differentiation changes a cell's type i.e. its functionality. The result part of a change rule 
states the type of cell the target is going to be changed into. Cells have the following types: 
valid cell types, don't care (DC) or empty. However, the empty cell is not a valid target cell 
type. 
Each rule consists of a result and a condition. The conditional part provides information 
about the cell itself and each of the neighbouring cells. In the development model presented 
in (Tufte & Haddow; 2005), the type of the cell was applied to describe these cells. However, 
to introduce external environment, state information is also needed. State information 
provides a way to include information relating to the functionality of the organism at a 
given point in time as well as information about the external environment – the empty cells 
in the environment also have state information. As such, a cell is represented in the 
condition of a rule by two genes representing its type and its state. However, a target cell is 
only represented by one gene: it's type for change rules or growth direction for growth 
rules. The state of cell may be 0, 1 or DC. DC is introduced to provide the possibility to turn 
on or off this environmental influence. The development model is applied with and without 
the information from the external environment and functional organism. 
Firing of a rule can cause the target cell to change type, die (implemented as a change of 

type) or cause another cell to grow into it. Figure 4(b) illustrates the process of evaluating a 

rule. For each cell condition, the cell type and state are compared and if the conditions are 

true then that part of the rule is active. If all conditions are active then the result will become 

active and the rule will fire. Activation of the result gene is expressed in the emerging 

phenotype according to the action specified. 

In a development genome multiple rules are present. Multiple rules imply that more than 
one rule of a given cell may be activated at the same time if their conditions hold. To ensure 
unambiguous rule firing, rule regulation is part of the development process. If the first rule 
is activated, the second rule can not be activated. Activation of the second rule prevents 
activation of the third rule, etc. 
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The functional components of the cell is an Sblock (Haddow & Tufte; 2000). The content of 
the look-up table (LUT) defines functionality and is, herein, also used to define the cell type. 
The LUT is the combinatorial component and the flip-flop is the memory element – capable 
of storing the cell state. The output value of an Sblock is synchronously updated and sent to 
all its four neighbours and as a feedback to itself. The LUT definition for the cell types used 
herein can be seen in Table 1. 
 

 

Table 1. Definition of cell types and their functionality 

One update of the cell's type under the execution of the development process is termed a 
development step (DS). A development step is thus a synchronous update of all cells in the 
cellular array. The update of the cell's functional components i.e. one clock pulse on the flip- 
flop, is termed a state step (SS). A development step is thus made up of a number of state 
steps. 
The initial condition is applied before development starts. This means that all empty cells 
are set or reset depending on the given initial condition. To avoid empty cells updating their 
output values from their von Neumann neighbourhood, all cells of type Empty are set to 
update their outputs based on only their own output value at the previous clock pulse. A 
empty cell will retain its initial state – environmental information, until the emerging 
organism grows into it. 

4.2 Development of cellular computation machines 
Figure 5 show an example of development of a cellular machine and its behaviour. The 
phenotype is an emerging non-uniform Cellular Automata (CA) (top). Development of the 
structure goes through steps, Development Steps, where the structure is formed by growth 
(expanding the number of cells) and differentiation (changing the rule of a given cell). The 
different colours in the emerging phenotype represent what CA rule the cell contains. White 
cells are considered empty. The dashed lines indicate that there exists events that are not 
shown in the figure, e.g. the phenotypic structure between DS 8 and DS 98 are not shown. 
The behaviour of the system in Figure 5 (bottom) is the state space produced from an initial 
state executed by the developing non-uniform CA. The space time plots for the behaviour 
consists of 100 State Steps for each development step. This implies that there exist 10 000 

www.intechopen.com



 Evolutionary Computation 

 

228 

space time plots describing the behaviour of the system. It is important to note that in this 
system behaviour exists from the first cell throughout the life-time of the organism. 

5. Examples: plasticity, robustness and adaptation 

In order to highlight the working and gain an increased understanding of developmental 
mappings the developmental model presented in Section 4 is applied to some examples. The 
examples are all targeting robustness and adaptivity. The model presented targets 
organisms that structurally can be seen as a non-uniform cellular automaton that emerges as 
a product of development. Similar, the functionality can also be seen as the result of running 
the developing cellular machine. As such, the developing organism is the phenotypic 
cellular structure, shown at the top of Figure 5, and the functionality of the system is the 
dynamic behaviour of the organism, shown at the bottom of Figure 5. 
 

 

Fig. 5. Snapshot of the development of phenotypic structure (top) and the corresponding 
emergent behaviour (bottom) shown as space-time pattern. 

