We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

5

A Distributed Multilayer Software
Architecture for MIMO Testbeds

José A. Garcia-Naya, M. Gonzélez-Lépez and L. Castedo
Universidade da Coruiia
Spain

1. Introduction

The use of multiple antennas at both transmission and reception, also known as Multiple In-
put Multiple Output (MIMO) transmission systems, has received a lot of interest from the
wireless communications industry during the last years. Communications in wireless chan-
nels using MIMO technologies exhibits a superior performance in terms of spectral efficiency,
reliability and data rate when compared to conventional single antenna technologies (Foschini
& Gans, 1998; Telatar, 1999). Existing and emerging standards for wireless communications
such as IEEE 802.11 (WiFI), IEEE 802.16 (WiMAX) and Long Term Evolution (LTE), support
multi-antenna transmission in their highest performance profiles.

In spite of their potential performance-enhancing capabilities, most of the research on MIMO
technologies up to the moment is based on theoretical studies. Typically, the expected gains
of MIMO technologies are only shown under ideal conditions since most analysis rely on
simulations. Experiments in real-world scenarios by means of hardware implementations are
necessary to measure the actual performance of multi-antenna transmission methods. Hard-
ware implementations not only take into account the real multipath propagation in wireless
channels but also the implementation impairments so often ignored during the simulations.
Hardware implementations can be split into three groups (Rupp et al., 2006). The first one is
constituted by demonstrators which are frequently designed having in mind a particular stan-
dard or specification. Demonstrators usually exhibit good technical features for real-time im-
plementations but they are extremely expensive and present poor flexibility and modularity.
The second group is formed by prototypes of a final product. A prototype is a real-time imple-
mentation of a system specifically developed to support an industrial need. Prototypes often
constitute a preliminary stage where the system is implemented and debugged and later on
implemented as a consumer product. Finally, the third set is formed by testbeds that support
real-time transmission capabilities while data is generated and post-processed off-line.

In addition, hybrid solutions can be devised. As an example, a testbed can carry out some op-
erations in real-time with the purpose of speeding up the measurement process. Usually, can-
didate signal processing operations to be implemented in real-time are those that operate at
sample level and/or do common tasks for all experiments, i.e. I/Q modulation, up-sampling,
pulse-shaped filtering, etc. Throughout this chapter we will focus on testbeds because they
use open designs and are more often found in public research centres and academia.

Various MIMO testbeds have been reported in the literature (Borkowski et al., 2006; Caban
et al., 2006; Fabregas et al., 2006; Haustein et al., 2006; Nieto et al., 2006; Ramirez et al., 2008;

www.intechopen.com

78 Radio Communications

Rao et al., 2004; Wilzeck et al., 2006; Zhu & Fitz, 2005). Some of them have been constructed
to evaluate a particular standard or specification while others have been designed for general
purpose. Flexibility, development time consumption, throughput or costs are important fea-
tures when comparing existing testbeds. Also, it should be noticed the educational possibili-
ties of testbeds that open the door to many teaching opportunities. In the literature, however,
there is a lack of up-to-date guides and tutorials useful for the construction of a new testbed
from the scratch. Indeed, there exists few contributions (Caban et al., 2006; Garcia-Naya et al.,
2008a; Rao et al., 2004; Rupp et al., 2007) that contain a detailed description of the constructed
MIMO testbed and, except for (Garcia-Naya et al., 2008a; Rupp et al., 2007), the information
contained on them is already outdated.

Based on the previous experience acquired by the research group of the authors in building
and setting up MIMO testbeds, as well as performing indoor measurements (Pérez-Iglesias
et al., 2008; Ramirez et al., 2008), we can assert that once the testbed hardware is available
and properly configured, accessing the testbed becomes the main and also frequently ignored
issue. When a research team decides to start the process of acquiring and/or constructing a
new testbed, they need to take into account numerous aspects related both with the hardware
and its technical features, and the extensibility possibilities for the future (Garcia-Naya et
al., 2008a; Rupp et al., 2007). Usually, most of the efforts are devoted to the testbed setup,
which results in equipment that is hardly usable by people not involved in its design and
later configuration. This makes extremely difficult to access to the testbed.

