
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



14 
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in Positioning Applications 
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1. Introduction     

Positioning refers to the estimation of one’s location by combining many different sources of 
information. This information is usually obtained in the form of measurements, which may 
be, for example, pseudorange or deltarange measurements from satellites. In addition, 
various wireless networks on Earth, for example, cellular networks, WLAN or Bluetooth 
provide means for positioning in the form of range measurements, received signal strength 
indicators and sector information. Portable positioning devices may also contain inertial 
measurement units that provide information about the movements of the user. 
The positioning problem may be formulated as a Bayesian filtering problem. The 
measurements are related to the position of the user, and the relation is approximately 
known. In addition, there is a model that describes the process dynamics. The 
measurements are obtained at discrete time intervals, and the process dynamics are also 
discretized. 

The system may be described mathematically as follows. Let  xk  denote the stochastic state 

vector at time step  k , and let  y k  be the measurement vector. The system is governed by the 

following equations: 

  y k = hk (xk ) + v k  (1) 

  x k+1 = g k (x k ) + w k  (2) 

Functions   hk  and  g k  are the measurement and state update functions, respectively. The 

measurement noise  v k  and the state update noise  w k  are assumed to be white processes. 

The initial state is denoted by  x 0. The noises and the initial state are assumed to be mutually 

independent.  
Using these assumptions, we want to find the conditional probability density function 

conditioned on all realized measurements 
 
p

xk
+ (x k y 1:k ) , which is also called the posterior 

probability density function. The set of all realized measurements up to time step   k is 

denoted by 
    y 1:k = {y i i = 1, 2,…, k} . The posterior density function contains all the 

information of the system up to time step  k. From this density function we can compute an 
estimate of the state with respect to any optimality criterion. 

Source: Kalman Filter, Book edited by: Vedran Kordić,  
 ISBN 978-953-307-094-0, pp. 390, May 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Kalman Filter 

 

272 

Using the above assumptions and the Bayes’ rule, the posterior density function may be 
written as 

 
k

−

+

k
k

-
k

y k k k 1:k-1x

k 1:kx

k 1:k-1y

p (y x )p (x y )
p (x y ) =

p (y y )
, (3) 

where we have denoted the set of past measurements by  y 1:k-1 (Ristic et al., 2004). The 

conditional probability density function 
 
p

xk
- (x k y 1:k-1)  is called the prior density function, 

and it contains all the information about the system before using the measurements of the 

current time step. The measurement likelihood function 
 
py k

(y k xk )  is given by the 

measurement model, and it is used to incorporate the measurements of the current time step 
to the estimate. The normalization factor 

 ∫- -
kk k

k 1:k-1 y k k k 1:k-1 ky x
p (y y ) = p (y x )p (x y )dx  (4) 

is sometimes called the predicted measurement density or the innovation density. The 
expression (3) for the posterior density function allows the recursive computation of the 
conditional probability density function, which is very convenient regarding the 
computational and memory requirements of the algorithm. 

In general, it is difficult to find an analytical expression for the posterior density function. 

However, if the state update function  g k (x k ) = Gkxk  and the measurement function 

  hk (x k ) = H kx k  
are linear, and the state model noise and the measurement noise are 

modeled as zero mean Gaussians with covariance matrices  Qk  and  R k , respectively, and 

the initial state is Gaussian with mean  x 0
+

 and covariance matrix  P0
+ , the posterior density 

function is also Gaussian. Only little computation is required in order to compute the 

posterior density function, and its parameters are given by the famous Kalman Filter 

relations (5)—(9). 
The prior mean is obtained by applying the linear state update function to the posterior 
mean of the previous time step: 

 =- +

k k 1:k-1 k-1 k-1
x E(x y ) = G x . (5) 

The prior covariance matrix is obtained from the posterior covariance matrix of the previous 
time step: 

 =- + T

k k 1:k-1 k-1 k-1 k-1 k-1P V(x y ) = G P G + Q . (6) 

The posterior mean is obtained by adding a linear transformation of the innovation to the 
prior mean: 

 + - -

k k k k k kx = x + K (y - H x ) . (7) 

The posterior covariance becomes: 

 + -

k k k kP = (I - K H )P , (8) 
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and the Kalman gain is defined as: 

 - T - T -1

k k k k k k kK = P H (H P H + R )  (9) 