The application chosen in these examples is a sequential counter where counting is based on 
the state information of the entire cellular space and the sequential operation of the 
functional components of the cells. The application thus places a requirement on the tuning 
of the development genome (by evolution) and the emerging phenotype (by development) 
for such sequential digital circuit behaviour. A counting sequence is defined in the cellular 
array as the number of logical “1”s in the cellular array increasing by one for each state step. 
As such, the functionality only concern the global count of cells outputting a logical “1”, i.e. 
an emergent global property out of local interactions of the functional components of the 
cells. 
The fitness function for achieving this counter behaviour is based on the best counter 
sequence obtained at each developmental step, i.e. a lifetime evaluation. As such, the total 
fitness is the sum of the longest counter sequence found on each developmental step. As the 
main topic here is robustness and adaptation the main common property is development in 
fluctuating environments. 
In all the examples presented the developmental process is allocated 100 development steps. 
At each development step 100 state steps is executed. As such the counter sequence is a 
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product of the dynamic behaviour caused by the state steps at each development step. The 
size of the genotype in all examples was set to 32 rules. Here the specific example results are 
selected from larger collections of experimental results. For all details on the results and 
setups see (Tufte & Haddow; 2007a,b; Tufte; 2008). 

5.1 Robust phenotypes 
As a first example the evolution of phenotypes that is robust to environmental fluctuations 
is presented. However to emphasis the principle of robust phenotypes an example with no 
evolved robustness is also presented together with a setup targeting evolved robustness. In 
these examples the environmental regulation, i.e. cell state information, is set to don't care in 
the developmental model. That is, evolutionary robustness, as illustrated previously in 
Figure 3(b). 
The functional requirement in the two examples is the counter behaviour described. In 
Figure 6 the setup for showing the influence of a fluctuating environment is presented. A 
setup that is not exposed to environmental fluctuation during evolution is shown in Figure 
6(a). In this experiment a single environment is used throughout evolutionary time 
(phylogeny axis). All organisms develop in this common environment (ontogeny axis). The 
evolved result is genomes that are specialized to cope by producing a functional phenotype 
in this environment. The setup in Figure 6(b) is changed to targeting genomes that can 
develop to functional phenotypes in a set of different environments. Here each genome is 
developed in ten different random generated environments. As such, the EvoDevo system 
targets organisms that can cope with different environments. The difference in fitness 
evaluation is that the system in Figure 6(a) only bases its evaluation on the functionality in a 
single environment while the setup in Figure 6(b) gets its fitness measurement by the 
average functionality in a set of ten different environments. 
 

 

Fig. 6. Evolution and developmental setup including environment for the different 
experimental examples presented. 

To actually test and expose the difference between the two approaches shown, the genomes 

evolved was exposed and re-developed in ten new random generated environments. The 

result of this exposure is shown in Figure 7. In the figure the fitness obtained from the 

evolutionary process is given by the black bar termed 0 on the X-axis. The resulting fitness 

value is given by the Y-axis in the plot. The measured fitness value for the re-evaluated and 
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Fig. 7. Result of evolutionary robustness to fluctuating environments. 

re-developed organisms in the ten new random generated environments is given by the 
grey bars, numbered 1 to 10. The plot in Figure 7(a) show how the evolved genome was 
tuned to obtain a high fitness score in the presence of a known environment. However when 
exposed to other environments the organism totally fails to achieve its goal functionality. 
This is caused by the strong evolved adaptation to the environment present during 
evolution. The strong evolved dependency on a single environment to achieve functionality 
is decreased if the result from the EvoDevo setup in Figure 6(b) is re-developed and re-
evaluated. In Figure 7(b) the result of a similar re-development and re-evaluation to ten new 
random environments is shown. The result show how the same genome can develop and 
achieve the targeted functionality despite environmental fluctuations. However, the result 
show that some environments, i.e. 3, 6 and 8, do not provide an environment that the 
evolved genome can develop within whilst retaining functionality. 

5.2 Plasticity 
In this example the main goal is to demonstrate plasticity. Plasticity can be seen as the 
property of phenotypic plasticity in biological organisms. To achieve such plasticity the 
evolutionary algorithm is set up to target genotypes that can develop to different structural 
organism in two different environments, whilst the functional requirement of counting is 
maintained. To enable environmental influence, hence phenotypic plasticity, inclusion of a 
possibility to exploit cell state information in the genotype is put under evolutionary 
control. This move can be seen as moving from the EvoDevo system in Figure 3(b) to the 
system presented in Figure 3(c). 
Figure 8 illustrates the setup for an EvoDevo system that can show the present of 
phenotypic plasticity in artificial organisms. The EvoDevo system used to evolve organisms 
with the preferred functionality is shown in Figure 8(a). The evolutionary algorithm 
presents candidate solutions to the developmental mapping process. Each genome is 
developed in two different environments, A and B shown in Figure 8(b) and 8(c), the initial 
cell (zygote) is set to be a cell of type 5 (NAND)The initial zygote is shown in Figure 8(d). 
This example implies that each genome is developed and evaluated twice in two different 
environments. As such, the difference in environmental information can be exploited to 
develop different structural organism by influencing on the rule regulation. 
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Fig. 8. Experimental setup for the achievement of demonstrating phenotypic plasticity cued 
by different environments. 