As a result, the migration of an algorithm from a simulation environment to a testbed involves
cumbersome low-level programming to access the hardware as well as a very detailed knowl-
edge of the hardware. Additionally, hardware implementation problems frequently ignored
by simulations arise, such as time and frequency synchronization, I/Q imbalances, non lin-
ear distortions caused by the power amplifiers, etc. All these issues make difficult to assess
new MIMO transmission methods in a testbed. For this reason, it is desirable to make the
testbed accessible to final users at a reasonable abstraction level. This goal represents an im-
portant challenge due to the large amount of heterogeneous technologies and development
environments that have to be integrated together. However, if this challenge is accomplished,
the final result is a very attractive product for the user, who can focus on the development of
new transmission techniques that can be easily translated to the testbed and later evaluated
in realistic scenarios.

In this chapter we describe how to solve all previously mentioned limitations by using a dis-
tributed multilayer software architecture. This architecture enables the testbed to be easily
accessible by the researchers and to be integrated in the development environment they are
using. Although all designs and results herein presented are particularized for our MIMO
testbed (Garcia-Naya et al., 2008b; Ramirez et al., 2008), they are easily adaptable to most of
the existing testbeds, making even possible the integration of heterogeneous testbed nodes in
order to build a multi-terminal testbed.

The proposed software architecture consists of three different layers:

1. The middleware layer (MWL) is the lowest-level layer that interacts with the testbed
hardware. It makes the testbed accessible through standard TCP socket connections.

2. The signal processing layer (SPL) performs the necessary operations required to con-
vert the discrete-time sequences provided by the final user into discrete-time signals
suitable to be transmitted by the hardware. At the receiver, it is usual to perform signal
processing operations like time and frequency synchronization in case they are not car-
ried out by the testbed hardware. The tasks compounding the signal processing layer

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 79

can also be executed in real-time by the testbed hardware. For example, digital up and
down converters are frequently available in the libraries of programmable hardware
modules.

3. The testbed interface layer (TIL) is the highest-level layer and presents the testbed to
the user at an adequate abstraction level. The TIL has to be designed and implemented
for a specific development environment. For example, if the final user makes use of
Matlab, then a specific implementation of the TIL for Matlab has to be developed. The
main purpose of the TIL is to provide a simplified interface to access the testbed. This
does not prevent from providing mechanisms to control the hardware in detail from
the TIL. It is very important to emphasize that there is no logic in the TIL except that
necessary for adapting the data format from the specific environment used by the SPL
and vice versa. The only requirement for the TIL to be implemented is the availability
of a standard TCP socket library.

The whole design and implementation of the proposed software architecture is done under
the following premises:

1. Layers have to be as decoupled as possible. This is a fundamental idea in modern
software design and structured programming. The key idea is not to replicate function-
alities that are already present in another layer, which would be a symptom of a bad
design. The basic premise is to design everything to be fully decoupled and reusable;
and later on introduce some small violations of this principle only if they are strictly
needed to increase the overall system performance.

2. Each layer can be extended and/or customized to be able to adapt them to future spec-
ifications and/or heterogeneous hardware environments. It is important that this layer
upgrade be done without needing a complete remake of the software, which is fre-
quently the only solution in case of monolithic non-layered systems.

3. Finally, layers should be distributed, which means that they use remote connections
to interact among them. On the one hand, this helps to ensure the decoupling and
independence principles whereas, on the other hand, allows the testbed to be remotely
accessible from the user Personal Computer (PC).

The remaining of this chapter is structured as follows. Section 2 and Section 3 provide a
global description of the testbed hardware and software possibilities, respectively. Section 4
describes the software technologies that were used to develop the proposed distributed multi-
layer software architecture. In Section 5 the software architecture is presented and described.
The interaction among the different layers and components of the architecture is studied in
Section 6 and Section 7. Finally, Section 8 is devoted to the conclusions.

2. Basic Testbed Hardware

Testbeds are often used to verify if a new signalling technique (or even a complete standard
system) that has been proven useful by simulations is also valid in realistic wireless scenar-
ios. Testbeds allow the dimensioning of the hardware needs for real-time implementations,
not only for the digital signal processing modules (mainly, DSP and FPGA) but also for the
analogue Radio Frequency (RF) front-ends. Testbeds allow capturing the requisites for the
hardware used in the final real-time implementation. Consequently, evaluating performance
with testbeds allows knowing whether a given technique is feasible from the real-time hard-
ware and implementation requirements.

www.intechopen.com

80

Radio Communications

| Digital | —1{ DAC f
! ! Hardware ... ' : S I}F
' Main' i ! - i j
' bus | Memory A DAC
HOST ' 1 =i
PC 1 v RN .
! '| DSP ||FPGA | i Bbi ! ADC |< I
1 : D 1 ° RF
' L] ADC |« !