However, in practice the relation between the state and the measurements is rarely linear. 
Therefore, non-linear extensions of the Kalman Filter have been studied, and in this chapter 
we will concentrate on one of them, namely, the Extended Kalman Filter (EKF). 
EKF linearizes the non-linear measurement and state update functions at the prior mean of 
the current time step and the posterior mean of the previous time step, respectively. The 
resulting algorithm is very similar to the Kalman Filter. However, EKF does not solve the 
posterior density function exactly, but instead, approximates the posterior density function 
with a Gaussian density function. 
EKF has been studied in positioning applications and it is shown to perform poorly when 
the non-linearities are significant. (Ali-Löytty et al., 2005) show that when using 
measurements from satellites, the non-linearities do not degrade the performance of EKF, 
but when using range measurements from terrestrial base stations, EKF may easily veer 
away from the true solution and get stuck in a wrong solution branch. One reason for this 
kind of behavior is that the true posterior density might be multimodal, and EKF cannot 
know which peak represents the correct position of the user. The problem of multimodality 
has been addressed using Gaussian Mixture Filters (GMF), and they have been shown to 
perform quite well (Ali-Löytty & Sirola, 2007a); (Ali-Löytty & Sirola, 2007b);(Ali-Löytty, 
2008). GMFs approximate the posterior density as a sum of Gaussian densities where each 
component is an individual EKF. By using GMFs, the problems caused by the non-linearities 
may be overcome. 
Although GMFs perform quite well even in highly non-linear cases, they are still based on 

the assumption of Gaussian measurement noise. It has been shown that filters based on the 

assumption of Gaussian noise may perform poorly in cases where the measurement noise is 

non-Gaussian, and so-called blunder measurements occur (Perälä & Piché, 2007). In 

positioning applications, blunder measurements occur, for example, due to signal reflections 

and multipath effects. 

In this chapter, we present two methods for making EKF more robust against blunder 
measurements. The robust modifications of EKF may also be incorporated in Gaussian 
Mixture Filters that are based on EKF. In the first method, the measurement covariance 
matrix is modified based on the differences between the predicted and realized 
measurements, which are also called innovations. The modification is done using weight 
functions that are derived from M-estimators. In the second method, the predicted 
measurement density is approximated with a non-Gaussian density and the likelihood score 
of the corresponding density is used instead of the Gaussian likelihood score that appears in 
the Kalman Filter. Using these modifications, we try to obtain filters that are robust against 
blunder measurements.  

2. Extended Kalman filter 

In this section we present the algorithm of the Extended Kalman Filter and introduce some 
terminology needed in the following sections. We assume that the state model is linear and 
only concentrate on linearizing the measurement model. Consider the non-linear 
measurement equation: 

www.intechopen.com
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 +
k k k k

y = h (x ) v . (10) 

The first order Taylor series approximation of the measurement function at the prior mean is 

 ≈ - -

k k k k k k kh (x ) h (x ) + H (x - x ) , (11) 

where the Jacobian of the measurement function is 

 
∂

∂ -
k k

k k

k

k x =x

h (x )
H =

x
. (12) 

Denoting 

 Δ -

k k k k
y = y - h (x )  (13) 

and 

 Δ -

k k k
x = x - x , (14) 

an approximate measurement equation may be written as 

 Δ Δ +
k k k k

y = H x v . (15) 

Applying the Kalman Filter to this linearized measurement model, the posterior mean 
becomes 

 ++ - -

k k k k k k
x = x K (y - h (x ))  (16) 

and the posterior covariance is given by 

 + -

k k k k
P = (I - K H )P  (17) 

where   K k = Pk
- H k (H k

TPk
- H k + R k ) -1  is the Kalman gain matrix. The only differences to the 

Kalman Filter are that the innovation is computed using the non-linear measurement 

function, and that  H k  is the Jacobian of the measurement function. 

The innovation   sk := y k - hk (xk
- ) , which appears in the posterior mean recursion, describes 

how much the measurements differ from those expected when we think the user’s state is 

the prior mean   xk
- , which before taking the measurement into account is our best estimate 

for the state. In EKF, the state is corrected by applying a linear gain to the innovation. The 
robust filters presented in this chapter are based on a gain that is computed differently. The 
next section discusses the score functions that are used later to compute the gain. 

3. Score function selection 

The robust Kalman Filters discussed in this chapter are essentially based on embedding the 
score function of a robust M-estimator into the Kalman Filter. We use Huber’s concept of 
minimax robustness to find the robust M-estimators. (Huber, 1964) suggests the 
minimization of the maximum asymptotic variance of an estimator over a predefined class 

of densities   F . The solutions to this problem are pairs  (T
0 , f 0) , where  T

0 is the most robust 

M-estimator and  f
0

 is called the least favorable density of the class  F . We introduce two 
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classes for densities for which the minimax solution has been found, namely the ε -
contaminated normal neighborhood and the  p -point family. 

3.1 Huber M-estimator 

The ε -contaminated normal neighborhood was first proposed in (Huber, 1964) to be used in 
robust parameter estimation and it is defined as follows. 

