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1. Introduction     

Many essential functions for life are performed by proteins and the study of their structures 
yields the ability to elucidate these functions in terms of a molecular view. (Creighton, 1992; 
Devlin, 1997) The interest in discovering a methodology for protein structure prediction 
(PSP) is of great interesti on many fields including drug design and carriers, disease 
mechanisms, and the food industry. In this context, several in vitro methods have been 
applied, as X-ray crystallography and nuclear magnetic resonance. Despite their relative 
success, both methods have their limitations. Conversely, the knowledge of the primary 
sequence of the amino acids of a protein can be achieved by a relatively simpler 
experimental measurement. From this information, one can in principle predict the three 
dimensional arrangement of its atoms, which has motivated the investigation of ab initio 
methods combining such initial knowledge with effective models (force fields) in order to 
predict the spatial structure of a protein (Bonneau & Baker, 2001; Hardin et al., 2002). 
 In fact, several computational methods for PSP are semi ab initio methodologies in the sense 
that they also use prior knowledge from both the sequence homology and the statistics 
found on protein databases [see e.g. (Miyazawa & Jernigan, 1985; Poole & Ranganathan, 
2006)]. However, the use of these additional information restrict the search of protein 
structures that could be correctly predicted from the vast universe of proteins. 
 This chapter focuses on the development of a pure ab initio approach for PSP, not using prior 
information. In this context, evolutionary algorithms (EAs) have been investigated as a 
search method due to their flexibility to solve complex optimization problems. Our 
researches on EAs applied to PSP are twofold: 1) the investigation of more appropriate 
modeling of the physical and chemical interactions of a protein for the purpose of an 
optimization algorithm; 2) the development of computationally efficient EAs for PSP. Two 
important modeling issues have been poorly investigated in the literature related to the 
optimization techniques for PSP: a) the combined effects of the effective Hamiltonians based 
on force fields and the solvation free energy contribution (Section 3), and b) the use of O
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multiple criteria to evaluate the predicted molecules since several physical interactions drive 
the folding process (Section 4). We show how both modeling issues can improve  protein 
prediction quality. 
We also present recently developed computational techniques to increase the efficiency of 
the algorithms for PSP. Algorithms using simple lattice models can work in a relatively 
small search space, however, they often generate a large number of unfeasible structures 
(with amino acid collisions). We present in this chapter lattice models that eliminate 
unfeasible solutions (Section 2). To increase the capacity of an EA to overcome local minimal 
of the potential energy, we propose an adaptation of the Self-Organizing Random 
Immigrants Genetic Algorithms for the PSP problem (Section 6). To work with large 
proteins, we explore computational strategies to enhance the efficiency of the calculi of the 
more complex energy functions (Section 5). Another strategy is the use of some heuristic 
about the proteins or its family to create the initial population of the EA, instead of the use 
of random solutions (Section 7). 
Finally, this chapter shows how to combine the results from the set of above described 
researches in order to construct an ab initio PSP approach able to work with large proteins 
independently from prior information of similar structures (Section 8). 

2. Advances using lattice models 

Lattice models are simplified models of proteins which represent a conformation as a set of 
points in a grid. The simplest topologies of lattices are the squared lattice, for two 
dimensions, or the cubic lattice, for three dimensions. These models were originally 
employed in order to reduce the computational calculi (Dill, 1985; Unger & Moult, 1993). In 
this research field, they have been used to quickly evaluate the effect of parameter and 
operator of EAs, and, thus, motivated the development of new techniques in advanced 
models. 
One of the most studied lattice models for protein folding is the hydrophobic-hydrophilic model 
(so-called HP model), where each amino-acid is classified in two classes: hydrophobic or 
non-polar (H), and hydrophilic or polar (P), according to their interaction with water 
molecules. (Chan & Dill, 1993a, 1993b) Moreover, each pair of amino acids in a conformation 
can be classified as connected or neighbors. Two amino acids from positions i and j in a 
sequence are connected if, and only if, j = i + 1 or j = i – 1. Notice that the number of amino 
acids is fixed. On the other hand, two amino acids in positions i and j are neighbors if the 
Euclidean distance between i and j is equal to 1. There are common features and 
assumptions behind such model with the classical Bragg-Willians and Flory-Huggins ones 
(Jönsson, B. et al, 1998). 
The native state of a protein is a low-energy conformation. Thus, each pair of neighbors of H 
type contributes with a contact free energy -1. Then, the number of HH contacts is 
maximized in the native state. Despite the apparent simplicity of the model, finding the 
globally optimal conformation under HP model is an NP-Complete problem (Berger & 
Leighton, 1997), justifying the use of heuristic-based techniques for solving this problem. In 
the following, we present EAs developed for the PSP problem. 
In the HP model, a protein conformation must be represented in a particular lattice; thus, 
each individual of the EA represents a conformation. In general, the fold is expressed as a 
sequence of movements into lattice. The position of the first amino acid is fixed and the other 
positions are specified by n – 1 movements for a sequence of n amino acids. 
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Two major schemes for representing the movements can be found in the literature:  
• The absolute representation (AR) (Unger & Moult, 1993), where each new position is 

defined from the previous position. However, this representation allows movements of 
return, i.e., movements that annul the previous movement generating amino acid 
collision; 

• The relative representation (RR) (Patton et al., 1995), where a movement is generated 
depending on the last movement in a way to avoid amino acid collision.  

