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Abstract

One of the most promising approaches to boost the communication efficiency in wireless sys-
tems is the use of multiuser diversity (MUDiv), where the fading of channels is exploited.
The mechanism of scheduling the user with the best channel condition is called opportunis-
tic scheduling (OS). In this paper we propose a joint polling and contention based feedback
(JPCF) algorithm that exploits MUDiv while reducing the feedback load. The guard time,
which is between bursts, is divided into minislots that alternate between polling-based feed-
back minislot (p-minislot) and contention-based feedback minislot (c-minislot). During the
minislot, users feedback their channel qualities if above a predetermined threshold. We ana-
lyze the scheduling algorithm under slow Rayleigh fading assumption and derive the closed-
form expressions of the feedback load as well as the system capacity. We also consider the
delay resulting from the time needed to schedule a user and derive the system throughput.
The scheduling algorithm is compared with other scheduling algorithms.

1. Introduction

With the emerging of new multimedia applications and the huge demand and growth for such
applications, the need to provide high-speed high-rate transmission techniques is demanding.
One technique that has the capability of supporting such applications is multiuser diversity
(MUDiv), where the fading of channels is exploited (1). Assume that a reasonably large num-
ber of users are actively transmitting/receiving packets in a given cell, and they experience
independent time-varying fading conditions. By transmitting data to only the instantaneous
“on-peak" user, opportunistic scheduling (OS) can efficiently utilize the wireless resources and
thus dramatically improve the overall system throughput (2), (3). In order to schedule the
best user, in terms of channel quality, each user measures his instantaneous signal-to-noise
ratio (SNR) and feeds it back to the network scheduler. Currently Qualcomm’s high data rate
(HDR) system require similar scheme (4). As the number of active users becomes high, re-
sources are wasted in carrying this amount of feedback, which lead to inefficient use of the
spectrum. This issue motivated researchers to propose new techniques to reduce the feedback
load while exploiting MUDiv.
Many investigations have been conducted to exploit multiuser diversity while keeping the
overhead as minimum as possible. For instance, the impact of the degree of quantization of
the SNR measurements on the throughput of constant rate transmission was investigated in
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(5). It was shown that reducing the feedback rate (few quantization levels) yields a good per-
formance compared to the unquantized feedback. In single carrier systems, (6) proposed a
discrete rate switch-based multiuser diversity (DSMUDiv) algorithm that reduced the feed-
back load and feedback rate while preserving the performance of OS. The scheduling algo-
rithm relied on a probing mechanism. One drawback of this algorithm is that as the average
SNR decreases the need for full probing increases, therefore, the algorithm suffers from high
feedback load at low average SNR values. The work was extended to multi-carrier systems in
(7), where further reduction in the feedback load was shown. Similarly, in (8) users compare
their sum-rate on all sub-carriers to a predefined threshold value. In (9), the threshold value
was optimized to meet a specified outage probability. Users with channel quality above the
threshold are allowed to feedback their SNR measurements, while all others remain silent. In
case no feedback, a random user is selected, which leads to loss in capacity. Also, the feedback
values are unquantized (analog values), which increases the feedback rate. In (10), the work
was extended, where the scheduler requests full feedback if none of the users’ channel quali-
ties are above the threshold. Although the loss in capacity was compensated by full feedback
as opposed to (9), the feedback load was increased. In (11), multiple feedback thresholds are
used in order to reduce the feedback load and exploit multiuser diversity. The feedback load
was reduced at an expense of scheduling delay. In addition, a set of switched-based multiuser
access schemes were proposed in (12) in order to reduce the feedback load. In (13), (14), the
feedback rate was reduced to a one bit feedback per user. The scheduler uses these feedback
bits to partition all users into two sets and assigns the channel to one user belonging to the
set experiencing favorable channel conditions. Although this reduces the feedback load and
feedback rate but some loss is expected due to the low resolution of the quantized feedback
(one bit). Other work have considered multi-carrier systems, for instants, in (15) a clustering
scheme was proposed to reduce the feedback load while slightly degrading the performance.
Each user feeds back a figure-of-merit listing its strongest clusters of subcarriers. Similarly, in
(16) a fixed number of subcarriers for each user is fed back instead of a full feedback. These
subcarriers are either the best K out of M subcarriers or K predetermined subcarriers. All pre-
viously mentioned work considered a polling threshold-based scheduling schemes to reduce
the feedback load.
Other work considered random access algorithms to exploit multiuser diversity while reduc-
ing the overhead. In (17) a distributed multiaccess scheme was proposed. Based on a channel
quality threshold, users report the best m channels with quality above the threshold value.
Optimization was performed to find the best threshold and m values to maximize the system
capacity. In (18), a random access threshold-based feedback scheme was proposed to exploit
diversity gain while reducing the feedback load. Parameter optimization is performed to al-
low only users with high channel gains to feedback, which maximizes the system capacity.
In (19), a medium access control protocol was designed based on a splitting algorithms to re-
solve collisions over a sequence of minislots, and determine the user with the best channel.
Contention resolution algorithms while exploiting the diversity gain were proposed in (20).
Finally, reduced feedback overhead algorithms were studied in (21). Static splitting was con-
sidered for the best effort traffic scenario. Whereas, for the traffic mixture scenario combine
contention and polling based feedback was considered to maintain quality of service.
While Polling-based algorithms, like the DSMUDiv, guarantee best user selection, it suffers
from scheduling delay. On the other hand, although contention-based algorithms reduces the
overhead more then centralized scheduling it suffers from loss in capacity. In this chapter
we introduce an opportunistic scheduling algorithm that is not only a polling-based feedback
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algorithm like in (6), but it is a joint polling and contention based feedback (JPCF) algorithm.
During the guard time, which is divided into minislots, users feedback their channel qualities,
based on a predetermined channel threshold, either in a polling-based feedback minislot (p-
minislot) or/and a contention-based feedback minislot (c-minislot). When a the best user is
found data transmission begins. The scheduling algorithm is analyzed under slow Rayleigh
fading assumption and closed-form expressions of both the feedback load and the system
capacity are derived. We also look at the effect of the delay on the throughput, where we
derive the system throughput. The scheduling algorithm is compared with the DSMUDiv (6)
and the optimal (full feedback) selective diversity scheduling algorithms.
This chapter is organized as follows. Section 2 introduces the system model. Section 3 and
4 present the scheduling algorithm and the mathematical analysis of the JPCF algorithm, re-
spectively. In Section 5 we present some numerical examples. Finally, Section 6 ends the paper
with some concluding remarks.