Definition 1 ( ε -contaminated Normal Neighborhood) The set of density functions   Fε  is 

called ε -contaminated normal neighborhood if  Fε = {(1 -ε )φ (x) +εH(x) :  H ∈ S} , where φ  is 

the standard normal probability density function,  S  is the set of symmetrical probability 

density functions, and  0 ≤ ε < 1  is the known fraction of contamination. 
Huber showed that the least favorable density of this class is Gaussian in the middle, but 

has exponential tails. We denote this density by  fε
0 and it is given by 

 

( )

( )

(1 )

(1 )
ε

ε
π

ε
π

−⎧ ≤⎪⎪
⎨ −⎪ − >
⎪⎩

21
2

0

21
2

exp - t , t k
2

f (t) =

exp k k t , t k
2

. (18) 

The connection between the threshold parameter  k  and the amount of contamination ε  is 
given by 

 
φ ε

ε
Φ

2 (k)
- 2 (-k) =

k 1 -
, (19) 

where Φ  is the standard normal cumulative distribution function. Usually this equation has 
to be solved numerically. The influence function of an M-estimator is defined as the negative 

likelihood score of the least favorable density   ψ
0 (t) = -∂ln f 0 (t) ∂t , and for the Huber’s M-

estimator it is 

 εψ
⎧ ≤⎪
⎨ ⋅ >⎪⎩

0
t, t k

(t) =
k sign(t), t k

. (20) 

The weight function of an M-estimator is defined as  ω (t) = ψ (t) t ,  t ≠ 0  and  ω (0)  is chosen 

so that   ω (t)

 

is continuous. For the Huber's M-estimator the weight function is 

 0

1,

,εω
⎧ ≤
⎪
⎨ >⎪
⎩

t k

(t) = k
t k

t

 (21) 

The influence function and the weight function are needed in the robust filters that are 
presented in the following sections. 

3.2 p-point M-estimator 

Another interesting family of densities, namely, the  p-point family is used in robust 

parameter estimation in (Martin & Masreliez, 1975); (Masreliez & Martin, 1977), and it is 
defined as follows. 
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Definition 2 (  p-point Family) The set of probability density functions Fp is called a   p-point 

family if { })
−

∞
Φ ±∫

py

p p p-
F = f  f(x)dx = p 2 = (-y , f  symmetric and continuous at y . 

The inclusion of the restriction that Fp contains the standard normal cumulative distribution 
function   Φ (x)  is for standardization purposes, that is, to ensure that Fp is in the 

neighborhood of the standard normal density. 

(Masreliez & Martin, 1977) show that the least favorable density 
 
fp

0 of Fp is 

 

)

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎛ ⎞ ⎛ ⎞⎪

⋅ − >⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

2

p

m p0

p

2 2

p p

m m

t
K cos , t y

2c y
f (t) =

1 2K 1
K cos exp cos (y t , t y

2c p 2c

, (22) 

where K is related to p by the following equation 

 −
=

+
p m m

1 p
K

y (1 c  sin(1 c ))
. (23) 

For each p there exists sm that minimizes the asymptotic variance of the estimator. The 
minimizing value of cm satisfies the equation 

  
2c m - p 1 + tan 2 (1 2c m )( ) 2c m + tan( 1 2c m )( )= 0

. (24) 

The influence function of the least favorable density of the p-point family Fp is 

 
∂ψ
∂

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎪

⋅ >⎜ ⎟⎪
⎝ ⎠⎩

p

m p m p0 0

p e

p

m p m

1 t
tan , t y

c y 2c y
(t) = - ln f (t) =

t 1 1
tan sign(t), t y

c y 2c

 (25) 

and the weight function is 

 ω

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎪

>⎜ ⎟⎪
⎝ ⎠⎩

p

m p m p0

p

p

m p m

1 t
tan , t y

c y t 2c y
(t) =

1 1
tan , t y

c y t 2c

. (26) 

3.3 Damped Hampel M-estimator 
(Hampel et al., 1981) propose other M-estimators for robust estimation. However, these M-
estimators belong to the class of redescending M-estimators, i.e., they have finite rejection 
point. M-estimators with finite rejection points discard certain measurements that are 
assumed to be too far from the true parameter. In hybrid positioning, we cannot always 
afford to discard measurements, and thus we will present here a modified version of the 
Hampel’s three parts redescending M-estimator, namely the Damped Hampel M-estimator. 
The influence function of the Damped Hampel M-estimator is defined as 
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ψ DHA (t) =

t, t ≤ k 1

k 1 ⋅sign(t), k 1 < t ≤ k 2

k 1k 2
r

t
r

⋅sign(t), t > k 2

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

, 

(27) 

where we assume that  r ≥ 0. The corresponding weight function is defined as 

 

ωDHA (t) =

1, t ≤ k 1

k 1

t
, k 1 < t ≤ k 2

k 1k 2
r

t
r+1

, t > k

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 

. 

(28) 

By setting   k 1 = k 2 = k  and  r = 0, we see that the Huber’s M-estimator is obtained as a special 

case of the Damped Hampel M-estimator. 
The Damped Hampel M-estimator is not derived from a least favorable density function, 

but instead, it is obtained by designing a piecewise weighting for the observations in a 

continuous manner. It is possible to calculate the density function by using the definition of 

the influence function, but for our purposes it is enough to know the influence and weight 

functions. 