Since both representation do not avoid unfeasible solutions (with collisions), a penalty 
function assigns lower fitness values to these solutions during the evaluation stage. 
However, researches on EA representations for complex problems (Rothlauf, 2006) show 
that populations with feasible solutions have very slow convergence, since the unfeasible 
solutions dominated the evolutionary process with the increasing of the problem size. This 
phenomenon has been also verified in the PSP problem (Krasnogor et al., 1999; Cotta, 2003; 
Gabriel & Delbem, 2009).  
In order to solve the problem of unfeasible solutions, Gabriel & Delbem (2009) propose a 
new approach using AR and a conformation matrix (CM). This representation uses a matrix 
to decode AR of conformations. Each position of amino acid from a RR is indexed in a 
position of the matrix CM representing the lattice. If there is already an amino acid in 
position (x,y,z) of CM when decoding amino acid x, a collision is identified, x is replaced for 
an empty position of CM and the corresponding movement in AR is properly updated. 
To guarantee the efficiency of the decoding process, an array stores permutations of a set of 
relative movements (that are encoded using integers numbers) from a grid position. To 
repair the AR due to a collision, movements from the array are probed in CM until finding a 
movement that avoids collision.  If all possibilities in the array have been explored, the 
collisions are not repairable using local movements. Then, the individual (conformation) is 
eliminated, i.e., the building process is is canceled out and a new individual starts to be 
generated. For each collision a new array of permutations is constructed. 
To analyzes the effect of CM on the reduction of unfeasible solutions, we compare the quality 
of initial populations generated using CM with random initial populations produced by 
classical EA based on AR. The usual fitness function  for  
 

Sequences AR AR + CM 

 Best Average Worst Best Average Worst 

27 amino 
acids 0.50 -7.44 -3.40 3.20 0.57 0.00 

64 amino 
acids -7.80 -23.98 -62.80 6.90 2.00 0.00 

Table 1. Comparison of the fitness value of the initial population using AR alone and AR 
with CM.  

HP models adds -1 for each collision in the conformation and +1 for each HH interaction 
(Gabriel & Delbem, 2009). Table 1 compares the average value the usual fitness of initial 
populations generated for 20 sequences (Unger & Moult, 1993; Patton et al., 1995): 10 with 27 
amino acids and 10 with 64 amino acids. The percentage of feasible conformations in the 
initial population generated using AR. On the other hand, all conformations are feasible 
when AR and CM are employed. In some populations, there are conformations very near to 
the global optimum. 
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3. Modeling the solvent effect for protein structure prediction 

An aqueous solution is the environment where almost all important (bio)chemical reactions 
happen. It is central to several chemical, petrochemical, pharmaceutical and food 
engineering processes too (Eisenberg & Kauzmann, 1969; Ben-Naim, 1994; Devlin, 1997; 
Loehe & Donohue, 1997; Degrève & da Silva, 1999; Guillot, 2002; Dill et al, 2005; Levy & 
Onuchic, 2006). Proteins are just a type of solute found in this medium whose behavior is 
strongly affected by liquid water due to its intrinsic properties as a hydrogen-bonding 
solvent (Skaf & da Silva, 1994; Dill et al, 2005; Levy & Onuchic, 2006). In physiological 
conditions, the picture is far more complicated, principally because the presence of 
electrolytes (Na+,K+,Cl-, etc.) (Jönsson, Lund & da Silva, 2007). 
Water is well known to be a decisive factor on the protein conformational stability and 
determinative in processes such as the “protein folding" via the complex interplay especially 
of the solvent-protein and solvent-solvent interactions (Creighton, 1992; Eisenhaber & 
Argos, 1996; Devlin, 1997; Dill et al, 2005; Levy & Onuchic, 2006; Chaplin, 2008). In a classic 
view, these intermolecular interactions are given by electronic repulsion (whose origin is the 
Pauli exclusion principle), multipole-multipole interactions (often used as electrostatic 
interactions), induction (multipole-induced multipole interaction) and instantaneous 
induced multipole-induced multipole interactions (the London dispersion forces) 
(Israelachvili, 1991; Evans & Wennerström, 1994). The induction and dispersion interactions 
are known as the van der Walls interactions. In addition to these enthalpic contributions, 
due to the thermal effect, entropy has an important participation in these processes. 
Combined with the high affinity that water has for water, the final result is the so-called 
“hydrophobic effect”, (Creighton, 1992; Garde et al., 1996; Jönsson et al, 1998; Levy & 
Onuchic, 2006; Chaplin, 2008) which is a key driven force for the protein folding.  
In a molecular modeling approach, the initial challenge is to identify the main characteristics 
of the real physical system (in this case, a protein in solution), and to define how the 
intermolecular interactions and effects above mentioned may be replaced by suitable 
averages. This results in a mathematical expression that describes the potential energy of the 
system as a function of the separation distance between the species and is called an effective 
Hamiltonian model (EHM), (Friedman, 1977, 1981; da Silva, 1999) or, more commonly, the 
force field (FF) definition (Levitt, 1995; Ponder & Case, 2003; Mackerell Jr, 2004; Oostenbrink 
et al, 2004; Guvench & Mackerell Jr, 2008; Stone, 2008). We refer to this model as “effective”, 
because it is not identical to the reality, but it is supposed to behave as the reality. Besides an 
atomist description, a vast diversity of coarse-grained models has also been reported 
(Tozzini, 2005; Monticelli et al, 2008).  
Depending on the applications and questions to be answered, water may be modeled by 
different ways, from explicit (or molecular) to continuum (or implicit) solvent models 
(Friedman, 1981; Jorgensen et al, 1983; da Silva, Jönsson & Penfold, 2001; Guillot, 2002; Chen 
et al., 2008) (see Fig. 1). The main difference is the variables that explicitly enter the EHM and 
the computational costs. In the explicit models, the input variables are the coordinates and 
momenta of the solvent (i.e., a molecular model should be used), while the solvent only 
enters by an averaging over of its coordinates and momenta in the implicit models (i.e., 
water is replaced by its bulk static dielectric constant, εs). The latter model has a substantial 
reduction on cpu time with the price of loosing details that might be relevant for some cases. 
In this model level, the solvent in the immediate neighborhood of any solute is assumed to 
behave as the bulk solvent. It is an idealization widely used in Molecular Biology (Garcia-
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Moreno, 1985; Bashford & Gerwert, 1992; da Silva et al., 2001; Chen et al., 2008) that captures 
part of the water properties, neglecting its molecular structure that is responsible principally 
for local, short-range, interactions and might be crucial in some cases (e.g. to study the 
hydration phenomenon). 
 