2. System Model

We consider a single free interference cell in a wireless network with K active users commu-
nicating with a base station (BS). We assume downlink scheduling, where only one user is
allowed to receive data transmission in each time slot. The communication is based on time
division duplex (TDD), where downlink and uplink channels are reciprocal.

2.1 Downlink Transmission Model

Let,
yi(T) = hi(T) · x(T) + ni(T); i = 1, 2, 3, ....., K (1)

be the baseband channel model, where x(T) ∈ C is the transmitted signal in time slot T
and yi(T) ∈ C is the received signal of user i in time slot T. The noise processes ni(T) are
independent and identical distributed (i.i.d.) sequences of zero mean complex Gaussian noise
with variance σ

2
n . The fading channel gain from the BS to the ith user in time slot T is hi(T). We

adopt a quasi-static fading channel model where hi(T) is i.i.d. from burst to burst but remains
constant over each burst. We consider a flat Rayleigh fading model, assuming the fading
coefficients of all users are i.i.d. Therefore, hi(T) is a zero-mean complex Gaussian random
variable. The amplitude of hi(T), αi(T) = |hi(T)| is Rayleigh distributed with the probability
density function (PDF) given by,

fαi (αi) =
2αi

Ωi
exp(−

α
2
i

Ωi
) (2)

where Ωi = E[α2
i ] is the average fading power of the ith user.