The Damped Hampel M-estimator presented here is only one example of piecewise influence 
functions. It is easy to design a variety of different piecewise influence functions and try to find 
the best one for the problem at hand using optimization techniques. Although the Huber’s M-
estimator and the p-point M-estimator are most robust in minimax sense, they require some 
knowledge of the distribution of the errors. Usually we do not have such knowledge, and thus 
any M-estimator that has proven to perform well in testing could be used. 

4. Re-weighted extended Kalman filter 

In the Kalman Filter, the posterior density function is Gaussian, and thus, the posterior 

mean estimate is the value that maximizes the probability density function: 

 +
kk

+

k k 1:kxx
x = arg max p (x y ) . (29) 

Using the Bayes’ theorem, inserting the prior density function and the measurement 

likelihood function, and noting that constant multipliers do not affect the maximization 

problem, (29) may be written as  

 ( ) ( )( )1

2 2
1
2)− ⋅ − -1-

kkk

+ -1
2k k k k k k (R )(Px

x = arg max exp - x - x exp y - H x . (30) 
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Since the exponential function is monotonically increasing, an equivalent problem is the 
following minimization problem. 

 ( )2 2

-1- -1
kkk

+ -

k k k k k k (R )(P )x
x = arg min x - x + y - H x . (31) 

Leaving the subscripts out for simplicity, and denoting  n = (P- )
- 1

2 (x -x -)  and  l = R
- 1

2 (y - Hx) , 

where the square root is the symmetric square root of a matrix, (31) may be written as 

 
1 1i j= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

yx

k

nn
+ 2 2

k i jx
x = arg min n + l . (32) 

As may be seen in equation (32), the posterior mean estimate of the Kalman Filter is a 

recursive solution to an ordinary least squares problem. The idea of minimizing the sum of 

squared errors is tempting since the solution may be computed efficiently. However, the 

least squares method is not robust, and therefore we modify the quadratic cost function in 

the second sum by a convex function ρ . The ρ -function is chosen so that the derivative of 

the score function is the influence function of an M-estimator introduced in Section 3. The 

minimization problem is changed to 

 
1 1

)
i j

ρ
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

yx

k

nn
+ 2

k i jx
x = arg min n + (l . (33) 

The aim is to make the measurement model more robust, and therefore, only the second 
sum is modified. Since the score function is assumed to be convex, the minimum is found by 
setting the gradient of the sum to zero 

 
1 1

)
i j

ρ
= =

⎛ ⎞
∇ ⎜ ⎟

⎝ ⎠
∑ ∑

yx
nn

2

x i j
n + (l = 0 . (34) 

Denoting the derivative of the score function ρ  by ψ , equation (34) may be written as 

 
1 1

)
i j

ψ
= =
∑ ∑

yx 1 1
2 2

nn
- -- T

i i j j j
2n (P ) e + (l H R e = 0 , (35) 

where 
  
e j

 

is a vector whose jth element is one and the others are zeros. Thus, the 

minimization problem is equal to a vector equation 

 ), , )ψ ψ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦A …
1 1
2 2

x y y

TT- -- T

1 n 1 1 n n
(P ) n , ,n + H R (l (l = 0 . (36) 

Since ψ  is, in general, a non-linear function, equation (36) has to be solved numerically. 

However, we want to preserve the computationally convenient properties of KF, and thus 

we proceed as in (Durovic & Kovacevic, 1999) and (Carosio et. al, 2005), and replace the 

equation by a linear approximation. Thus, we write 

 ) , , )ω ω −⎡ ⎤
⎣ ⎦…

1 1
2 2

y y y

T
- -- T -

1 1 1 n n n
(P ) n + H R (l l (l l = 0 . (37) 
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where the weights  ω i   are given by  

 

)

1

ψ
ω

⎧
≠⎪

⎨
⎪ =⎩

-

-i i

i-

ii

-

i

(l
l 0

l=

l 0

 (38) 

and 

  l
- = R

− 1

2 (y - Hx - ) . (39) 
Now equation (37) may be written as 

 ψ

1 1
2 2

- -- T(P ) n + H R W l = 0 , (40) 

where 
  
Wψ  is a diagonal matrix with diagonal elements   ω1 (l 1

− ),…,ωny
(l ny

− ) . Inserting 

  n = (P- )
- 1

2 (x -x -)  and  l = R
− 1

2 (y - Hx)  yields 

 1

ψ

1 1
2 2

- -- - - T(P ) (x - x ) + H R W R (y - Hx) = 0 . (41) 

We define the re-weighted measurement covariance matrix as 

 ψ

1 1
2 2

- - -1

W
R = (R W R ) . (42) 

This matrix exists assuming that 
 
Wψ  is positive definite, which is true if  ω i > 0,∀i . Inserting 

(42) into (41) yields 

 - -1 - T -1

W
(P ) (x - x ) + H R (y - Hx) = 0 , (43) 

which is the solution for the minimization problem 

 ( )2 2

-1- -1
W

+ -

(R )(P )x
x = arg min x - x + y - Hx . (44) 