The result of evolving genomes that can exploit information in the environment is presented 
in Figure 9. The difference in structural composition of the phenotypes resulting from the 
two different environment can clearly be seen in Figure 9(a) and 9(d). The environmental 
information has, as stated, in Section 4 influence on the regulation of the rules, hence a 
possibility to control what rules that are expressed and eventually the timing of expressing 
rules. Figure 9(b) and 9(e) show the activation pattern for rules in the given genome. The 
plotted star (*) indicating that that specific rule was expressed at that given developmental 
step. The plotted line indicates the total number of cells in the organism expressing an active 
rule. As such, the cause of the achieved structural difference can be traced to the difference 
in expressing rules over the developmental time. By examining the plots it can be seen that 
there exist common rules expressed at different times, further there are rules that are only 
expressed for one of the two environments. Note also that only parts of the genome are 
actually expressed during development. There exist parts of the genome that is not  
 

 

Fig. 9. Environmental influence exploited to retain functionality. Result of a genome 
developed in the two different environments. 
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expressed but may be genetic information that previously in evolutionary time was 

exploited. It may also be parts of the genome that has never been expressed and as such may 

be neutral information (Shipman et al.; 2000). 

The purpose of the evolved organisms was not actually the structural composition but the 

functional counting behaviour of the developing organism. In Figure 9(c) and 9(f) the 

measured functionality, i.e. counter length, for the two developed organisms is plotted for 

each development step. Here the preservation of functionality despite the different 

environmental conditions can be observed. The two results show how the two different 

structural phenotypes are able to retain a common functional property by phenotypic 

plasticity. 

5.3 Adaptive phenotypes 
Toward organisms that are truly adaptive the EvoDevo example in Figure 7(b) is executed 

within a setting that opens for phenotypic plasticity. That is, the EvoDevo setup of Figure 

3(c) is applied to the evolutionary example of evolving robust phenotypes in Figure 7(b). 

Now the organisms are not only robust to fluctuations in the environment, the organisms 

can adapt their structural composition to the environment present during development. As 

such, there is a possibility for evolution to exploit specific combinations of environmental 

trails to achieve organisms that can develop to phenotypic structures that depends on the 

environment which it develops within whilst retaining the functional goal. 

The result of the approach can be seen in Figure 10. Here a single genome is capable of 

developing to functional phenotypes in all but one of the new random environments it is 

exposed to. If the phenotypic structure is examined, the presented result is obtained by a 

process that develops different phenotypic structures depending on environmental traits. 

However, even here the EvoDevo system does not achieve a result that is equally fit in all 

environments. This is caused by an evolved dependency on specific combinations of 

environmental traits. Such dependency can cause poor performing phenotype structures, 

e.g. by competing counters structures in a single organism cancelling each other out. 

 

 

Fig. 10. Genome evolved in a set of ten random environment exposed to and re-developed 
in ten new random environments. Phenotypic plasticity exploitable. 
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5.4 Discussion 
In this section robustness and adaptation was seen and presented as two different 
properties. However, the view on what robustness and adaptation is and imply, may be 
seen at different levels. If the examples given are viewed at a higher level of abstraction or in 
a more biological relation, the way an ability to obtain a given function in fluctuating 
environments is achieved only serves as two different approaches to reach the purpose of 
the system. Here the purpose is organisms that can produce a counting function despite 
fluctuations in the environment. Even though the two presented systems here serve an 
identical purpose the inclusion of possible phenotypic plasticity by environmental influence 
give two quite different systems. The difference in system attributes is the amount of 
information available to the developmental mapping. 
In Figure 11 the examples of Section 5.1 and 5.3 is presented as trajectories (Tufte; 2009) 
showing the emergence of the phenotypic structures for the two examples. Figure 11(a) 
show the developmental paths, i.e. trajectories, from the ten environments (top) to the final 
stable phenotype structure (bottom). In this representation of the developmental history it is 
clear that this system will always develop to the same final phenotype structure, i.e. the 
structure of the phenotype is not influenced by external information in the environment. 
The trajectory for the system opening for phenotypic plasticity in Figure 11(b) on the other 
hand clearly show influence by external information. The ten initial conditions (in the 
middle) can take different paths to different phenotypic structures. In addition the 
developmental trajectory contain loops at several point indicating that the structure is 
unchanged for more then one developmental step. Such loops are broken if the state 
information, i.e. behaviour, changes to express a change in the phenotype by development. 
 

