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Application of Kalman Filters for the Fault 
Diagnoses of Aircraft Engine 

Wei Xue and Ying qing Guo  
Northwestern Polythechnical University 

China 

1. Introduction      

Fault detection and isolation (FDI) logic plays a crucial role in enhancing the safety and 
reliability, and reducing the operating cost of aircraft propulsion systems. However, it is a 
challenging problem achieving the FDI task with high reliability. For this purpose, various 
approaches have been proposed in the literature. 
In an on-line engine fault diagnoses, two tasks may use Kalman filter to carry out: 1) 
evaluation of on-line engine state variables to renew the on-board model; 2) diagnoses of on-
line aircraft engine sensor/actuator fault. How to solve the above problems through 
application of Kalman filter is discussed in this paper.  
A challenge in developing an on-line fault detection algorithm is making it adaptive to 

engine health degradation. If the algorithm has no adaptation capability, it will eventually 

lose its diagnostic effectiveness. To address this problem, the integration of on-line 

diagnostic algorithms was investigated. The Kalman filter estimates engine health condition 

over the course of engine’s life. Then the on-board model could be re-constructer based on 

the estimated values of Kalman filter.  

After all of the above, A Robust Kalman filter and a bank of Kalman filters are applied in 

fault detection and isolation (FDI) of sensor and actuator for aircraft gas turbine engine. A 

bank of Kalman filters are used to detect and isolate sensor fault, each of Kalman filter is 

designed based on a specific hypothesis for detecting a specific sensor fault. In the event that 

a fault does occur, all filters except the one using the correct hypothesis will produce large 

estimation errors, from which a specific fault is isolated. When the Kalman filter is used, 

failures in the sensors and actuators affect the characteristics of the residual signals of the 

Kalman filter. While a Robust Kalman filter is used, the decision statistics changes 

regardless the faults in the sensors or in the actuators, because it is sensitive to sensor fault 

and insensitive to actuator fault. 

W. C. Merrill, J. C. Delaat, and W. M. Bruton used a bank of Kalman filters for aircraft 
engine sensor FDI. This study successfully improved control loop tolerance to sensor 
failures, which were considered the most likely engine failures to happen under the harsh 
operating environment. In this study, actuator failure was not considered. In the study done 
by T. Kobayashi and D. Simon, a fault detection and isolation (FDI) system which utilizes a 
bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in 
conjunction with the detection of component faults. The results indicate that the proposed 