Equation (44) is similar to equation (31), which was derived from the posterior mean 
estimate of KF. The only difference is that the measurement covariance matrix R

 
is replaced 

by the weighted measurement covariance matrix RW. Thus, the solution of (44) is obtained 
using the posterior mean relation of KF. The measurement update recursions for the 
posterior mean estimate may be then written as: 

 + - -

W
x = x + K (y - Hx ) , (45) 

Where 

 - T - T -1

W W
K = P H (HP H + R ) , (46) 

and the posterior covariance estimate becomes 

 + -

W
P = (I - K H)P . (47) 

The Re-weighted Kalman Filter derived in this section consists of computing the 

transformed innovation l- and weighting the measurement covariance matrix using the 
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weight function of an M-estimator. The prior covariance is left intact since only the 
measurement model is modified. Thus, the filter derived here may be considered as a robust 
Kalman Filter, which modifies the given measurement covariances according to the 
innovations so that bigger transformed innovations result in bigger variances. A drawback 

of this method is that if the prior mean estimate  x
-  is far away from the true state, 

uncorrupted measurements might get weighted down, which could result in bad filter 
performance. 
The filter derived here is for linear systems only. Thus we want to extend the filter for non-
linear problems using the ideas of EKF. The only difference is that the innovations are 
computed using the non-linear measurement function, and that  H  is the Jacobian of the 
measurement function computed at the prior mean. The resulting filter is called the Re-
weighted Extended Kalman Filter (REKF).  

5. Approximate Bayesian extended Kalman filter 

In the previous section KF was interpreted as a recursive least-squares algorithm, and was 
“robustified” by replacing the quadratic cost with (33). In this section we present an 
alternative approach that is directly based on the Bayesian interpretation of KF presented in 
Section 1. Consider a linear transformation matrix 

 
1
2

-- T

k k k k k
T = (H P H + R ) , (48) 

where   H k ,   Pk
-  and  R k  are the linear measurement function, the prior covariance matrix and 

the measurement covariance matrix, respectively, that appear in KF.  The inverse exists and 

is symmetric since  H k Pk
- H k

T + R k

 
is symmetric and positive definite. 

Denote the innovation as  sk := y k - H kxk
- . The mean of the innovation is  E(sk ) = 0  and the 

covariance matrix is  V(sk ) = H k Pk
- H k

T + R k . Thus, the mean of the transformed innovation 

  rk = Tksk  is   E(rk ) = 0  and the covariance matrix  V(rk ) = I . Now consider the posterior mean 

estimate of KF 

 ∫ +
k

+

k k k 1:k kx
x = x p (x y )dx . (49) 

Using the Bayes’ rule this may be written as 

 ∫
-

kk

-
k

k 1:k-1 y k kx+

k k k

k 1:k-1y

p (x y )p (y x )
x = x dx

p (y y )
, (50) 

which may be written after some algebra as 

 − ∫ -
k k

-
k

+ - - - -1 -

k k k y k k k k k k 1:k-1 kx

k 1:k-1y

1
x = x P p (y x )(-(P ) (x - x ))p (x y )dx

p (y y )
. (51) 

If the posterior density is approximated at every time step with a Gaussian, the prior density 
is also Gaussian since the state update function is linear and the noise in the state equation is 
Gaussian and independent of the state. By noting that for Gaussian prior it holds that 

 ∇ - -
k k k

- -1 -

x k 1:k-1 k k k k 1:k-1x x
p (x y ) = -(P ) (x - x )p (x y ) , (52) 
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the posterior mean may be written as 

 − ∇∫ -
k k k

-
k

+ - -

k k k y k k x k 1:k-1 kx

k 1:k-1y

1
x = x P p (y x ) p (x y )dx

p (y y )
. (53) 

Noting that it follows from the measurement model that 
 
py k

(y k x k ) = pvk
(y k − H kx k ) , and 

integrating by parts yields 

 + ∇ −∫ -
k kk

-
k

+ - -

k k k k 1:k-1 x v k k k kx

k 1:k-1y

1
x = x P p (x y ) p (y H x )dx

p (y y )
. (54) 

Because 

  
∇xk

pvk
(y k − H kxk ) = -H k

T∇y k
pvk

(y k − H kxk )
, (55) 

the posterior mean may be written as 

 − ∇ −∫ -
k kk

-
k

+ - - T

k k k k 1:k-1 k y v k k k kx

k 1:k-1y

1
x = x P p (x y )H p (y H x )dx

p (y y )
. (56) 

Changing the order of differentiation and integration yields 

 + ∇ -
k k

+ - - T

k k k k y k 1:k-1y
x = x P H (- ln p (y y )) . (57) 

Noting that   y k = Tk
-1rk + H kx k

-

 
it can be shown that 

 + ∇ -
k k

+ - - T

k k k k k r k 1:k-1r
x = x P H T (- ln p (r y )) . (58) 