Fig. 1. Block diagram of the basic hardware configuration of a testbed.

Among the three different types of hardware implementations described above (demonstra-
tors, prototypes and testbeds), testbeds present the following advantages:

e Flexibility. Testbed hardware is meant to be used for off-line processing. Only the

signals are sent and acquired in real-time. This implies that testbed hardware is not
subject to the real-time restrictions even though the hardware can include some sort of
real-time capabilities.

Modularity. Usually, the minimum modularity found in a testbed is given by the sep-
aration between the digital hardware (up to the D/A and A/D converters) and the RF
hardware. Sometimes, the digital hardware can be split in different modules perform-
ing specific operations: D/A and A/D conversion, digital up and down conversion,
signal buffering, etc. For the RF section it is possible to find self-made solutions or
commercial products. Lastly, commercial RF front-ends also permit some degree of
flexibility, for example allowing dual-band operation, RF carrier selection for each band
or adjusting the gains at the transmitter and receiver amplifiers.

High-level language development. Having in mind that most of the processing tasks
are carried out off-line, general-purpose processors are the most adequate for process-
ing the generated/acquired signals. This allows the utilization of high level program-
ming environments (e.g. Matlab, C/C++, Java) and the simplification of the imple-
mentation stages both in time and complexity. This feature also provides an additional
flexibility degree, because it is easy to change the implementation on the fly.

Floating-point versus fixed-point precision. As a consequence of the off-line process-
ing and the usage of high-level programming environments, the operations are carried
out in the floating-point domain instead of using fixed-point operations available for
real-time devices. This permits the researcher to focus on the implementation rather
than considering some other problems like arithmetic precision of the operations.

Testbed hardware components can be classified into three groups according to their function-
ality, as shown in Fig. 1. The first one is the host system, usually a PC and consequently
referred to as host PC. It is the equipment that allocates one or more boards containing the
digital section of the hardware testbed (including D/A and A/D converters). The second
group is constituted by the digital hardware components and, finally, the third one is formed

by the RF front-ends. The D/A and A/D converters generally constitute the frontier between

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 81

the digital and analogue hardware. In the digital section, a bus termed main bus allows trans-
ferring the data from the host to the testbed hardware and the other way around. Next, a set
or just one digital bus interconnects the digital hardware (DSPs, FPGA, memory bulffers, etc.)
with the D/A and A/D. Finally, for the interconnection among the D/A and A/D converters
and the RF front-ends coaxial cables are used.

With this basic configuration, it is possible to send samples directly coming from the main bus,
convert them into the analog domain using the D/A converters and up convert them to the
desired carrier RF using the front-ends. At the receiver side, the signals are down converted
by the RF front-ends, digitally converted by the A/D converters and then sent to the host
through the main bus. Note that the main bottleneck in this scheme is the maximum data rate
provided by the main bus, especially if there are no digital up and down converters available.
In the most recent boards, by using PCI express or similar solutions is possible to use the host
memory as a buffer while samples are transferred in real-time through the main bus.

A first improvement of this basic scheme consists in incorporating a digital up converter
(DUC) before each D/ A converter at the transmitter and a digital down converter (DDC) after
each A/D converter at the receiver. These devices can be dedicated elements or can be imple-
mented in a FPGA. Incorporating DUC and DDC into the MIMO testbed design allows trans-
ferring complex signals from/to the host, reducing both the transfer rate at the main bus and
the software complexity. For MIMO operation, DDCs and DUCs must be fully synchronized.
Additionally, another improvement consists in implementing some of the time-consuming
sample-level tasks in FPGAs (e.g. time and frequency synchronization).

2.1 Baseband Components

Baseband components are the hardware elements necessary to deal with baseband and/or
Intermediate Frequency (IF) signals. Frequently, such baseband components are allocated on
carrier boards installed on conventional PCs. Current testbeds use carrier boards equipped
with standardized buses to access testbed hardware such as USB, PCI, cPCI, PCI express or
similar. A manufacturer compliant with the PXI alliance (PXI, 2009) produces carrier elements
that are compatible with the most typical buses present in host equipments. When available,
important hardware components in a testbed are the storage buffers, especially when the main
bus does not support the necessary rate demanded by the D/A and A/D converters. Such
buffers allow performing signal operations off-line while data is sent and acquired in real-
time.