Source: Kalman Filter, Book edited by: Vedran Kordić,  
 ISBN 978-953-307-094-0, pp. 390, May 2010, INTECH, Croatia, downloaded from SCIYO.COM
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FDI system is promising for reliable diagnostics of aircraft engine sensor and actuator. An 
analytical redundancy-based approach for detecting and isolating sensor, actuator, and 
component faults in complex dynamical systems, such as aircraft and spacecraft is 
developed by E. C. Larson, E.B. Jr. Parker, and B. R. Clark. This method has limited 
applications in practice. A Kalman filter was applied to aircraft sensor and actuator fault 
diagnosis by C. Hajiyev and F. Caliskan. Two different fault detection algorithms, namely 
multiple hypotheses testing and neural networks that analyze the sensor residuals 
generated with an extended Kalman filter (EKF) based on an un-faulted engine model were 
developed and implemented by R. Randal et al. These two algorithms have complementary 
performance, which is exploited in a fusion algorithm to enhance the overall detection & 
classification performance.  An observer-based robust sensor fault detection approach was 
applied to a jet engine simulation by R. J. Patton and J. Chen. This method has limited 
applications in practice. A Kalman filter was applied for aircraft sensor and actuator fault 
diagnosis by C. Hajiyev and F. Caliskan.Those approach were based on the faults affected 
the mean of the Kalman filter innovation sequence. A sensor fault that shifted the mean of 
the innovation sequence could be detected and isolated. A Roubst Kalman filter was used to 
distinguish the sensor and actuator faults. But, this method could not used to isolate which 
actuator is faulty. 
In general, in–flight diagnostic systems are designed at a nominal health, or non-degraded 
condition. This design condition becomes a reference health baseline for diagnostics. Any 
observed deviations in engine outputs from their reference condition values may indicate 
the presence of a fault. As the real engine degrades over time, in-flight diagnostic systems 
may lose their effectiveness. Engine health degradation is a normal aging process that occurs 
in all aircraft engines due to usage and therefore is not considered as a fault. However, 
similar to various faults, degradation causes the engine outputs to deviate from their 
reference condition values. When engine output deviations eventually exceed a certain level, 
the diagnostic system may misinterpret the health degradation as a fault and consequently 
generate a false alarm. 
One approach to maintaining the effectiveness of in-flight diagnostic algorithms, when 
applied to degraded engines, is to periodically update or re-design the diagnostic 
algorithms based on the estimated amount of health degradation. Health degradation can be 
estimated by trend monitoring systems. Through the update based on the estimated health 
degradation, the health baseline of an in-flight diagnostic system can be shifted to the 
degraded engine, and thereby the system is able to effectively diagnose the presence of a 
fault. 
The diagnosis approaches based on Kalman filter is the analysis of the residual signals. 
When the system operates normally, normalized residual signal in a Kalman filter is a 
Gaussian white noise with a zero mean and a unit covariance matrix. Faults change the 
system dynamics by causing surges of drifts of the state vector components, abnormal 
measurements, sudden shifts in the measurement sensor, and other difficulties such as 
decrease of instrument accuracy, an increase of background noise, reduction in actuator 
effectiveness etc., effect the characteristics of the normalized residual signals by changing its 
white noise nature, displacing its zero mean, and varying unit covariance matrix.  
For linear dynamic system with white process and measurement noise, the Kalman filter is 
known to be an optimal estimator. Kalman filters are largely used in the jet engine 
community for condition monitoring purpose. At the same time Kalman filter are used in 
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the turbine engine for sensor fault diagnostics purpose. However this method can not or 
hardly distinguish the fault between sensor and actuator. A bank of Kalman filters and a 
robust Kalman filter are used to detect sensor and actuator faults. In addition, a bank of 
Kalman filters is used to detect which sensor is fault. Such  technical are easy to implement 
in a real-time environment. 
In the following sections of this paper, the problem setup for sensor fault diagnostics based 
on the engine health degradation. The deterioration can be estimated by one Kalman filter. 
Then the on-board model can be re-constructer based on the estimated values of Kalman 
filter. At last a bank of Kalman filters is applied in fault detection and isolation (FDI) of 
sensors for aircraft gas turbine engine. At the same time, we assumed that only one of the 
sensors will fail at a time, and just only one actuator. Hence, detection and isolation between 
different actuators is not considered. The mean of the residual signals which from sensor 
measurements and their estimated values applied to detect and isolate sensor failures. An 
effective approach previously discussed in literature is to distinguish the sensor and 
actuator fault during a linear engine simulation. 

2. Engine model 

The engine model being used for this research is the nonlinear simulation of an advanced 
military twin-spool turbofan engine. Engine performance deterioration is modeled by 
adjustments to efficiency or flow coefficient scalars of the following four components: Fan 
(FAN), Booster (BST), High-Pressure Turbine (HPT), and Low-Pressure Turbine (LPT). 
These scalars representing the component performance deterioration are the health 
parameters. The engine state variables, health parameters, actuator, and sensor used in the 
current research are shown in Table 1. 
 

State 
variable 

Health 
parameters 

Actuators Sensors 

XNL  
FAN efficiency W

FB  XNL  
XNH  

BST efficiency 8
A

 XNH  

 HPT efficiency  31
P

 
 LPT efficiency  6

P
 

   45
T
c  

Table 1. State Variables, Health Parameters, Actuators, and Sensors of the Engine Model 

The FDI (Fault detection and isolation) logic uses the Kalman filter approach in order to 
estimate the state variables, health parameters, and engine output values from a given set of 
sensor measurements and control commands. A linear model under consideration is 
represented by the following state-space equations: 

 
x Ax Bu Lh w

y Cx Du Mh v

= + + +
= + + +

$
  (1)  

where the vectors x, h, and u represent the state variables, health parameters and control 
commands, respectively. y is sensor measurement vector, w  and v are the process and 
sensor noise, respectively, they are both assumed to represent Gaussian white noise. Their 
covariance matrices: 
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0; 0

T

T

E w k E v k

E w k w k Q k

E v k v k R k

τ δ τ

τ δ τ

= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤+ =⎣ ⎦
⎡ ⎤+ =⎣ ⎦

  (2)  

3. The estimation of health degradation 

As shown in Fig.1, the on-board model and tracking filter are important part in the model-
based control and diagnostics logic. This part uses two sets of input signals; sensor 
measurements and actuator position. The degradation of the real engine can be tracked by 
one Kalman filter based on the input signals. After the estimation of the Kalman filter, the 
on-board model can be shifted to the vicinity of the degraded engine.  
 