2.2 Quantized Feedback

In this work we assume that users adapt their modulation level based on the instantaneous
channel condition. Using this transmission strategy, which is called adaptive modulation
(AM), if the channel is strong at a given time, the transmission can occur with a higher con-
stellation size. Otherwise, a lower constellation size has to be used. Note that the switching
thresholds of the adaptive transmission modes are functions of the modulation scheme and
target error performance. We consider adaptive multilevel quadrature amplitude modulation
(M-QAM) scheme (22). Specifically, we consider a transmission scheme employing uncoded
adaptive discrete rate M-QAM schemes with constellation sizes M = {Mn : Mn < Mn+1, 0 ≤
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n ≤ N}, where M0 = 1 is the user outage (deep fade), and MN is the highest modulation level.
We assume perfect channel estimation and negligible time delay between channel estimation
and signal set adaptation, and as such, the rate adaptation can happen instantaneously. We
also assume error free feedback channels. If we denote the target average bit error probability
(BEP) by BEPo, thresholds or switching thresholds can be obtained according to (22, eq.(30)):

γ
(1)
th = [erfc−1(2 · BEPo)]

2,

γ
(n)
th = −

2

3
(2n − 1) ln(5 · BEPo); n = 2, 3, ....., N,

γ
(N+1)
th = +∞,

(3)

where erfc−1(·) denotes the inverse complementary error function.
Similar to (6), with the assumption of discrete rates, a user estimates his SNR and instead of
feeding back the analog value it is mapped to a quantized value that represent the modulation
level, which can be supported, and then this quantized value is fed back.

Define the set of quantized values (binary bits) Q = {q(n) : q(n) < q(n+1), 0 ≤ n ≤ N} that

represents the modulation levels, (q(n) →map Mn). If we assume n modulation levels, then

each quantized value q(m), 0 ≤ m ≤ n, will be log2 n bits in length. To illustrate the idea of the
SNR mapping, assume γi is the estimated SNR of the ith user, then the quantized value is,

qi =















q(0) if γi < γ
(1)
th (outage),

q(n) if γ
(n)
th ≤ γi < γ

(n+1)
th

q(N) if γi ≥ γ
(N)
th .

(4)

2.3 Uplink Feedback Structure

Fig. 1 shows the feedback channel structure, which consists of minislots. The number of
minislots constructing the feedback channel can vary from 1 minislot, in the case the first
user is granted the channel access, to 2K − 1 minislots, where K is the total number of users,
in the case all users feed back their channel qualities. This variation in length assumes that
data transmission can begin at different time periods. Such assumption can be possible if
dynamic spectrum access is implemented. The JPCF scheduling algorithm assumes that the
feedback is polling-based or contention-based. The feedback channel is divided into polling-
based feedback minislots (p-minislot) and contention-based feedback minislots (c-minislot),
where each p-minislot is followed by a c-minislot, except the last p-minislot. The contention
protocol is based on a modified slotted ALOHA protocol (23). As any random multiple access
protocol one out of three possible outcomes will occur: no access, one access, and a collision.
Multiple users feeding back the requested information will cause signals to interfere at the
receiver which we consider as a collision. When a collision occurs no resolution is consider
and the information is discarded.

3. Scheduling Algorithm

In this section, we will introduce our proposed algorithm, the JPCF scheduling algorithm.
Similar to the optimal selective scheduling algorithm, the JPCF algorithm always guarantees
that the best user is granted the channel access. The difference between the two is in the se-
lection process. In the JPCF algorithm decisions on whom to schedule are based on threshold
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test. In simple terms, the BS compares the channel quality of a user to a predetermined thresh-
old value and selects the user if his channel quality exceeds the threshold. In case no user is
found with channel quality exceeding the threshold, then the user with the highest channel
quality among all is selected.
Let us define the following:

• L = {(D(i), l) : 1 ≤ l ≤ K is the probing order , and D(i) is the ID of user i}. The set is
generated randomly each time slot.

• The predetermined threshold value is set to γ
(N)
th . According to (3), γ

(N)
th is the SNR

threshold of the highest modulation level and q(N) is the quantized threshold value.

• The probability of contention in the c-minislot is ρ.

The feedback mechanism of the JPCF algorithm is based on both polling period and contention
period. Each period is a minislot during. Fig. 1 shows the feedback channel structure, which
consists of p-minislots and c-minislots. The following describes the scheduling algorithm (Fig.
2 shows the flowchart):

(i) Through the broadcast channel all users know their polling order (L).