The interconnection among the previously described elements is carried out using buses that
must be capable of transmitting the data fast enough. Finally, external circuitry such as clock
distribution and/or triggering is needed. Sometimes, the most advanced hardware manufac-
turers include such circuitry as part of the commercial boards, simplifying the later setup.
When MIMO processing is required, fully synchronization among the different devices is
mandatory. Sometimes manufacturers announce a MIMO system but just a scaled SISO solu-
tion is offered.

2.2 RF Front-Ends

RF front-ends constitute one of the major hindrances in the testbed building process. They are
responsible of up converting IF or baseband signals to RE. The most common RF bands are
the unlicensed ISM located at 2.4 and 5.8 GHz. It is easier to find components for such bands
but also unpredictable interference is present in such spectrum portions. High linearity and
flexibility in terms of supported carried frequencies and bandwidths are desirable features for

www.intechopen.com

82 Radio Communications

the RF front-ends. However, the most advanced front-ends commercially available are only
dual-band and have fixed maximum bandwidth. A fundamental feature needed to be able to
carry out experiments is the possibility of modifying the transmit power. Also, the majority
of the front-ends are designed for SISO operation, making difficult to adapt them to a MIMO
system. Moreover, once the front-end has been acquired, extensive test on it is needed and
expensive measurement equipment is required.

It is important to emphasize that RF hardware is expensive compared to the cost of the digital
hardware and does not follow Moore’s law (Moore, 1998).

3. Basic Testbed Software

Methodologies that cover the entire development process, from source code suitable for sim-
ulations and executed off-line, to real-time implementation in the testbed, as well as software
tools according to these methodologies, are extremely scarce. The most popular methodology
for testbed development is rapid prototyping (Kaiser et al., 2004; Rupp et al., 2003; 2006). A
typical approach used to develop real-time algorithms to be run in a testbed consists in start-
ing with a simulation implementation. Next, the simulation is migrated to the testbed and,
finally, a real-time implementation is obtained. It is also convenient to split the real-time im-
plementation into several steps: firstly, a fixed-point code is produced; next a DSP implemen-
tation is obtained; and, afterwards, the software modules that do not meet time requirements
are migrated to FPGA, making use of high level tools when possible. Nowadays, except for
the Mathworks tool suite (Mathworks, 2009) combined with some VHDL code generators,
there is a lack of high level tools and development environments suitable to fit the previous
steps.

Also, some standardisation efforts have just started in order to make compatible hardware
components and software modules from different manufactures and developers. The PXI
alliance (PXI, 2009) plus the Software Defined Radio (SDR) Forum (SDR Forum, 2009) and
initiatives such as the Software Communications Architecture (SCA) (SCA, 2009) constitute
the starting point of a new generation of modular, flexible and standard radio interfaces suit-
able for research. Nowadays, however, the previously mentioned initiatives have not already
produced as a result the availability of high level tools allowing final users and researchers
not involved in the hardware development to access the testbed hardware at a reasonable
abstraction level.

All above reasons serve as a motivation for our work, which aims at bridging the existing
gap among the hardware, the software elements provided by the manufacturers and the ab-
straction level required by the final users. Moreover, the proposed solution allows embedding
real-time modules in the processing chain, as if they were part of the testbed hardware. For
example, real-time frequency and time synchronization algorithms can be run at the receiver
side and integrated into the digital hardware. Additionally, given that the proposed solu-
tion is designed to be easily and quickly integrated in any other kind of system, it becomes a
very useful tool to help in testing real-time applications, especially during the first stages of
the development. A good example is the ability to develop in parallel different parts of the
transmitter and the receiver in real-time. While the real-time transmitter is still under devel-
opment, the team developing the real-time receiver can make use of the testbed to generate
the transmit signals and feed the real-time receiver with them.

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 83

4. Software Technology Behind the Distributed Multilayer Architecture

The field of computer science has come across problems associated with complexity since its
constitution. The software architecture discipline is centred on the idea of reducing complex-
ity through abstraction and separation. There are different kinds of software architectures.
Among them, the most interesting for our work are: the client-server architecture, which
serves as the basis for most of the available architectures; the three-tier model; and finally,
the most recent and advanced model-view-controller architecture.