Engine

On-board model
& Tracking

filter

Engine control

Sensor
FDI

Actuator

position

Actuator

commands

Sensor

 estimates

Sensor

measurment

Engine

instrumentation

Pressures

Fuel flow

Temperature

Rotor speed

 

Fig. 1. Model-Based control and diagnostics logic 

In the Kalman filter problem setup, the engine state vector is augmented with health 
parameters as follows: 

 
x Ax Bu w

y Cx Du v

= + +

= + +

# ## #
# #

  (3)  

where 

[ ], , ,
0 0 0

x A L B
x A B C C M

h

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# ###  

The estimated state vector xe, the sensor measurements of ye and the Kalman filter gain 
matrix can be found with the Kalman filter of the form: 

 

( )

1

e e e

e e

T

x Ax Bu K y y

y Cx Du

K PC R−

= + + −

= +

=

# ## #
# #
#

  (4) 
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where matrix P is the solution of the following steady-state Riccati equation: 

 1 0T TAP PA PC R CP Q−+ − + =# # # #   (5) 

4. Fault detection and isolation logic 

When a fault occurs, the first step is to detect it as soon as possible. The approach used for 
model-based fault detection is composed of two steps as follow.  
1. Generate residual signals from the sensor measurements and their Kalman filter 

estimated values. 
2. Compare the residuals with thresholds to make fault detection detections. 
System noise, measurement noise and modeling uncertainty are key factors that affect 
detection performance.  
A propulsion system with fault detection and isolation logic is shown in Fig. 2. The Kalman 
filters use two sets of input signals; sensor measurements and control commands. Sensor 
measurements are corrupted by noise. The difference between them is simply defined as a 
fault. In this paper, the sensor and actuator failures are “soft failures”. Soft failure is defined 
as inconsistencies between true and measured sensor values that are relatively small in 
magnitude and thus difficult to detect by a simple range-checking approach.  
 

Engine Sensors

Kalman filter and

Robust Kalman filterFDI

Engine

control

V

Actuator

W

trueu

y

cmdu

 
Fig. 2. Fault detection and isolation logic. 

4.1 Fault detection algorithm for sensor 

In this paper, an approach based on a model with a bank of Kalman filters is used for sensor 
fault detection and isolation. The sensor and actuator fault are “soft fault”. Soft fault is 
defined as inconsistencies between true and measured sensor values that are relatively small 
in magnitude and thus difficult to detect by a simple range-checking approach, whereas 
“hard” fault are larger in magnitude and thus more readily detectable.  
Each Kalman filter is designed for a specific sensor fault. In the event that a fault does occur, 
all filters except the one using the correct hypothesis will produce large estimation errors. By 
monitoring the residual of each filter, the specific fault that has occurred can be detected and 
isolated. The structure for sensor FDI using a bank of Kalman filters is shown in Fig. 3. The 
bank of Kalman filters contains 5 Kalman filters where 5 is the number of sensors being 
monitored. The control input and a subset of the sensor measurements are fed to each of the 
5 Kalman filters. The sensor which is not used by a particular filter is the one being 
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mentioned by that filter for fault detection. For instance, the ith filter uses the sensor subset 
that excludes the ith sensor. Hence each Kalman filter estimates the augmented state vector 
using 4 sensors. Filter #1 uses all sensors except sensor #1, filter#2 uses all sensors except 
sensors#2, and so on. So, filter #1 is able to estimate the augmented state vector from fault-
free sensor measurements, whereas the estimates of the remaining filters are distorted by the 
fault in sensor #1. 
For each filter, the residual vector: 

 i i i

ee y y= −   (6) 

When we got the residual, the weighted sum of squares residuals for each of the Kalman 
filters were calculated as: 

 ( ) ( ) 1T
i i i i iWSSR V e e

−
= Σ   (7) 

where 
2

i idiag σ⎡ ⎤Σ = ⎣ ⎦ .The vector σ  is the noise standard deviation, and the additional 

weigh iV  is the weighting factor.  