(ii) The feedback channel always begins with a p-minislot.

(iii) During the p-minislot the BS polls the channel state information of the user (his SNR)
who is in order.

(iv) The feedback channel is terminated and the data transmission begins if the polled user

has ql = q(N). By knowing (γl) and according to (4) ql is determined.

(v) If ql �= q(N), then his information is stored and the feedback channel continues with a
c-minislot following the previous p-minislot and step (vi) is performed.

(vi) During the c-minislot, which is a contention based minislot, users feedback their SNRs,

with probability ρ, if it satisfy q = q(N). Otherwise, they keep silent.

(vii) If the contention is successful, then the feedback channel is terminated and the data
transmission begins for that successful user. Otherwise, the feedback channel continues
with a p-minislot following the previous c-minislot and step (iii) is performed.

(viii) In case all users are polled, the BS picks the user with the highest channel quality among
them and the data transmission begins for that user.

(ix) In case a tie occurs, a random pick is performed.

4. Performance Analysis

The performance of the JPCF algorithm is evaluated in this section. Basically, we concentrate
on the feedback load, the system capacity, and the scheduling delay. Closed form expressions
for all three performance measures are also derived.

4.1 Feedback Load

We define the average feedback load (AFL) as the average number of responses until a user is
scheduled. The feedback response includes the response on the p-minislot, and the response
on the c-minislot. In the c-minislot, a contention resulting a success or a collision is counted
as one response, and zero response is considered in case no contention occurs.
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Consider two consecutive minislots (p-minislot and c-minislot) and denote the discrete ran-
dom variable η ∈ [1, 2] by the total number of feedback during them. Let U be the set of events
where a successful search occurs during the two minislots. Note that a successful search occurs

when a user with q = q(N) is found. Therefore, the occurrence of a successful search is associ-

ated with one of the following events: (i) The polled user during the p-minislot has q = q(N),

or (ii) The polled user during the p-minislot has q < q(N) and a successful contention occurs
in the following c-minislot.
The probability of U given l probes is:

ΓU(l, ρ) =

[

1 − Fγ(γ
(N)
th )

]

+

[

Fγ(γ
(N)
th )

{

K−l

∑
i=1

(

K − l

i

)

(

1 − Fγ(γ
(N)
th )

)i(

Fγ(γ
(N)
th )

)K−l−i

×

(

iρ(1 − ρ)i−1

)}]

,

(5)

where

Fγ(ζ) = P[γ < ζ] = (1 − e
−ζ
γ̄ ), (6)

is the cumulative distribution function (CDF) of the SNR (γ). The first part of the right hand
side of (5) refers to the success in the p-minislot and the second part refers in the success in
the c-minislot.
let X represent the set of events where no feedback occurs on the c-minislot and Y to be the set
of events where a feedback occurs on the c-minislot. Conditioning on l, the probability of X

and the probability of Y, respectively, are:

ΓX(l, ρ) =

[

1 − Fγ(γ
(N)
th )

]

+

[

Fγ(γ
(N)
th )

{

K−l

∑
i=0

(

K − l

i

)

(

1 − Fγ(γ
(N)
th )

)i(

Fγ(γ
(N)
th )

)K−l−i

×

(

(1 − ρ)i

)}]

,

(7)

and

ΓY(l, ρ) = Fγ(γ
(N)
th )

{

K−l

∑
i=0

(

K − l

i

)

(

1 − Fγ(γ
(N)
th )

)i(

Fγ(γ
(N)
th )

)K−l−i(

1 − (1 − ρ)i

)}

. (8)

The conditioned expected value of η is:

η(l, ρ) = 1 · ΓX(l, ρ) + 2 · ΓY(l, ρ). (9)

Therefore, the AFL is:

AFL(ρ) =
K−1

∑
l=1

(

l

∑
i=1

η(i, ρ)

)

l−1

∏
i=1

(

1 − ΓU(i, ρ)

)

ΓU(l, ρ)

+

[(

K−1

∑
l=1

η(l, ρ)

)

+ 1

]

K−1

∏
l=1

(

1 − ΓU(l, ρ)

)

.