 
(a)                                                  (b) 

Fig. 1. A representation of a solute in two different water models: (a) A solute in a structure-
less continuum model (implicit solvent model). Water only enters in the calculations by 
means of its bulk dielectric permittivity ε; (b) A solute molecule is surrounded by an explicit 
solvent model. 

A large number of molecular models for water with different number of interaction sites 
based either on empirical or quantum mechanical methods have been developed during the 
last forty years, including rigid [e.g., SPC/E (Berendsen et al., 1987), TIP4P (Jorgensen et al, 
1983), flexible [e.g., SPCFX (Teleman, O. et al., (1987)], dissociable [e.g., DCF (Halley et al., 
1993)] and polarizable [e.g., SWM4-DP (Lamoureux et al., 2003), TIP4P/FQ ( Rick, Stuart & 
Berne, 1994)  models. Most water models assume site-site pair interactions in order to 
facilitate their application in numerical simulations. A common characteristic of them is to 
define a water molecule by a set of point sites. Fractions of electric charges are attributed to 
these sites and used to calculate the electrostatic pair potential energy (Eele) according to 
Coulomb's law. The van der Waals forces are normally modeled by a particular case of 
Mie´s interaction potential known as Lennard-Jones (ELJ) pair interaction potential (Verlet, 
1967; Orea et al., 2008).  The combination of these two terms (Eele+ELJ ) is applied to the 
system constituents and gives the total interaction energy. Often a given model shows good 
behavior for a few properties and fails to describe others. Several reviews and comparisons 
between such models are available on the literature (van der Spoel et al., 1998; Wallqvist e 
Mountain, 1999; Guillot, 2002). 
A compromise between the model details and the simulation costs is always a challenge 
task. To describe the hydrophobic effect, retaining the main characteristics of a real physical 
system (solute-solvent) and simulate it using reasonable cpu time, we need to find an 
adequate way to replace the exact calculation of the intermolecular interactions and effects 
by suitable averages, where the use of implicit solvent models is surely appealing. There are 
two basic models of implicit solvent normally used for this purpose: continuum electrostatic 
models and approaches based on solvent accessible surface (SAS) Variations of these models 
and combinations of them have also been proposed. (Garcia-Moreno, 1985; Bashford & 
Gerwert, 1992; Street & Mayo, 1998; da Silva et al., 2001; Snow et al, 2005, Chen et al., 2008). 
Biomolecular systems are surrounded by solvent particles (water molecules, cations, and 
anions). In this environment, ions electrically interact with the molecule, which can have an 
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electric charge due to ionization mechanisms. (Jönsson et al., 2007) pH affects can be taken 
into account and give peculiar interactions. (da Silva et al, 2006; da Silva & Jönsson, 2009) 
The Poisson-Boltzmann equation (PBE) describes the electrostatic environment of a solute in 
solvent containing ions on a mean-field level of treatment. (Warwicker & Watson, 1982; da 
Silva, Jönsson & Penfold, 2001; Neves-Petersen & Petersen, 2003; Grochowski & Trylska, 
2007; de Carvalho, Fenley e da Silva, 2008). It can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ). 4π exp exp
+

B B

qΦ r +qΦ r
ε r Φ r = ρ r + qn – v r – qn – v r

K T K T
−

⎡ ⎤⎡− ⎤ ⎡ ⎤
∇ ⎡ ∇ ⎤ − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (6.1) 

where the right term of the equation is the contribution of the fixed charges in the 
biomolecule, the other terms are the contribution of mobile positive and negative ions 
(treated here as point charges whose distribution around the central charged molecule obeys 
a Boltzmann distribution), ε(r) is a position-dependent dielectric, Φ(r) is the electrostatic 
potential, ρ(r) is the charge density of the solute, q is the charge of an ion, n+ and n- are 
densities of ion i at an infinite distance from the solute (bulk), KB is the Boltzmann constant, 
v(r) is 0 for accessible regions and infinite for unaccessible regions, and T is the temperature.  
Analytical solutions of the PBE are possible only on ideal cases. One of these special 
situations is the infinite charged planar surface case. This example is given in details in refs. 
(Russel et al., 1989; Lyklema, 1991) and is usually described as the Gouy-Chapman case. 
(Usui, 1984) For biomolecular applications, numerical methods are necessary, and a number 
of different schemes have been proposed. (Lu et al, 2008) Nevertheless, despite the chosen 
numerical method, the PBE requires large memory resources and cpu time to be calculated 
without further approximations (e.g. to linearized it). (da Silva et al., 2001; de Carvalho et 
al., 2008) Although there are a large number of computational packages available (e.g. Melc, 
(Juffer, 1992) Delphi, (Sharp et al., 1998) APBS, (Holst et al., 2000) and MEAD (Bashford & 
Gerwert, 1992), the computational costs can still be a limitation and prohibitive when 
dealing with large molecules as proteins in applications that would require the systematic 
repetition of the same calculation for different macromolecular conformations. Critical 
investigations of the PBE are available elsewhere. (da Silva et al., 2001; de Carvalho et al., 
2008) 
The methods based on SAS arise experimentally by the linear relation between free energy 
and the surface area of a solute molecule (Hermann, 1972; Valvani et al., 1976; Amidon et al., 
1975; Camilleri et al., 1988; Doucette e Andren, 1987; Dunn III et al., 1987; Snow et al, 2005). 
In this way, this method can directly provide the free energy of solvation. The continuum 
representation of solvent significantly reduces the cpu time. The SAS is the locus of points 
traced out by the inward facing part of the probe sphere, representing the solvent molecule 
that rotates over the van der Waals surface of the protein (see Fig. 2). 
It is important to note that SAS solvent models also have limitations mainly related to: 
• Viscosity: SAS and other implicit solvent models lack the viscosity, which affects the 

motion of solutes; 
• Hydrogen-bonds with water: the directionality of the hydrogen bonds is missing in an 

implicit solvent. Moreover, bulk and buried water molecules are assumed to have the 
same behavior; 

• Choice of model solvent: different atomic solvation parameters should be applied for 
modeling of the protein folding problem. These parameters should be derived from 
experimental coefficients involving organic molecules. 
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Nowadays, there are computational tools that calculate SAS and the free energy of solvation 
such as: GROMACS (Lindahl et al., 2001), POPS (Cavallo, 2003), Naccess (Hubbard e 
Thornton, 1993), STRIDE (Frishman e Argos, 1995), among others. In the following, we 
present preliminary results using SAS software based on the package STRIDE.  
 