The statistical function as in (6) has 2χ distribution consider the following two hypotheses： 

H0: system operates normally,  
H1: fault occurs in the system. 
If a confidence probability a is given, the threshold can be found as in. The following gives 
the detection theory:  

 0

1

:

:

i

i

i

i

H WSSR

H WSSR

λ

λ

≤

≥
  (8) 

where iλ is the threshold. 
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Fig. 3. Sensor fault detection isolation using bank of kalman filters 
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4.2 Fault detection algorithm for actuator 

When a large discrepancy between commanded and true actuator positions does exist due 
to an actuator fault, it may cause significant errors. A Robust Kalman filter may be designed 
in order to isolate the sensor and actuator faults. A Kalman filter that satisfies the Dolye-
Stein condition is referred to as Robust Kalman filter.  
The Doly-Stein condition is expressed as follow. 

 ( ) ( )1 1
K I H K B H Bφ φ− −+ =   (9) 

Here K is Kalman filter gain, I is unit matrix, ( ) 1
sI Aφ −= − , A is the system matrix in 

continuous time, B is the control distribution matrix in continuous time. H is the system 

measurement matrix.  The Kalman filter satisfies the Doly-Stein condition called Robust 

Kalman filter.  

For Kalman filters, 1T

qK PC R−= , 
With Pq defined by the Riccati equation 

1 0T T

qAP PA PC R CP Q−+ − + =  

As usual we take 0TQ Q= > and 0TR R= > with ( )1 2,A Q and ( ),C A stable and 

observable, respectively. For Kalman filters, they represent given process noise and 
measurement noise intensities. They are treated more freely as design parameters which we 
can select to suit broader purposes. In particular, let  

 
2

0

0

T

qQ Q q BVB

R R

= +

=
  (10) 

Where Q0 and R0 are noise intensities matrix for the nominal plant, V is any positive definite 
symmetric matrix. With these selections, the observer gain for q = 0 corresponds to the 
nominal Kalman filter gain. However, as q approaches infinity, the gains are to satisfy as 
follow 

 
2

T
TKRK

BVB
q

→   (11) 

Solutions of (11) must necessarily be of the form: ( ) 1
1 2 1 21

K BV R
q

−
→  

Where V1/2 and R1/2denote square root of  V and R, respectively, i.e. 

( )1 2 1 2
T

V V V= ,     ( )1 2 1 2
T

R R R= . 

Then a Kalman filter satisfying with (9) will be a Robust Kalman filter. 
Because of the q factor, the Robust Kalman filter (RKF) is not an optimum filter. The value of 
the q must be chosen carefully, if q is chosen small the RKF is a Kalman filter and becomes 
sensitive to actuator failures, on the other hand, if it is chosen large, noise effects increase 
and unexpected result occur in the RKF. 
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5. Simulation results 1 

The bank of Kalman filters was implemented on the nonlinear dynamical model of an 
aircraft engine with faults in sensors and the estimation of degraded engine as shown in 
Fig.4. The nonlinear dynamical model generates five sets of real signals at a given state. The 
sensor fault can be added on those signals directly. There are five sensors may be fault: 
High-pressure spool speed (XNH) sensor, Low- pressure spool speed (XNL) sensor, Booster 
exit pressure (P31) sensor, LPT exit pressure (P6) sensor, LPT inlet temperature (T45c) 
sensor. 
Health degradation can be estimated by trend tracking filter. One Kalman filter was used to 
estimate the degradation of the real engine. If there were no degradation and no fault, the 

values of 1 5WSSR −  go to zero, as shown in Fig.5. However, if the HPT efficiency 

degrades by 2% and the on-board model does not shift to the vicinity of the degraded 
engine then the in-flight diagnostic systems may lose their effectiveness, as shown in Fig.6. 

The values of the 1 5WSSR − grow rapidly and all of them exceed the threshold. It causes a 

false alarm. This is because shifts in measured engine outputs are induced not only by faults 
but also by engine degradation. Estimation of the degraded engine is critical to the fault 
detection and isolation system.  
Fig.7 shows that Kalman filter can estimate the degradation accurately. After this the on-
board model can be shifted to the vicinity of the degraded engine, and the in-flight 
diagnostic system may be effective. The Kalman filter estimates engine health condition over 
the course of engine’s life. Based on the estimated health condition, the on-board model is 
updated. When we add the fault at 10 steps and stop at 200 steps in the LPT inlet 
temperature measurement sensor and at the same time HPT efficiency degrades by 2%, the 

in-flight diagnostic system can detect and isolate the fault. As shown in Fig.8, 1WSSR -

4WSSR grow rapidly but the 5WSSR  remains small. The results indicate that there is a 

fault in T45c sensor. 
 