(10)
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4.2 System Capacity

The average spectral efficiency (ASE) is defined as the average transmitted data rate per unit
bandwidth in bits/sec/Hz for specified power and target error performance. In this work
we are considering discrete rates and using quantized SNR values (q). For example: if two

users with γ1 ∈ [γ
(i)
th , γ

(i+1)
th ), γ2 ∈ [γ

(i)
th , γ

(i+1)
th ), and γ1 �= γ2, then according to (4) both

users feedback q(i). Therefore, scheduling either one will result a transmission rate of log2 Mi

bps/Hz.
Based on the algorithm’s description in Section 3, it is clearly seen that both the DSMUDiv
scheduling algorithm proposed in (6) and the JPCF scheduling algorithm will always select
the best user. Therefore, resulting a similar performance in terms of spectral efficiency.
It has been shown in (6) that with i users in the system, scheduling the best user yields the
following average spectral efficiency:

R(i) = bo

(

[Fγ(γ
(1)
th )]i

)

+
N−1

∑
n=1

bn

(

[Fγ(γ
(n+1)
th )]i − [Fγ(γ

(n)
th )]i

)

+ bN

(

1 − [Fγ(γ
(N)
th )]i

)

(11)

where bn = log2 Mn is the number of bits per constellation.
Therefore, the ASE of the JPCF algorithm is:

ASE = R(K). (12)

In the above expression (12) it is assumed that the guard time duration is negligible, meaning
that the feedback rate will not degrade the total system spectral efficiency. Practically, this
is not valid. Therefore, the amount of bits transmitted as feedback has to be counted and
at the end it will influence the performance of the system. To look into this issue, which is
spectral efficiency degradation caused by the feedback traffic, we define a the system capacity
as [bits/channel use]. Assuming N modulation levels, then we need log2 N bits to represent
them. Therefore, the system capacity is:

Csys = R(K)−
AFL · log2 N

S
, (13)

where S is the number of symbols transmitted in the data transmission time slot.
In (13), the last term takes into account the amount of bits transmitted as feedback. Also, in the
same expression the time delay is not taken into account, which is the guard time duration.
The only consideration is the feedback rate, or the amount of bits transmitted as feedback. In
the next section we investigate the effect of delay on the system performance.

4.3 Scheduling Delay

In this section we investigate the scheduling delay and its effect on the system performance.
This time delay is part of the system resources and it is important to identify the amount of
resources consumed when performing the JPCF algorithm.
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4.3.1 Guard time

The scheduling process will take place during the gaud time (τg), which is between bursts.
The delay resulted from this scheduling process is measured as the time needed to schedule a
user, which is simply the time duration of the minislots used (idle minislots are counted) until
data transmission is allowed. By looking at Fig. 1, we can see that τf ≤ τg ≤ (2K − 1)τf . For
simplicity, we assume that both p-minislot and c-minislot have the same time length (τf ).
Assuming a successful search at the lth p-minislot, then the guard time is:

τg(l) = τf (2l − 1), (14)

with probability:

P(p)(l) =

[

l−1

∏
i=1

(

1 − ΓU(i, ρ)

)

]

·

[

1 − Fγ(γ
(N)
th )

]

. (15)

On the other hand, if the successful search occurs at the lth c-minislot, then the guard time is:

τg(l) = 2lτf , (16)

with probability:

P(c)(l) =

[

l−1

∏
i=1

(

1 − ΓU(i, ρ)

)

]

·

[

ΓU(l, ρ)−

(

1 − Fγ(γ
(N)
th )

)

]

. (17)

Therefore, the average guard time is:

τ =
K−1

∑
l=1

[

τf (2l − 1)P(p)(l) + 2lτf P(c)(l)

]

+

(

(2K − 1)τf

)

·

[

K−1

∏
i=1

(

1 − ΓU(i, ρ)

)

]

.