4.1 Client-Server Software Architecture (Two-Tier Software Architecture)

Client-server describes the relationship between two computer processes in which one process
(the client) makes a service request to another process (the server). Applications following the
client-server architecture represent an evolution with respect to those called “monolithic”.
The basic operation mode for client-server applications consists in that each instance of the
client process sends requests to one or more connected servers. In turn, servers accept these
requests, process them, and return the requested information to the client. The basic client-
server architecture considers only two types of hosts: clients and servers. Consequently, it
is also known as two-tier model. A special case of the two-tier software architecture arises
when an instance simultaneously acts as a client or as a server, resulting in the peer-to-peer
architecture.

The two-tier software architecture presents the following advantages with respect to mono-
lithic systems:

e The responsibilities of the whole system are now split between the client and the server,
which brings the opportunity to decouple them.

e Servers can control the access to the resources to guarantee that only those clients with
appropriate permissions access and change the data.

e Different client/server types can work with different kinds of servers/clients, which
helps in the integration of heterogeneous systems.

As a main disadvantage, the mechanism used to interconnect clients and servers (frequently
standard socket connections) may become both a bottleneck and a weak point of the system,
because a failure in the interconnection mechanism will stop the whole system.

4.2 Multi-Tier Software Architecture

The multi-tier software architecture represents a natural evolution of the client-server model
towards a higher number of levels. That is the reason why it is also known as the n-tier
software architecture. Basically, the multi-tier software architecture is a client-server architecture
consisting of more than two tiers, and where the inner tiers act simultaneously as client for one
tier and as server for the other. The main difference with respect to the peer-to-peer model is
that the tier order (its position or level in the multi-tier structure) does matter. An inner layer
is also termed middleware because acts as an intermediary between two adjacent tiers.

Note that the multi-tier software architecture, as well as the two-tier one, is a mechanism
to design the physical structure of the system. Given one of the models, several degrees of
freedom are still possible to get the logic structure of the system.

4.3 Tier Interconnection Mechanisms

Up to now, we were using a certain abstraction level to define the previous architectures.
Usually, each tier is mapped to a set of processes obtained from the same master process. This

www.intechopen.com

84 Radio Communications

can be easily understood with an example. Imagine a two-tier system. One tier is the client
while the other is the server and they are mapped into two different processes interconnected
by means of sockets. It does not matter if both processes are in the same physical machine
or not. What is important is how they interact with each other. The server will be waiting
for a request from one of the clients. As soon as the request arrives, the server starts to serve
the petition and, simultaneously, starts waiting for another request. When the server process
is going to serve a new request, it clones itself to serve the petition. Frequently, this process
cloning mechanism is omitted and it is considered as an implementation detail. Therefore,
to describe the interaction between different tiers, it is assumed that each tier is mapped into
a process that interchanges messages with other processes (tiers). Although this approach is
not completely rigorous, it is enough for our purposes. In the literature such interactions are
described my means of sequence diagrams as we will do.

But there is still one open question: How are messages sent from one tier to another? In
principle, data transfer between two tiers is part of the architecture design, but in practice
only the message types and the data are defined by using sequence diagrams, which drives to
the definition of a part of the system termed protocol. A protocol defines the interaction among
all tiers, specifying the type of messages to be sent from one tier to another or to several other
tiers, as well as the type of data sent in each message. Messages are transferred using plain
socket connections or more elaborated mechanisms (e.g. SNMP, CORBA, Java RMI or even
Web Services). The different approaches have their own advantages and disadvantages and
there is still no perfect system for message interchange. However, what is really important is
to use standardized mechanisms for message interchanging, thus guaranteeing independence
among tiers.

4.4 The Model-View-Controller Architectural Pattern

The Model-View-Controller (MVC) is a pattern used in software engineering derived from
the multi-tier software architecture. Successful use of the pattern drives to the isolation of the
business logic from the user interface, allowing one to be freely modified without affecting the
other. The controller collects user inputs, the model manipulates (and usually stores) applica-
tion data, and the view presents results to the user. The MVC was first described in (Trygve,
1978) and can be used as an architectural or design pattern. As an architectural pattern, it
splits an application into three independent layers that can be run in different computers: the
presentation or user interface layer, termed the view; the business logic, called the model; and
the controller, an intermediate layer adapting the view to the model and vice versa.