 

Fig. 11. The developmental trajectories for the emergent phenotype structures in a 
fluctuating environment. The plots are generated by PAJEK (Batagelj & Mrvar; 1991). 
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The highlighted difference between the two examples show the importance on how 
information is actually incorporated in artificial developmental models. Information amount 
and the included mechanisms for intercommunication between cells are the factors leading 
to what forms that can emerge out of a given developmental mapping (Laing; 1972). As 
such, the construction of developmental model should be based on an awareness on what 
information amount and exchange that is required for the process of developmental self-
organising for the sought form, function and bio-inspired properties. 

6. Notes on scalability, complexity and evolvability 

The main topic here is developmental mappings in the context of robustness and adaptation. 
However, artificial development show promising features in other domain of EC. 
The issue of scalability is one of the main topics of interest in introducing mapping 
processes inspired by development. Bentley and Kumar (1999) addressed the scalability by 
investigating the performance of direct encoding versus developmental encodings to 
generate phenotypes of different structural size, e.g. number of cells in the final phenotype. 
Other similar approaches dealing with phenotypic size as the scaling factor have looked into 
the affect on performance of the development process regarding scaling of phenotypic size 
and genome size (Tufte & Thomassen; 2006). Another way of considering scaling is to look 
at the functional property of the developed phenotype (Kitano; 1998). In such approaches 
work have been done on keeping-up functional performance when the size, i.e. number of 
neurons, of the phenotype increases (Gauci & Stanley; 2007). Examples of general solutions 
to scaling in developmental systems have been found. Sekanina and Bidlo (2005) 
demonstrated development of arbitrarily large sorting networks. Harding et al. (2007) 
attacked the problem of finding a general solution that generates sequences of squares 
Spector and Stoffel (1996). However, these examples show scaling within a specific problem, 
i.e. not systems that scales toward more complex problems. The diverse approaches and 
views described on scaling in developmental systems calls for an understanding of what the 
goal of scaling is, what changes to be made to scale, e.g. change in resources, and what 
results of scaling that can be expected for the problem at hand. 
Complexity, or rather being able to evolve and possibly develop complex machines that are 
capable of complex computation, or evolutionary growth of complexity (McMullin; 2001) in 
such systems are areas of much interest. The motivation range from an urge to create 
complex artificial organisms (Eggenberger; 1997; Kitano; 1998) to a more theoretical interest 
(McMullin; 2001; Lehre & Haddow; 2003; Kowaliw; 2008) in the working of mapping 
processes and artificial organisms emerged from such processes. As such, understanding of 
the emergence of complexity in artificial systems is important to be able to exploit artificial 
development toward the creation of evolved large systems capable of complex computation. 
The difference in the way information in the genome is treated in developmental mappings 
compared to direct mapping approaches influence on the evolvability (Kirschner & Gerhart; 
1998) of such systems. The fact that the information in the genome is relativly small and the 
information content in the phenotype is large implies that the genotype space is much 
smaller then the phenotype space. Even though, as shown in Section 5, a genome can be the 
origin of several phenotypes along the development path and that external information can 
be included in the gene regulation, the phenotypic space that a given genome size and 
mapping model can explore is usually given to larger then the genotype space. Further the 
intermediate phenotypes along the developmental path together with the property of 
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having a system with an ever working developmental process influence on how and when 
evaluation is to be carried out, i.e. influence on the fitness landscape. The process of 
regulation, e.g. herein gene regulation, imply neutrality. Parts of the genome is not 
expressed in the phenotype hence there exists more then one genotype describing a given 
phenotype. As such, introducing artificial developmental mappings strongly influence the 
evolvability of the system (Harding & Banzhaf; 2008) by changing the focus of evolution 
from the content of the genotype to an interplay between genome, environment and the 
emerging phenotype (Taylor; 1999). 

7. Conclusion 

Despite the fact that ideas of artificial development have been around for almost half a 
century (von Neumann; 1966; Codd; 1968; Laing & Arbib; 1971) the field is still young, as 
shown by the renewed interest. However as most youngsters it struggle whit what to make 
of itself. There are promising works in areas as robustness and adaptation, as described in 
this chapter. Furthermore the areas of complexity and scalability toward large complex 
systems have shown to be areas where artificial development is a most prominent player. 
Further there is an increased interest often motivated by an urge toward new mediums 
changing today's view on a machine's components, architecture and computation (Miller & 
Downing; 2002). As such new machines may require a drastic reconsideration of how we as 
human designers can design and construct such machines. A change toward design by 
EvoDevo systems seems a promising direction. It is ironic that von Neumann, one of the 
pioneers for computers as we know them today, worked on ideas close to artificial 
development and at the same time showed an interest for machines made up of unreliable 
parts that should be capable of reliable computation (von Neumann; 1956), a scenario of 
high interest toward e.g. nanoscale and biochemical machines. 
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