(18)

4.3.2 System throughput

The system throughput (STH) is the amount of data bits transmitted per time, where this
time includes the data transmission time (Td) and the guard time (τg). In (12), we looked at
the amount of bits per data transmission time, where the effect of the scheduling delay was
not included. To have a better insight, we derive the average system throughput (ASTH) by
taking into account the effect of the guard time duration.
The average system throughput is:

ASTH =
K−1

∑
l=1

[(

Td − τf (2l − 1)

Td

)

P(p)(l) +

(

Td − 2lτf

Td

)

P(c)(l)

]

· R(K)

+

(

Td − (2K − 1)τf

Td

)

· R(K) ·

[

K−1

∏
i=1

(

1 − ΓU(i, ρ)

)

]

.

(19)
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4.4 Parameters Optimizations

The algorithm’s objective is to strictly schedule the best user, therefore the search process will

last until a user with q = q(N) is found, which depends on γ
(N)
th and ρ. In this section we

investigate the optimization of ρ with the objective to minimize the feedback load:

{ρ} =arg min
{ρ}

AFL(γ
(N)
th , ρ, K),

subject to 0 ≤ ρ ≤ 1.

(20)

Similarly, the optimization solution is well defined by the equation:

{

∂AFL(ρ,K)
∂ρ = 0,

0 ≤ ρ ≤ 1.
(21)

Note that the optimization may not be convex. The derivation of (10) is involved so we apply
an exhaustive search method to find an optimal value. Table 3 shows the optimal values with
different K given the parameters in Section 5. It is clearly seen from Table 3 that for a given K,
ρ has two optimal values at the two average SNR regions. This is due to the collision. At low
average SNR values, the value of ρ is increased to encourage good users to compete, whereas,
at higher average SNR values the value of ρ is decreased to lower the possibility of collision.

5. Numerical Results

In this section we elaborate on the the performance of the JPCF algorithm by presenting some
numerical examples. We compare its performance with both the DSMUDiv and the optimal
selective diversity scheduling schemes. Parameters values are found in Tables 1 and 2. Fig. 3
shows the normalized average feedback load (i.e., the average feedback load divided by the
number of users K) of the JPCF algorithm for different values of ρ, which is the probability
of contention. As the value of the average SNR changes from low to high, the optimal value
of ρ, at which the feedback is minimized, changes from ρ = 1 to ρ = 0.13, for a given value
of K. Table 3 shows the optimal values of ρ for different values of K. The reason for the
change of the optimal value is the threshold value. For a given threshold value, the percent of
users with channel quality exceeding it increases as the average SNR increases, which leads
to higher probability of collision. As more users contend the feedback load increases, which
forces the value of ρ to change to maintain the minimization in (20). The point at which this

change happens depend on the value of γ
(N)
th and the BEPo.

The comparison of the JPCF algorithm with both the DSMUDiv and the optimal selective di-
versity scheduling algorithms is presented in Fig. 4. In the figure, although the DSMUDiv
algorithm has decreased the feedback load compared to the optimal algorithm, the JPCF al-
gorithm has decreased the feedback load even more. This extra reduction comes from the
introduction of the contention-based feedback (c-minislot), where not all users need to be
polled as opposed to the DSMUDiv algorithm, which is a pure polling-based feedback algo-
rithm. In terms of spectral efficiency, as shown in Section 4.2, both the JPCF algorithm and the
DSMUDiv algorithm have the same spectral efficiency (here the feedback rate is not included).
In (6), it has been proven that the DSMUDiv algorithm maintain the performance of the full
feedback algorithm in terms of spectral efficiency, which means that the JPCF algorithm also
maintain the same performance. The difference will come when you include the feedback rate
(log2 N), which is defined as [bits/channel use]. From (13), we can see that as the feedback
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load increases the system capacity decreases, therefore, we deduce that the JPCF algorithm
has the highest system capacity compared to the other two algorithms, which can be seen in
Fig. 5 and 6. As a benchmark we include the average spectral efficiency (ASE) that does not
include the feedback rate. The gap between the system capacity and the ASE shrinks with the
increase of number of symbols transmitted in the data transmission time slot.
Although the number of minislots of the JPCF algorithm varies from 1 to 2K − 1, which is
much greater than the DSMUDiv algorithm, where the minislots varies from 1 to K, the aver-
age guard time of the JPCF algorithm is much smaller than the guard time of the DSMUDiv
algorithm as depicted in Fig. 7. Such advantage occurs at medium to high average SNR. As
the average SNR decreases this advantage diminishes as seen in Fig. 8. The reason is that the
JPCF algorithm has contention minislots which creates an additional delay on top of the delay
created by the polling minislots. This delay increase as the probability of finding a user with
channel gain exceeding the threshold value decreases, which is the case for low average SNR
values. Fig. 9 shows the effect of different data transmission time durations on the system
throughput. Obviously, higher values give better performance.