Define the influence function  ψ (rk )  as the negative likelihood score of the transformed 

innovation density 

 ψ ∇ -
k k

k r k 1:k-1r
(r ) = - ln p (r y ) , (59) 

and insert into (54) to obtain 

 ψ++ - - T

k k k k k k
x = x P H T (r ) . (60) 

It is easy to see by straightforward calculation that a Gaussian innovation density, which 

results from the assumptions of KF, produces the familiar posterior mean update relation of 

KF. (Masreliez & Martin, 1975) study this kind of estimators and show that if the marginal 

densities of 
  
p

rk
- (rk y 1:k-1)  are symmetric densities in F, where F = Fε

 
or F = Fp, the estimator 

covariance is bounded by 

 ≤ -

k k k F k
C (I - K H E )P , (61) 

where 
    
EF = (

∂
∂t

ψ (t))fF
0 (t)dt∫ ,  fF

0 is the least favorable density in F, and  K k  is the Kalman 

gain matrix. It can be shown that it is possible to come arbitrarily close to the bound 
(Masreliez & Martin, 1975). Thus, the upper bound is chosen as the posterior covariance 
estimate   Pk

+  for ABKF. 
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For the Huber’s M-estimator and the  p-point M-estimator  EF  is found easily by 

straightforward calculation. For the Huber’s M-estimator it is 

 
ε

ε Φ
F

E = (1 - )(1 - 2 (-k)) , (62) 

and for the   p-point M-estimator we get 

 ( )( )( )p

-1 2 -1

F m p m p
E = (c y ) 1 - p 1 + tan (c y ) . (63) 

For the Damped Hampel M-estimator the integral does not generally have an explicit form, 
but since the central part of the influence function is the same as in the Huber’s M-estimator, 

we use 
  
EFε

 to compute the posterior covariance estimates when using the Damped Hampel 

M-estimator. 
The robust posterior estimates may be computed using (60) and (61), however this does not 
produce the posterior probability density function. However, we approximate it with a 
Gaussian density with the mean and covariance matrix as in (60) and (61). This is called the 
Approximate Bayesian Kalman Filter (ABKF). 
In the case where the measurement function is non-linear, the above considerations can be 
applied in EKF. The only difference is that the innovations are computed using the non-

linear measurement function, and that  H k

 
is the Jacobian of the measurement function 

computed at the prior mean. The resulting non-linear extension is called the Approximate 
Bayesian Extended Kalman Filter (ABEKF). 

6. Positioning example 

We consider a positioning scenario where we use satellite pseudorange and deltarange 

measurements that are obtained at discrete time intervals. The state of the user consists of 

the 3-dimensional position and velocity vectors of the user and is denoted by 

  x =[(ru ) T  (vu ) T ]T . The pseudorange measurements may be written as 

 ε−p p ps u

i i i
z = r r + b + , (64) 

where the   i th pseudorange measurement is denoted by  z i
p ,  r

u

 is the position of the user,   ri
s

 
is the position of the  i th satellite,  b

p

 is the unknown clock bias and  ε i
p

 is Gaussian zero 

mean noise with variance  (σ i
p) 2 . The deltarange measurements may be written as 

 
)Td d

i i
ε−

−

s u

s u di

is u

i

(r r
z = (v - v ) + b +

r r
, (65) 

where the   i th deltarange measurement is denoted by  z i
d ,  v

u  is the velocity of the user,   v i
s

 
is the velocity of the  i th satellite,  b

d

 is the unknown clock drift and  ε i
d

 is Gaussian zero 

mean noise with variance  (σ i
d) 2 . 

The positions and velocities of the satellites are assumed to be known, but clock bias and the 

clock drift that appear in (58) and (59) are unknown. They are, however, the same for all the 

satellites and thus we may deal with them by using so-called difference measurements. 

Therefore, we have to introduce the concept of difference mapping. 
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Definition 3 (Difference Mapping) A difference mapping  D  is a  (ns −1) × n s-matrix with 

full column rank such that  D1 = 0, where  1  is a vector of ones. 

The difference mapping may be chosen to be, for example, 
 
D = I  -1[ ]. Denote 

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

1

D 0
D =

0 D
. (66) 

Thus, the measurement vector becomes 

 
1

) )

) s

T T

d

d
T

n

ε

ε
ε

ε

⎡ ⎤− −
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥ =⎢ ⎥
⎢ ⎥− −⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦− ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

B B

BB

BBB

s s

s

s

s

s

s u s u

1 1

pp

1

s u s u

n n

pps u s u
ns u1 1

1 1 1 11 ds u s u

1 1

d
s u

n s u

ns u

n

r r r r

b

r r r r

b(r r (r r
y = D + D + D D(v - v )

br r r r

b(r r
(v - v )

r r

1

) s

d

d
T

n

ε

ε
ε

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

B

BB

s

s

s

s

p

1

p

ns u

11

s u

n s u

ns u

n

+ D(v - v )

(r r
(v - v )

r r

. (65) 

The Jacobian of the measurement function is 

 
∂

∂
−⎡ ⎤

⎢ ⎥− −⎣ ⎦- s
u

D D1

vx=x V

U 0h(x)
H = = D

U U Ux
, (66) 

where 
  
U

Vs

D  is the derivative of the vector  diag(UVT)  and  V  is a matrix of satellite velocities, 

  
U vu

D  is the derivative of the vector  Uv u , and  U  is a matrix whose rows are the unit vectors 

pointing from the user to the satellites. The derivation of the Jacobian is straightforward but 

tedious and is omitted here. 