4.5 Applying Software Engineering to MIMO Testbeds

In the first sections of this chapter we present the typical hardware architecture available in
MIMO testbeds as well as the typical abstraction level offered by the software included with
the hardware. We stressed that such abstraction level is by far not enough and, consequently,
a final user or a researcher not involved in the testbed development and later setup cannot
directly access it. Along this Section, we introduced architectural software models, starting
with the well-known client-server model and ending with the recently proposed model-view-
controller, widely used in web applications as well as distributed applications. These architec-
tural models serve as an inspiration to propose a novel software architecture useful to bridge
the existing gap between the abstraction level offered by testbeds and the one demanded by
researchers and final users. This new architecture is explained in the following Section.

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 85

Transmitter PC (TxPC)
5 e Middleware Layer (MWL) [TxHost, TxDSP]
Tt &l e Signal Processing Layer (SPL) [TxProc]
= User PC
Local ke R ¢ Testbed Interface
ocal e >
L TIL
Network ayer () .
% e User application
L]
\ 4

Receiver PC (RxPC)
e Middleware Layer (MWL) [RxHost, RxDSP]
e Signal Processing Layer (SPL) [RxProc]

RF-FE

—

Fig. 2. General scheme of the MIMO Testbed showing the three different layers: middleware
(MWL), signal processing (SPL) and testbed interface (TIL). The corresponding process name
for each layer and each PC is shown between brackets.

5. Distributed Multilayer Software Architecture for MIMO Testbeds

Fig. 2 shows the proposed testbed hardware organization, which can be extrapolated to most
of the testbeds. It is constituted by two ordinary PCs hosting the testbed hardware, one for
the transmitter (referred to as TxPC) and other for the receiver (named RxPC). The digital
section of the testbed hardware is installed inside the PCs while the RF front-ends (RF-FE)
remain outside the PC case. The two PCs are attached to the network, something that is very
useful because this way the PC desktops can be remotely accessed. The remote user PC is also
attached to the network. In the rest of the Section we are assuming the following:

1. The testbed consists of the transmitter and the receiver, i.e., two nodes. Although our
designs can be easily extended to an arbitrary number of nodes, it is better to start with
the simplest case of two nodes to keep things simple.

2. It does not matter whether the testbed operates outdoor, indoor, outdoor to indoor or
vice versa. We assume that a network connection can always be established among the
testbed nodes and the user PCs.

3. The testbed PCs will use a standard operating system supporting remote desktop or
remote operation from a PC attached to the network. This is a fundamental feature be-
cause it enormously simplifies software deployment as well as day-to-day maintenance
of the systems. Otherwise, a replacement for such tools should be provided.

5.1 From the MIMO Testbed to the Multilayer Software Architecture

Fig. 2 shows, close to the PC drawings, the names of the corresponding three layers of the
proposed architecture that are, from the lowest to the highest level: the middleware layer
(MWL), the signal processing layer (SPL) and the testbed interface layer (TIL). The MWL and
the SPL are split into transmit and receive parts, while the TIL has just one instance running
on the user PC. Actually, the TIL is just an Application Program Interface (API) that has to be

www.intechopen.com

86 Radio Communications

included with the user application. In our standard deployment, the MWL and the SPL are
allocated in the same PCs containing the rest of the testbed hardware. Although the MWL
is the only layer required to be installed in the hardware PCs, the rest of the software can be
deployed in any machine attached to the network.

This is not an arbitrary proposal but a design inspired on the multi-tier and the model-view-
controller software architectures. First of all, let us identify the use cases of our application.
Basically, there is just one use case or action carried out by the final user: transmitting a set
of discrete-time sequences through the testbed and, consequently, through the wireless chan-
nel. Therefore, the layer corresponding to the view is the interface that allows accessing the
testbed, sending the sequences and getting back the acquired signals. This is what we term
testbed interface layer, and is the topmost layer of our software architecture.

The controller plays a very important role in a system. It is responsible of getting the service
requests from the view, adapting and sending them to the model where the business logic
resides. The gathered results are then sent back to the view to be presented to the user. The
controller plays the role of the middleware concept presented in the multi-tier software archi-
tecture. In the testbed system the controller is called middleware and its functionality is clear:
to configure and control the hardware in order to be able to take the requests (discrete-time
sequences) from the TIL; to adapt and send them to the hardware to be transmitted by the
antennas; and, finally, to carry out the reciprocal operations at the receiver side. At the end of
the process the TIL returns the acquired discrete-time signals.