6. Conclusions

In this chapter we proposed a scheduling algorithm that maximizes the spectral efficiency
while reducing the feedback load. The algorithm, called joint polling and contention based
feedback (JPCF) algorithm, collects channel quality information of the users either in a polling
form or in a contention form. Compared to the optimal (full feedback) algorithm, the JPCF
algorithm has a similar spectral efficiency and a higher system capacity, which takes into ac-
count the effect of the feedback rate. Also, the JPCF algorithm shows more reduction in feed-
back load compared to the DSMUDiv algorithm. One drawback of the JPCF algorithm is the
high delay compared to the DSMUDiv algorithm as the average SNR decreases, which affects
the performance. As the average SNR increases, the delay encountered when using the JPCF
algorithm drops below the delay created by using the DSMUDiv algorithm, which improves
the system performance. The work presented in this paper includes analysis of the JPCF algo-
rithm under slow Rayleigh fading assumption. Closed-form expressions of the feedback load,
system capacity and scheduling delay are also presented in this paper.

Modulation Level Switching Threshold (dB)

BPSK γ
(1)
th

= 4.8

4-QAM γ
(2)
th

= 7.8

16-QAM γ
(3)
th

= 15

64-QAM γ
(4)
th

= 20

Table 1. A List of Selected Modulation Levels (BEPo = 10−2)
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Parameter Value

N 4 modulations
K 30 users
τf 154 µsec (based on reference (24))

Td 5 msec (based on reference (24))

Table 2. A List of Parameters

K=5 K=30 K=50 K=100

ρ = 0.2, γ > 19 dB ρ = 0.13, γ > 15 dB ρ = 0.12, γ > 15 dB ρ = 0.1, γ > 14 dB
ρ = 1, γ ≤ 19 dB ρ = 1, γ ≤ 15 dB ρ = 1, γ ≤ 15 dB ρ = 1, γ ≤ 14 dB

Table 3. The Parameters Optimizations

Fig. 1. The framing structure of a TDD system. Each polling-based feedback minislot (p-minislot) is

followed by a contention-based feedback minislot (c-minislot), where they carry the feedback information.
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Fig. 2. A flowchart of the JPCF algorithm.
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Fig. 3. Normalized average feedback load of the JPCF scheduling algorithm with different values of ρ.
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Fig. 4. Comparison of the normalized average feedback load of: (i) the proposed (JPCF) scheduling algo-

rithm, (ii) the DSMUDiv scheduling algorithm, and (iii) the optimal (full feedback) scheduling algorithm.
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Fig. 5. System capacity of: (i) the proposed (JPCF) scheduling algorithm, (ii) the DSMUDiv scheduling

algorithm, and (iii) the optimal (full feedback) scheduling algorithm. Setting ρ = 1, 100 symbols are

transmitted, and γ = 15dB.
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Fig. 6. System capacity of: (i) the proposed (JPCF) scheduling algorithm, (ii) the DSMUDiv scheduling

algorithm, and (iii) the optimal (full feedback) scheduling algorithm. Setting ρ = 1, 500 symbols are

transmitted, and γ = 15dB.
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Fig. 7. Average guard time of: (i) the JPCF scheduling algorithm, and (ii) the DSMUDiv scheduling

algorithm. Setting γ = 15dB.
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Fig. 8. Average guard time of: (i) the JPCF scheduling algorithm, and (ii) the DSMUDiv scheduling

algorithm. Setting γ = 5dB.
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Fig. 9. System throughput as percentage of the average spectral efficiency of the JPCF scheduling algo-

rithm. Setting γ = 15dB, and 1 symbol is transmitted.
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