 
Fig. 2. A representation of van der Waals surface area and solvent accessible area surfaces 
(Richards, 1977). 

The EA implementation for PSP, called ProtPred (Lima, 2007), was used to perform 
experiments to evaluate the effects of SAS and internal energies on the PSP. The potential 
energy functions are based on the CHARMm force fields of and solved by the Tinker 
package for molecular modeling (Ponder, 2001). The ProtPred uses the full-atom model (Cui 
et al, 1998; Cutello et al, 2005), representing the backbone and side-chain torsion angles 
(internal coordinates). The individuals (conformations) of the initial population are 
randomly generated with the angles in the constraint regions of each amino acid according 
to the Ramachandran map. The ProtPred code was run with 200 iterations and populations 
with 200 individuals were generated, using three recombination operators: i) two-point 
crossover, ii) uniform crossover, and iii) BLX-α (Deb et al., 2002). The algorithm uses three 
mutation operators: one changes all torsion angles of an amino acid by reselecting the values 
from the constraint regions; the others perform uniform mutation, but they differ from the 
use distinct step sizes. 
The ProtPred minimizes a weighted objective function composed by energy functions. Fig. 
3(a) shows the native protein structure of an acetylcholine receptor, obtained from PDB 
database (PDB id 1A11). Fig. 3(b) presents the structure obtained by ProtPred with the 
following weights for the objective function: 1.0 for wan der Waals, 0.5 for electrostatic, and 
zero for SAS. Fig. 3(c) shows the protein structure obtained changing the weights for SAS 
from zero to 0.001, indicating that SAS is relevant for PSP. 
 

                   
 (a)                                      (b)                                        (c) 

 

Fig. 3. Configurations of 1A11 protein.  
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Even though this protein is relatively small (25 aminoacids), the results encourage further 
works with this approach for modeling of the potential energy as a new criterion for 
evaluation in EAs to the PSP, considering not only the SAS, but also the internal energy. 

4. Multiple criteria to evaluate predicted molecules 

The PSP problem can be seen as a multi-objective problem, since it deals with several criteria 
involving energy functions estimating different aspects of intermolecular interactions (van 
der Waals, electrostatic, hydrogen-bond) and solvation free energies. A multi-criteria 
problem in general possesses the following characteristics:  
• The determination of weights for an weighted function combining all the criteria is 

difficult; 
• The criteria conflicts, i.e. the improvement of one objective in general involves the 

damage for other objective.  
A protein structure with very low electrostatic energy may correspond to relatively high van 
der Waals energy. This kind of structure is in general inconsistent with the conformation of 
a real protein. Problems with conflicting objectives generally do not have a unique solution, 
but a solution set, called Pareto-optimal (Handl et al., 2006). This decade has produced 
relevant Multi-objective EAs, as the NSGA-II, which has been used to solve complex multi-
objective problems. Unfortunately, even the NSGA-II losses performance for more than 3 
objectives. For a large number of objectives, alternative solutions ought to be developed as 
the use of heuristics (Deb et al., 2006).   
A first multiple criteria approach to PSP, called mo-ProtPred, was proposed in (Lima, 2006). 
This approach is based on NSGA-II (Deb, 2001), one of the main Multi-objective EA. The 
mo-ProtPred can work with three objectives without requiring weights for them.  
The mo-ProtPred was applied to predict a transducin alpha-1 subunit (PDB id 1AQG). For 
this test, 500 generations with a population size equals to 400 were used. The objectives were 
functions corresponding to van de Waals, electrostatic, and hydrogen bond interaction 
energies. Fig. 4 illustrates polypeptides structures produced by the mo-ProtPred. Several of 
these structures are very similar to the native protein structure, displayed in Fig. 4(a). Table 
2 shows the RMS values for each structure obtained.  
Adequate structures for 1AQG were also achieved using a weighted function for the three 
objectives. Nevertheless, 27 different triples of weights were tested, 3 values (1.0, 0.5, 0.0) for 
each weight, and the ProtPred was executed for each triple. Thus, the ProtPred required 
much more running time than mo-ProtPred to achieve similar results. 
  

 Conformations 

 a b c d e f g h i j k l 

RMS 0.00 3.83 4.09 3.83 3.77 4.09 4.06 3.93 3.77 4.01 4.14 3.83 

Table 2. Results with 1AQG using mo-ProtPred. 

5. Computation of van der Waals and electrostatic functions 

The van der Waals potential energy models the induced and dispersion attraction among 
pairs of atoms and the electronic repulsion. It has as parameters the separation distance 
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Fig. 4. Protein conformations of 1AQG obtained by mo-ProtPred. 