The measurement covariance matrix becomes 

 

2

2

2

2

( ) 0 0 0

0 0 0

0 0 ( ) 0

0 0 0 ( )

0 0 0 0

0 0 0 0 0 ( )

σ

σ
σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

D

s

s

p

1

p

n T

1 1d

1

d

n

0 0

0 0

0 0
R = D D

0 0

0

, (67) 

7. Simulations and testing 

The robust filters were implemented in MATLAB and tested in simulations and using real 

GPS data. In Section 7.1, the simulation setup is described and the results of the 

simulations are discussed. The tests using real GPS measurement data are discussed in 

Section 7.2. 
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7.1 Simulations 

The simulation test bench was designed to produce dynamic test data similar to what could 
be expected in real world personal positioning scenarios. The main difference to real data is 
that in the simulations the true track and correct measurement and motion models are 
known. 

The test process consisted of first generating a true track of 120 points with one second 

intervals using a velocity-restricted random walk model, where 
 
σ p

2 = (1.41 m
s

) 2 s -1  and  

  
σ a

2 = (0.316 m
s

)s -1 . Similar values have been used in (Ma, 2004) to model moving vehicles. 
Next, a GPS constellation was simulated with an elevation mask and a shadowing profile 
that were set so that only a couple of satellites were visible at a time. Finally, noisy 
measurements were generated for each time step. 

Satellite pseudorange and deltarange measurements were used with an average of 2.9 

pseudorange and deltarange measurements per time step. Measurement variances were set 

to   (σ i
p ) 2 = ((0.1 + 2x U ) 2  m 2  and 

 
(σ i

d ) 2 = ((0.01 + 0.05x U ) 2  m 2

s2
. The term xU denotes the 

realization of a stochastic variable with standard uniform distribution  U (0,1) . Altogether, 

100 track and measurement sets were generated. These sets were generated using the 

Personal Navigation Filter Framework (Raitoharju et al., 2008). 
Next, some additional noise was generated to the measurements according to different 
choices of the blunder probability pb. For each measurement a sample from the standard 
uniform distribution  U (0,1)  was drawn. If the realization of the sample was less than pb, a 
realization of a sample from  U (−30σ , 30σ ) , where σ  was the standard deviation of the 
corresponding measurement, was added to the measurement value. The blunder 
probabilities were chosen to be 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.35 and 0.5. 
The test tracks were filtered with the six robust filters described in this chapter, 
corresponding to two choices of the filter (ABEKF and REKF) and to three choices of the 
influence and weight functions (Huber (H), p-point (M) and Damped Hampel (DHA)). The 
parameters for the influence and weight functions used in the simulations and tests are 
presented in Table 1. Since DHA M-estimator is not derived from a minimax criterion, and 
thus does not correspond to any least favorable density presented in this chapter, using it in 
ABEKF is somewhat questionable. However, since DHA is essentially a generalization of the 
Huber M-estimator, we use EF in DHA. 
 

Name Parameters 

Huber  k = 2.2  

 p-point 
 
y p = 2.2 

Damped 
Hampel 

 k 1 = 2.2 ,  k 2 = 3.3 ,  r = 1  

Table 1. Estimator parameters used in simulations and testing 

The mean and covariance of the posterior distribution were recorded at each time step and 
compared to the true track. For comparison, the data was also processed with EKF. 
Figure 1 shows the mean error of different filters when using the Damped Hampel influence 
and weight functions. It can be seen that EKF works quite well also when the blunder 
probability gets bigger. This is not surprising since EKF should be optimal for linear 
measurements regardless of the density function of the error. Nonetheless, REKF still 
performs better than EKF. However, ABEKF starts to give meaningless estimates even with 
moderate blunder probabilities. 
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Fig. 1. Comparison of different filters in the simulations 

The mean error (m), the 95% percentile of errors (m) and the frequency of inconsistent 
estimates (%) are presented in Table 2 for the blunder probabilities of 0, 0.1 and 0.25. The 
inconsistency was determined using the general inconsistency test with risk level 5% (Ali-
Löytty et al., 2005), and it tells how often the error estimate was smaller than the actual 
error.  
 

   p b = 0%  p b = 5%  p b = 25% 

  
ME 
(m) 

95% 
(m) 

Inc. 
(%) 

ME 
(m) 

95% 
(m) 

Inc. 
(%) 

ME 
(m) 

95% 
(m) 