 

Fig. 4. The simulation architecture of Sensor fault detection isolation using bank of kalman 
filters 
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Fig. 5. The value of 1 5WSSR − when no fault and no degradation exist 
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Fig. 6. The value of 1 5WSSR − when the HPT efficiency degrades by 2% and no fault exist. 
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Fig. 7. The estimation of Kalman filter when the HPT efficiency degrades by 2% 
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Fig. 8. The value of WSSR -5 when there is a fault in T45c sensor and HPT efficiency 
degrades by 2% 

5. Simulation results 2 

The bank of Kalman filters and a Robust Kalman filter (RKF) were implemented on the 
nonlinear dynamical model of an aircraft with faults in sensors and actuator. The use of the 
RKF is very useful in the isolation of sensor and actuator as it is insensitive to the latter failures. 
The RKF was used to isolate whether the detected fault is a sensor fault or an actuator fault, 
when we add the fault at 20 steps and stop at 200 steps in the low-pressure spool speed 
measurement sensor, the plot for the RKF estimate is shown in Fig. 10 and when a fault 
occurs in the sensor, WSSR grows rapidly, and after 50 steps it exceeds the threshold. Then, 
when the fault is in the actuator, the plot for the RKF estimate is similarly shown in Fig. 9. 
The detection of actuator fault is not possible when the RKF is used. Hence, Fig. 9 and Fig.10 
illustrate that the RKF can detect the sensor faults, and cannot detect the actuator faults. On 
the other hand, if we use Kalman filter (KF) to isolate sensor or actuator fault, the values of 
WSSR are shown in Fig. 11 and Fig. 12. Whatever there is a fault in the sensor or in the 
actuator, the value of WSSR exceeds the threshold. So, KF is sensitive to both sensor and 
actuator fault and RKF are not sensitive to actuator fault. In this case, RKF and KF should be 
united to distinguish sensor or actuator fault. 
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Fig. 9. Detection of actuator fault with RKF. 
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Fig. 10. Detection of sensor fault with RKF. 
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Fig. 11. Detection of actuator fault with KF. 
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Fig. 12. Detection of sensor fault with KF. 
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In this paper, there are four sensors may be fault, i.e. low-pressure spool speed sensor, high-

pressure spool speed sensor, high-pressure compressor exit pressure sensor, low-pressure 

turbine exit temperature sensor.  

When the low-pressure spool speed measurement sensor is faulty, as above mentioned, all 

filters except for filter 1 will use a corrupted measurement. Filter 1 will be able to estimate 

the engine outputs from fault-free sensor measurements, whereas the output estimates of 

the remaining filters (i.e., filters 2, 3 and 4) will be distorted by the fault in sensor 1. The 

value of WSSR and threshold for the 4 Kalman filters are shown in Fig. 13(a)-(d) 

respectively. The values of WSSR for Kalman filter 2, 3 and 4 are also seen to be high 

whereas the value of WSSR for the Kalman filter 1 goes to zero. In this way we can 

successfully detect which sensor is faulty. The low-pressure spool speed measurement 

sensor is not used by filter 1. Hence, this sensor is faulty. 
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Fig. 13. Fault detection of low-pressure spool speed measurement sensor when a bank of 
Kalman filters is used. 
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6. Conclusion 

In this paper, aircraft engine sensor fault diagnostics based on the estimation of health 

degradation was investigated. The tracking filter estimates engine health condition over 

the course of engine’s life. Through this integration, the on-line fault detection algorithm 

is able to maintain its diagnostic effectiveness as the aircraft engine degrades over its 

lifetime. 

The integrated approach was investigated in a simulation environment using a nonlinear 

engine model. The evaluation result showed that this approach is essential to maintain on-

line fault detection capability in the presence of health degradation. 

In this paper, an approach has been proposed to detect and isolate the aircraft sensor and 

actuator failures occurred in the aircraft control system. A bank of Kalman filters were 

used to detect and isolate sensor failures, each of Kalman filter is designed based on a 

specific hypothesis for detecting a specific sensor fault. In the event that a fault does 

occur, all filters except the one using the correct hypothesis will produce large estimation 

errors, from which a specific fault is isolated. Failures in the sensors and actuators affect 

the characteristics of the residual signals of the Kalman filter. When the Kalman filter is 

used, the decision statistics changes regardless the faults in the sensor or in the actuator. 

While a Robust Kalman filter is used, it is easy to distinguish the sensor and actuator 

fault. 
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