between the atoms and van der Waals radii. At large distances, there is no attraction 
between pairs of atoms. However, when electron clouds of the atoms are close enough to 
overlap, there is a strong repulsion and its value exponentially grows. The energy is smaller 
when a balance point exists between the attractive and repulsive forces; this is known as van 
der Waals contact (Berg et al., 2002; Nelson, 2004). The Lennard-Jones 12-6 potential is 
frequently used to represent this interaction, because it models appropriately the attractive 
and repulsive forces and, from a numerical point of view, it can be efficiently implemented. 
Together with the electrostatic interactions, van der Waals has considerable influence on the 
molecular structure. Studies have shown that the van der Waals forces contribute up to 65% 
of the total free energy of a protein (Becker, 2001). 
In the evaluation of an individual to be used in an EA applied to PSP, there are several 
functions that contribute to the calculation of the minimum free energy of the protein. 
However, the computation of the van der Waals and electrostatic energies have time 
complexity O(n2), where n is the number of atoms. The interaction energy Eij is calculated 
for each atom pairs (i,j). The interactions in the molecule can be represented by a matrix E. 
Since Eij = Eji, E is an upper triangular matrix.  
The computation time for both interaction energies corresponds to about 99% of the total EA 
execution time (Jain et al., 2009). It is therefore interesting to elaborate efficient algorithms 
and to use parallel processing wherever possible to reducing the total execution time. 
There are classical methods for the parallelization of computations with upper triangular 
matrices. An obvious strategy is to distribute each row of the upper triangular matrix as a 
task for the processes. Therefore, using n processors, each one executing a task in parallel, 
the energy can be calculated in time O(n), because the largest task would have n inter-atomic 
interactions to determine. On the other hand, some processors would have just some inter-
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atomic interactions to compute, generating a non-uniform load balancing among processors. 
This can be reduced by combining the first row with the last row, the second row with the 
last but one row, and so on. This process produces n/2 tasks of size n (see Fig. 5).  
The new individuals created by reproduction operators of EA have atoms with different 
coordinates from the parents. At each new generation, those coordinates must be sent to 
processors that calculate the electrostatics and van der Waals energies. The parallelization of 
these computations produces good results for large proteins, but not for small ones, as can 
be seen in Fig. 6. This figure shows the speedup achieved with the use of a given number of 
processors. The speedup is defined as the sequential execution time divided by the parallel 
execution time, and is equal to the number of processors in an ideal case (shown as a 
straight line in this figure).  For a smaller protein, the computation time is on the order of the 
communication time for sending the coordinates to the processors, limiting the achieved 
speedup. For larger proteins, the computation time grows faster than the communication 
one, and the speedups are better. This is typical for parallel programs, which have overhead 
 

 
Fig. 5. (a) Upper triangular matrix of interaction. (b) Cut accomplished in the half of the 
matrix and the indication of the rotation of 180° of the second half. (c) Alignment of the 
second half to satisfy the dense matrix criterion. (d) New dense matrix of interactions with 
n/2 tasks of the same size. 
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Fig. 6. The speedup reached by 5 different sizes of proteins to calculate van der Waals 
energy using 20 Athlon64-X2 processors. 
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costs that are independent of problem size (Quinn, 1994), and therefore work better for large 
instances. This phenomenon is also related to the Amdahl effect (Goodman & Hedetniemi, 1997). 
Since evaluations of different individuals are independent, rows of two or more dense 
matrices of interactions (Fig. 5) can be composed in larger tasks. This strategy can be 
especially adequate for the processing in GPUs (Graphic Processing Units) (Owens et al., 
2008; Stone et al., 2007). The last generation of GPUs is capable of processing more than 
3,500 matrices of 512x512 per second. This situation makes possible to compute energies of 
large molecules (hundreds of thousands of atoms) for several different configurations 
(individuals). 
The computation time can also be improved using characteristics of the crossover operator 
used for the construction of new solutions. Since this operator preserves part of the 
information of each parent, the matrix of interactions of an offspring from crossover can be 
partly copied from that of its parents, as the energies depend only on the distances between 
the atoms, and those are preserved for pair of atoms that come from the same parent. Fig. 7 
illustrates the areas of the upper triangular matrices that can be directly copied from the 
parents. The efficiency of this technique depends on the position of the crossover cut point. 
The worst case happens when the point is in the middle of the chromosome (see Fig. 8(a)). 
 

 
Fig. 7. Calculated values Eij of inter-atomic interactions for the parents are copied to the 
offspring. Only the pink area needs to be recalculated. 

  
(a)                                                            (b) 

Fig. 8. (a) Percentage of the required running time when Eij's are copied from parent. (b) 
Required memory to save matrix E of an new individual. 
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Because both interaction types discussed here decay with the distance, to reduce the amount 
of computations it is usually defined a cutoff radius of 8Å for van der Waals and 13Å for 
electrostatic energies (Cui et al., 1998), and the computation of these energies for larger 
distances is avoided. 
Taking this into account, we see that the matrix of interactions is in fact a sparse matrix.  
This helps to overcome a possible limitation for the computation of large proteins, as the 
interaction matrix would otherwise grow with O(n2).  The data structure used is therefore 
important. Fig. 8(b) shows that the memory required for saving the whole matrix E increases 
quadratically with the size of the molecule, while using sparse matrix data structure the size 
increases more slowly. 
Another optimization enabled by the use of a cutoff on the calculation of van der Waals and 
electrostatic energies makes possible to significantly reduce the amount of calculi for large 
proteins. One technique is the so called “Cell Lists” (Allen & Tildesley, 1987), which splits 
the space into cubic cells, as Fig. 9 illustrates (for the 2D case). Each cell has edge size equals 
to or larger than the cutoff radius. Thus, atoms in a cell interact only with other atoms in the 
same cell or in one of the neighbouring cells. This technique reduces the computation 
complexity from O(n2) to O(n+m), where m is the number of cells with atoms, because a 
larger number of atoms in a protein is related with increased size, and therefore increased 
number of cells, instead of increased number of atoms per cell. 
Fig. 10(a) shows the running cpu time required by the computation of the interactions 
without and with the cell-list approach. These result can also be improved by using an off-
line procedure that previously compute the interaction energy between each possible pair of 
types of atoms (C, O, H, N, and S) for inter-atomic distances in a specified range (from a 
minimal distance to the maximal distance given by the cutoff radius) (Lodish et. at., 2003), 
see Fig. 10(b). 
A performance enhancement for the computation of the potential energy has also been 
achieved using parallel solutions base on hardware like FPGAs (Field Programming Gate 
Arrays) (Wolf, 2004). The development of a specific solution in hardware is in general a hard 
task. One of the first researches using FPGAs for protein potential energy calculi did not 
reach a PC performance for the same problem. (Azizi et. al., 2004) In fact, this hardware 
solution was four time slower than the PC-base approach. Recent researches have achieved 
 

 
Fig. 9. 2D Cells, where the neighbour cells of the green cell are in yellow and the atoms are 
represented as grey balls. 
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(a)                                                          (b) 

Fig. 10. Running cpu time necessary to calculate van der Waals potential: (a) Enhancement 
produced by the cell-list approach. (b) Improvement of performance combining cell-list and 
off-line calculi of Eij. 

better performances by using faster memory bus and higher clock (Kindratenko & Pointer, 
2006; Jain et. al., 2009). For example, Gu (2008) using a Virtex-5 (Xilinx, 2009) reached a 
speedup of 16.8. 
 The off-line calculi of inter-atomic energies (Eij 's) is another aspect that can be explored in 
FPGA solutions. The values Eij can be stored in lookup tables avoiding calculi with floating-
point, which in general require large number of logic gates from FPGAs. Then, the available 
gates can be used to implement several lookup tables in parallel. The sum of the Eij 's can 
also be implemented in a parallel way. The implementation of lookup tables and the parallel 
sum are relatively simple, motivating more investigation of the use of FPGAs for PSP. 