Inc. 
(%) 

 H 52.2 287 0.0 53.5 281 0.1 59.7 300 1.5 
REKF M 52.2 285 0.0 53.8 281 0.0 60.9 302 2.0 

 DHA 53.6 286 0.0 54.3 279 0.1 59.1 285 1.1 

 H 51.9 284 0.0 53.4 277 0.3 64.9 313 10 
ABEKF M 53.0 275 0.0 54.4 279 0.1 62.6 292 7.2 

 DHA 51.9 284 0.0 53.5 276 0.5 91.4 461 22 

EKF  51.8 284 0.0 55.4 284 0.4 66.0 313 14 

Table 2. Results of the simulations 

The filtered solutions were consistent when the blunder probability was small, but with 

large blunder probability ABEKF and EKF produced more inconsistent solutions. REKF, 

however, does not suffer from inconsistency even with high blunder probabilities. The mean 

error and the 95% percentile of errors did not vary much between different filters. However, 

when the blunder probability was large, the best performance was obtained using REKF. 

ABEKF also performed better than EKF with respect to any criterion with large blunder 
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probabilities when using the Huber’s M-estimator or the p-point M-estimator. Damped 

Hampel M-estimator did not perform very well with ABEKF, but gave the best results when 

used in REKF. The fact that EKF performed quite well even with large blunder probabilities 

was surprising, but may be justified by noting that with almost linear measurements EKF 

should be optimal regardless of the noise distribution. 

7.2 Tests using real GPS data 

The filters were also tested using real GPS data. The test bench consists of 40 sets of 

measurements, which were recorded with a GPS receiver in Tampere, Finland. The receiver 

used was a Bluetooth Assisted GPS, BAG (Wirola et al., 2006). The sets consisted of cases 

where the user was standing still, walking or traveling in a bus with the receiver. The true 

track was only approximately known and it was transformed into digital format using a 

digital map of Tampere. Thus, the reporter errors are not exact, but instead, should be 

considered only as indicative. 

The results of the tests using real GPS data are presented in Table 3. ABEKF does not seem 

to work very well with DHA influence function, whereas the influence function of the 

Huber M-estimator and the influence function of the p-point M-estimator seem to work 

well. However, ABEKF outperforms EKF with all choices of influence function. REKF 

outperforms ABEKF with respect to mean error and 95% percentile but ABEKF is more 

consistent. 

The consistency of the solutions for each filter seems to be a lot worse than in the 

simulations. The inconsistency results from the fact that the variances of the measurements 

given by the measurement device are too optimistic. This might also be the cause of the poor 

performance of ABEKF when using the Damped Hampel M-estimator. Nevertheless, 

ABEKF and REKF perform better than EKF with respect to any criterion. By optimizing the 

parameters of these filters it might be possible to obtain even better results. 

 

  
ME 
(m) 

95% 
(m) 

Inc. 
(%) 

 H 26 55 37.3 
REKF M 27 55 35.4 

 DHA 24 55 36.9 

 H 29 57 36.3 
ABEKF M 29 56 34.5 

 DHA 1046 9308 36.1 

EKF  27051 221527 44.7 

Table 3. Results of the tests using real GPS data 

An example of a real positioning scenario is presented in Figures 2 and 3. In Figure 2 the 

measurements were processed with EKF using the Damped Hampel weight function, and in 

Figure 3 the same measurements were processed with REKF. The true track is denoted by a 

black dashed line, and the mean estimates of the filtered solutions are denoted by blue and 

red dots. Blue dots represent consistent estimates and red dots are inconsistent estimates. 

This example shows how poorly EKF might work even in quite good signal conditions, and 

how significantly REKF improves the estimation process.  
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Fig. 2. An example of EKF using real GPS-

measurements. (Map © Kaupunkimittaus 
Tampere 2008) 

Fig. 3. An example of REKF using real GPS-
measurements 

8. Conclusions 

In this chapter robust filtering techniques for positioning using satellite measurements were 
presented. The Extended Kalman Filter was chosen as basis for robust filter design. Six 
filters were presented and tested in the simulations and using real GPS data. 
Based on the simulations the proposed filters seem to outperform EKF when blunder 
measurements occur, and do almost as well in normal cases. However, ABEKF does not 
seem to work well when using the Damped Hampel M-estimator, but performs better than 
EKF when using the Huber’s M-estimator or the p-point M-estimator. The best performance 
was obtained using REKF with the Damped Hampel M-estimator, but other M-estimators 
also seemed to work almost as well. 
The tests using real GPS data showed similar trends in the results except that EKF 
performed very poorly. REKF with the Damped Hampel M-estimator performed best also 
when using real GPS data. 
Therefore, REKF should be taken into consideration when implementing positioning 
algorithms in mobile positioning devices due to its light computational and memory 
requirements and relatively high accuracy. The most promising approach was to use the 
Damped Hampel weight functions, but the performance degrades only a little when using 
any other influence and weight function proposed in this chapter. 
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