6. Simplified self-organizing random immigrants genetic algorithms 

A common issue related to evolutionary computation and PSP is the premature convergence 
of the population towards local optimal solutions. The PSP problem has extremely complex 
search space complicating the determination of the global optima. In this case, a fast 
convergence is not a desired feature, at least on the former generations. In this sense, this 
section presents a strategy to insert population diversity in an organized way in Genetic 
Algorithms (GAs) with Random Immigrants (RIs), increasing the replacement rate 
whenever the population is becoming uniform. 
The use of RIs introduces variation in the population [Grefenstette, 1992]. Thus, a GA with 
RIs can be more efficient in reaching better results than the conventional GA for the PSP 
problem [Tragante do O & Tinos, 2009]. However, the amount of RIs to be inserted at every 
generation has an important role in the GA evolution. The insertion of few RIs may not 
produce sufficient diversity in the population. On the other side, if a large number of 
individuals is replaced, the number of individuals of the population that explore the current 
best solutions may decrease, which can result in a smaller convergence rate. 
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In this way, a dynamic replacement rate, i.e. the algorithm decides the number of RIs for 
each population, can be useful to control the population diversity of the GA for the PSP 
problem. This is the objective of the Simplified Self-Organizing Random Immigrants 
(SSORIGA), which is based on the algorithm SORIGA presented in [Tinos & Yang, 2007] for 
dynamic optimization problems. In the original SORIGA, the worst individual and its 
neighbours are replaced by randomly-generated individuals and kept in a subpopulation in 
order to avoid the competition of RIs with other individuals to compose the new 
population, since the fitness of an individual from the subpopulation is probably worse than 
the ones from the remaining of the population. 
Instead of creating a subpopulation, the SSORIGA inserts RIs automatically in the following 
generation as part of the normal population. Before generating the individuals for the next 
generation, the individual from the current population with the worst fitness is determined. 
If this individual is a RI just inserted, then the amount of RIs for the next generation is 
increased by 2. Otherwise, the number of RIs is restarted to 2. If the number of RIs reaches 
70%, it is reset to 2. Fig. 11 presents the pseudocode of SSORIGA. 
 

 

Fig. 11. Pseudocode of SSORIGA. 

The SSORIGA was adapted for the PSP as follows. All the Dihedral angles Ǘ, Ǚ and ǘi (i the 
number of angles of the side chain) obtained from the protein structures found on the PDB 
database compose a set T of triples (Ǘ, Ǚ, ǘi). Then, T is sorted according to Ǘ generating a 
sequence ST of triples. The representation of an individual (conformation of a protein of size 
n) is a sequence of n amino acids and pointers to (indices for) triples from T.  
The mutation operator of SSORIGA only changes a pointer a little bit, automatically 
choosing a new triple in the neighbourhood of the pointer in ST. The crossover operator is 
the usual with the one-point crossing-over. The selection operator is tournament selection, 
with 75% chance of the best individual being chosen to be one of the parents of the crossover. 

procedure generation () 

begin 

  worst=find_worst_individual(population)  

  if (lower_bound<index(worst)<upper_bound) 

    totalrandom=totralrandom+2 

                 if (totalrandom>=0.7*population) 

                   totalrandom=2 

                 end_if 

              else 

                 totalrandom=2 

               end_if 

               while (total_immigrants < totalrandom)  

      son=new_individual() 

      new_population.add(son) 

                   total_immigrants++ 

               end_while 

  for(counter=percent;counter<pop_size;counter+2) 

    father1 = tournament()      //selection of father 1 

    father2 = tournament()      //selection of father 2 

    son=father1.crossover(father2) //crossover 

    son[0].mutation(mutation_rate) 

    son[1].mutation(mutation_rate)  

  end_for  

 end. 
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The protein sequences Crambin (PDB code 1CRN), Met-Enkephalin (PDB code 1PLW) and 
DNA-Ligand (PDB code 1ENH) were used to evaluate the SSORIGA for the the PSP problem. 
The results indicated that SSORIGA was statistically better than the conventional GA 
approach and than RIGA with a fixed replacement rate of 6% or 10% depending on the 
protein. For other values of the replacement rate, SSORIGA was better than RIGA, 
indicating that SSORIGA was capable of finding the best replacement rate for RIs. It is 
important to note that:  
• The mean number of replaced individuals in SSORIGA was between 3% and 5%; 
• The small replacement rates occur in the first generations and the larger replacement 

rates take place periodically when the diversity is reduced. 
In terms of potential energy values, the SSORIGA was able to reach much lower values than 
the standard GA. Comparing results with statistical tests, such as Student’s T test, there is a 
probability of under 1.7% for all proteins of sampling error, considering as a final result the 
lowest energy value after the same number of evaluations of individuals for all algorithms. 
In conclusion, the algorithm was suitable for reaching lower energy values than the 
standard GA. It can be applied to other domains, since the idea may be useful in other 
problems that require slight or heavy increase of diversity along time, such as Dynamic 
Optimization Problems. 

7. Heuristics about protein to create the initial population 

Although the number of sequenced proteins and their 3D structure determined 
experimentally grow systematically, the number of folds seems to be practically stabilized, 
since the year 2007, as shown by structural and topological classification of proteins 
databases, like SCOP and CATH. This scenario suggests that advances on computational 
methods, combined with the traditional techniques for theoretical prediction protein 
structure (Comparative modeling, Threading and ab initio), may improve substantially our 
capability for predicting protein structures. Algorithms that combine biological information 
from several databases with physical insights have proved to be a promising approach 
(Zhang, 2008). Each technique lonely has its specific strategies, advantages and limitations, 
as discussed in (Echenique, 2007) and illustrated in Table 3. Automated protein structure 
prediction is necessary because the protein folding process is not yet fully understood and 
experimental method (crystallographic and NMR) are relatively slow and financially 
expensive. 
Echenique (2007) shows a schematic classification of methods for protein structure 
prediction, and discuss about experimental data and physical principles, emphasizing the 
need for more computer power and more accurate models. He concludes that, at the present 
stage, as more and more structural information is available, easier becomes the task for 
structural prediction. Indeed, in the last years we have seen increasing number and 
sophistication of biological databases: PDB, NCBI, Entrez, Dali Server (Holm et. al., 2008), 
SCOP, CATH, among others. These databases deal with experimental structural data 
reporting them directly (e.g. PDB), or presenting processed data information, such as in 
CATH. 
The EA has been used for protein structure prediction as other sections discussed. The its 
population initialization is crucial for EA performance (Rahnamayan et al., 2007).  Therefore, 
once considered that physical properties about protein folding, as proposed by Anfinsen 
(1973), in general lines, suggest that at physiological conditions the protein primary 
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Technique Specific strategy 

Comparative Modeling 
Based on observation which proteins with 
similar sequences frequently share similar 
structure (Chotia & Lesk, 1986). 

Threading 

Try to identify similarities between 3D 
structure that aren't join by any significant 
sequence similarity. In other words, 
proteins often adopt similar folds despite 
no significant similarity sequence. Thus, 
can be to exist a limited number of protein 
folds in nature (Orengo et al., 2004). 

Ab initio 

Predict the protein native conformation 
from only its sequence aminoacids (Bourne 
& Weissig, 2003). No more information is 
needed. 

Table 3. Technique of 3D structure prediction and their specific strategy. 

sequence has all necessary information for its folding, Comparative Modeling (Table 3) may 
be used as a good method for generating the population initialization (Bourne & Weissig, 
2003) because, beyond of being the easiest method for application, it is based in the 
following arguments: 
• The protein structure is unique determined by its amino acid sequence (Anfinsen, 1973). 

Therefore, knowing the sequence it could, in principle, to obtain the corresponding 
native structure;  

• Along the evolution process, proteins structures became resistant to changes. Therefore, 
similar sequences should correspond also to similar structures. 

Furthermore considering the three prediction models, Comparative Modeling, has more 
information and accurate models than that its time computing required is lower (Echenique, 
2007).   
The next section will describe in more details Comparative Modeling. It is so clear that 
Comparative Modeling is good way for initial population for EA which will predict the 3D 
structure unknown. However, the difference between this initialization and the traditional 
approaches to Comparative Modeling is the latter choose only one and it is the solution. On 
the other hand, this section proposes that applying Comparative Modeling for to chose good 
individuals for the population instead of your random starting. The results intended are 
reducing the search space, number of individuals and generation.  
Comparative Modeling 
Greer (1981) argues that the central point to the traditional approach to Comparative 
Modeling is the insertion and deletion issue, which is generally treated by identifying 
Structurally Conserved Regions and doing local changes on the Structurally Variable Regions. 
This procedure may be split into eight steps (Orengo et al., 2004), namely,  
• Identify one or more homologous sequences which have their structures known. These 

structures will be used as templates or parents; 
• Align the target sequence to be modeled with the parents obtained in step 1; 
• Determine the boundaries of the framework or Structurally Conserved Regions and the 

Structurally Variable Regions. Normally, Structurally Conserved Regions are loops; 
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• Inherit the Structurally Conserved Regions from the parents; 
• Build the Structurally Variable Regions; 
• Built the side-chains; 
• Refine the model; and 
• Evaluate errors in the model; 
which are considered in more details as follows:  
Step 1. The target sequence is searched through PDB database employing specific 

algorithms, such as Fasta and Blast to identify homologous1 structures. Eventually, 
distant homologous can be identifying by PSI-Blast 

Step 2. When the sequence identity is high (> 70%) the alignment is trivial. Moreover, 
when the identity is lower and the number of insertions and deletions is higher, it is 
very difficult to obtain a correct alignment which is fundamental for a good model 
(Orengo et al., 2004). Proteins of two (pair-wise) or more (multiple) sequence 
alignment may be directly compared, and this procedure is called Sequence 
Alignment. For pair-wise there are two types, global and local. The global 
alignment tries to align the entire sequences, using all their sequence characters. On 
other hands, local alignment tries to align sequence stretches and thus is created 
sub-alignments. Therefore, global alignments are used when sequences have quite 
similar and approximately the same length. Local alignments are employed when 
similar sequences have different lengths or share a conservation region or domain 
(Mount, 2004). Spaces may need to be inserted and there are called GAP (Pal et al., 
2006).  It is understood as multiple sequence alignment, that alignment of three or 
more sequences where each sequence columns represents the evolutionary changes 
in one sequence position (Mount, 2004).  Simulated Annealing (Aart & Laarhoven, 
1987) and Gibbs sampling (Lawrence et al., 1993), and particularly EA, have been 
used for multiple sequence alignment (Notredame & Higgins, 1996; Yokoyama et 
al. 2001; O'Sullivan et al., 2004). The difference about these EAs is their mutation 
operators (Pal et al., 2006)).  

Step 3. Structurally Conserved Regions have all the same lengths are called core. The other 
regions, which differ structurally among parent sequences, are the Structurally 
Variable Regions (Orengo et al., 2004).  

Step 4. This step can be divided into two situation: 
• Single Parent – Structurally Conserved Regions are just copied from this parent and 

used as the model. 
• Multiple Parents – distinct approaches may be used and choices depend on the 

modeler preferences, although the first step is always to fit structurally all multiple 
parents to one another.  

Step 5. Normally, Structurally Variable Regions are loop regions. When the lengths of loops 
of the parent structures are different, they are built with lower accuracy when 
compared with the rest of the structure. Furthermore, even if the corresponding 
lengths of these regions are the same, they may adopt different structural 
conformations. 

                                                 
1Homologous refers to two or more sequences which have a common ancestor sequence in 
earlier evolutionary time. The ancestor is known after a complete alignment (Mount, 2004). 
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Step 6. There are various protocols to build the side chains: It can be simple like Maximum 
Overlap Protocol, in which side-chain torsion angles are inherited from their 
parent's side-chain, where possible, and additional atoms are built from a single 
conformation (Orengo et al., 2004). In the Minimum Perturbation Protocol Shih et. 
al. (1985) each substitution is guided by a rotation about the sidechain's torsion 
angles to relieve clashes. Another protocol, called Coupled Perturbation Protocol, 
developed by Mark Snow and Mario Amzel, is similar to the Minimum 
Perturbation Protocol, albeit the side chain torsion angles of structurally adjacent 
residues are also rotated.  

Step 7. Model may be refined by Energy Minimization, a process in which all the atoms, 
governed by a previously specified force field, move until a conformation that 
represents a system minimum energy is reached. This issue is related to the 
Molecular Dynamics (MD) method (Frenkel & Smit, 1996). There are several 
popular software packages to run MD simulations, like Gromacs (Hess et al., 2008). 

Step 8. A conventional measure of the modeling quality is done by applying the Root Mean 
Square Deviation (RMSD). Basically, RMSD shows how similar one structure is to 
another (Orengo et al., 2004). Usualy, the modeling quality may be tested first 
against a number of known protein structures. 

Therefore, applying Comparative Model for starting the EA population may improve the 
efficiency of EA when compared by randomized starting population, since relevant initial 
information about unknown spatial structure of proteins are produced. Therefore, as argued 
by Zhang & Skolnick (2005), the PDB library is a systematically increasing contributor for 
the protein structure prediction problem. For example, such initial information can help EA 
get out of non-native local minimum energy; as well complementary information from 
specific biological databases may be used to build specific genetic operators.   

8. Conclusions 

It is noteworthy that the modelling, sampling and convergence properties might be a critical 
issue in the PSP. From a computation perspective based on EAS, different modeling issues 
for PSP were revised in this Chapter. Although lattice models are relatively simple, they are 
very appealing for EAS approaches where the computational efficiency can be highly 
improved, enabling the prediction of better protein structures. In fact, the data structure 
based on AR + CM (Section 2) simplifies the objective function of lattice models since there is 
no need for an additional function penalizing amino acid collisions. As a consequence, the 
objective function uses only one criterion, i.e., the evaluation of the number of interactions 
between hydrophobic amino acids. 
The hydrophobicity of protein is a measure of the interplay of the protein and solvent 
interactions. The objective function of the lattice models based on AR + CM estimates this 
interaction. Thus, the EA using such model may also lead to a computationally efficient 
process in order to find protein conformations with more plausible solvent interaction. 
The solvent effect on PSP is an important issue: for most cases, the solvation energy basically 
drives the process. Different alternatives on how to model the solvent have been pointed out 
on Section 3. Despite the fact that some protein structure were successfully obtained with 
models based on potential energy functions with no hydration free energy contributions, 
this is not a general rule. For a general protein case, the solvation free energy and interaction 
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potential energy functions are recommended for the proper prediction baring on mind the 
computational costs and efficiency. In order to use both contributions in PSP by EAs, two 
main issues should be adequately considered: 1) the computational efficiency of the energy 
calculi, and 2) an adequate manner to combine them. Section 5 presented strategies that 
reduce the running time to calculate van der Waals and electrostatic interaction energies 
from quadratic to linear. The off-line calculi of energies for a range of inter-atomic distances 
and the use of interaction energies previously calculated for parent solutions by the 
crossover operator can also enhance the computational efficiency. 
The combined effect of different potential energies terms is dependent on the folding stage, 
i.e., the influence of a different term of the effective Hamiltonian may dominate the initial 
stage of the folding and another dominates the intermediate or the final stage. The influence 
of such terms on folding stages also depends on the protein molecule. In this context, the 
EAs enable us to simulate the effects of different combinations (weight set) of the energy 
functions involved in the PSP (Section 3). The most adequate weight set would reveal the 
key contribution of a Hamiltonian on the process contributing to enlighten the 
quantification of each physical mechanism behind the protein folding process. 
Moreover, the mo-ProtPred can consider multiple criteria without previous knowledge of 
weights (Section 4) producing coherent protein structures. As an interesting consequence, 
the effects of each intermolecular interaction together with the solvation free energy can also 
be considered in PSP without previous information of the relative contribution of each 
Hamiltonian term on the folding.  
The use of heuristics about proteins to create the initial population can improve significantly 
the performance EAs for PSP (Section 7). However, it may drive the algorithm for local 
optima, which may not correspond to an adequate protein structure. The SORIGA (Section 
6) can be employed when heuristics population are used, reducing significantly the 
premature convergence for local optima. Thus, the initial-population heuristics combined 
with SORIGA should produce gains on convergence or even enable to work with larger 
proteins maintaining the quality of the prediction.  
In short, the presented research attacked fundamental questions of the numerical sampling 
issues of the PSP. Moreover, it brought up solutions for each of these questions showing 
preliminary results and directions. In the literature, the questions clustered here have been 
the focus of several independent studies involving different areas of Science. The present 
chapter proposes some suggestions on how to combine the knowledge of diverse subjects to 
solve the PSP problem. There are issues that can be seen as details from on point of view but 
they are crucial from other perspective. Some of these aspects have been neglected in the 
development of a global solution for PSP on previous reviews.   
In fact, hard problems can be characterized by the presence of several sets of highly 
interacting variables (Goldberg, 2002). One strategy to deal with such problems is to 
determine the interactions and adequately treat them. In PSP, the variables involve different 
research fields. Thus, a PSP modeling based on the integration of knowledge seems a 
promising path to achieve relevant advances. 
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