However, our architecture presents three strong differences with respect to the model-view-
controller and the multi-tier architecture:

e Adaptation of the discrete-time sequences provided by the TIL in the requests, both
at the transmitter and the receiver, consists in performing different signal processing
operations that sometimes can even be executed using different kind of processors. For
instance, a general-purpose processor (GPP), a graphic processor unit (GPU) or real-
time devices like an FPGA or a DSP. It is thus necessary to put all these operations
together and, consequently, the SPL concept comes out. Therefore, the SPL is in charge
of carrying out most of the signal processing operations needed between the MWL and
the TIL.

e One of the reasons to use a multi-tier architecture jointly with the model-view-controller
is the ability of the resulting application to be distributed among different machines.
Thus, different instances of the tiers run on different machines. However, in the testbed
system there are two kinds of nodes: the transmitter and the receiver. If a multi-node
testbed is available, different transmitter and receiver pairs will be distributed among
different nodes. As a result, the MWL (and consequently the SPL) is split into two
sides: the transmitter side and the receiver side. They will be referred to as Tx MWL, Rx
MWL, Tx SPL and Rx SPL, respectively. Additionally, they are also identified because
the processes mapping the architecture design are also split into two sets, one for the
transmitter and the other for the receiver.

e Finally, another particularity present when adapting the model-view-controller and the
multi-tier software architectures to testbed software architecture is that the hardware
is required to be attached to the host system by means of a bus (e.g. PCI, PCIX, PCI
Express, etc.). Consequently, it is not possible to sustain standard network connections
through such buses, and the standard tools and techniques available for interconnecting
layers are not applicable (except when a custom implementation is provided or when

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 87

TIL + User application
TCP socket A TCP socket

5 e 1
| \ \ |
o Tx SPL Rx SPL |
| |
l TCP socket | M TCP socket |
r-r——7——""\ " T """ " L= \T7T 79O nr 7" vV TTrnr——//"""1r T 7" \TYI L —/—f] Y r-"=—7r1r—"— I
I N4 N4 :
|

Lo Tx MWL Rx MWL |
5T TCP socket & :
! E g MWL Host < > MWL Host 5 |
(] = > |
! > % Main bus Main bus E :
| o g D |
12 | & [MWL Testbed HW MWL Testbed HW | = | |
' |
i |

Fig. 3. Basic structure of the distributed multilayer software architecture for MIMO testbeds.
The three layers are shown: MWL, SPL and TIL. Additionally, the testbed-hardware sub-layer
in the middleware and the different interconnection mechanisms are included.

the hardware is attached through a network connection). These reasons motivate an-
other division in the MWL, generating a Testbed-hardware sub-layer (with its respective
parts for the transmitter and the receiver sides) responsible of dealing with hardware
aspects as well as solving the bus connection issues with the host part of the MWL.
Having in mind that in our testbed this sub-layer runs on the DSPs available at the
transmitter and the receiver, the corresponding processes are referred to as TxDSP and
RxDSP.

5.2 Logical and Physical Designs of the Distributed Software Architecture

In Fig. 3, the basic structure of the proposed architecture is shown. There are two sides,
transmitter and receiver, joined at the TIL, which has to hold connections with both sides of
the SPL. All links between the different layer elements are implemented by using standard
socket connections. The exceptions are the links between the sub-layers of the MWL that use
a proprietary protocol over the existing main bus interconnecting the hardware and the host.
There are strong reasons for using standard socket connections instead of any other higher-
level mechanism like, for example, web services. However, this does not imply that in some
situations other connection types can better solve some problems. It is also possible to use
different link types among different layers. For example, the TIL and the SPL can be connected
using web services, thus allowing total independence of the platform and full remote access.
However, the ability of such high level techniques to sustain high data rates and low latency
connections is not the best. For these reasons, sockets offer enough flexibility while providing
fast connections. In the case of bus connections the bus type obviously limits the latency and
the data rates.

www.intechopen.com

88 Radio Communications

Remote User PC
User application

TIL
TCP socket oo eemeeeoo i TCP socket
i T v e RxPC =~ N
TxProc RxProc
{ TCP socket $ TCP socket
TxHost |< > RxHost
. PCIBus PCIBus |
| Sundance SMT310Q Sundance SMT310Q i
Il SMT |[SMT||SMT SMT || SMT || SMT | SMT |
365E 370 (| 370 364 || 351 || 351 || 365 |:
Tx 2x ¢ 2x ax || 1GB || 1GB ||| Rx ||l
i DSP DAC J][| DAC ADC ([buffer (| buffer || DSP||:

__

Fig. 4. Testbed scheme containing the hardware and the software architecture deployment as
well as the links among the components. The different processes are shown in blue, and are
located in the usual place for a typical architecture deployment. The digital hardware sections
of the testbed, as well as the RF front-ends, are shown in gray. Finally, the user application
is in dark green, containing the TIL in white. Note that TIL appears in white and not in blue
because it is not a process but an user application.

While in Fig. 2 the general structure of the testbed is depicted, showing the correspondence
between the hardware elements and the software layers, Fig. 4 illustrates the block diagram
of the entire system. Three main parts can be distinguished: the testbed hardware that allows
us to transmit discrete-time signals over multiple antennas; the multilayer software architec-
ture that makes the hardware accessible to end researchers at a high abstraction level; and,
finally, the user application implemented using the testbed capabilities and the architecture
facilities. The lowest software level (i.e. the MWL) is required to be installed in the same PCs
as the testbed hardware because it uses the system buses to communicate with the hardware.
Otherwise, this restriction would not be applicable. The other two layers can be installed in
any other available PC. However, in the standard deployment, the SPL is included with the
MWL in the testbed PCs. Finally, the TIL is installed in the remote user PC.

5.3 Short Description of the MIMO Testbed Hardware

At the bottom of Fig. 4 a very basic diagram of our testbed hardware is shown. A first release
of the testbed hardware was presented in (Ramirez et al., 2008), where the baseband modules
were from Sundance Multiprocessor Ltd. and the RF front-ends were developed at the Uni-

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 89

User SPL MWL MWL SPL
application TxProc TxHost RxHost RxProc
(TIL)

function call

[socket con | o| [socket con.] RE
Discrete-time . > transmission
Signals to be |m mm = — -
sequences & | =) [socket con.]
transmitted >
function return Ac_qued
signals

[socket con.]

A
N

acquired
discrete-time
sequences

Fig. 5. Frame transmission example. It shows how a single frame transmission is carried
out from the discrete-time sequences. For the sake of simplicity, the MWL is considered as a
whole, even when it is actually split in two sub-layers.

versity of Cantabria. This hardware has been updated and new RF front-end modules from
Lyrtech have been included. Also, minor module reorganisations have been done.

Currently, the hardware of the testbed is based on a Sundance Multiprocessor (Sundance,
2009) SMT310Q PCI carrier board and a basic processing module: the Sundance SMT365
equipped with a Xilinx Virtex-II FPGA and a Texas Instruments C6416 DSP at 600 MHz. The
processing module has two buses that can transfer 32-bit words up to 400 MB/s, allowing
the connection with the Sundance SMT370 module, which contains a dual AD9777 D/ A con-
verter and two AD6645 A/D converters. The SMT370 module also has a 2 Msamples per-
channel memory that is used to load the frames to be transmitted. At the receiver side, the
data acquired by the A /D converters is stored in real-time in two SMT351G memory modules
offering 256 Msamples per A/D converter. Finally, in an off-line task, data is passed to the
middleware through the PCI bus. At the transmitter side the Sundance SMT365E is used in-
stead of the SMT365. It contains a larger FPGA as well as a larger amount of memory but the
remaining features are the same.

5.4 Simple Transmission Example

In order to shed more light into the system architecture, let us explain, step by step, the trans-
mission of a single frame (see Fig. 5). After the discrete-time sequences to be transmitted have
been generated at the user application, a function from the TIL is called passing to it the corre-
sponding symbol vectors (one vector per transmitting antenna). These symbols are then sent
to the SPL (TxProc) where they are converted (if necessary) to discrete-time signals ready to
be transmitted by the hardware. Finally, such signals are subsequently sent to the middleware
(TxHost). When both the Tx and Rx PCs are ready to complete a transmission, the signals are
passed to the testbed hardware through the corresponding TxDSP process to be transmitted
by the antennas. At the receiver side, the MWL (RxHost) acquire the signals stored into the
hardware buffers by RxDSP. Next, they are forwarded to the receiver SPL (RxProc). At this

www.intechopen.com

90 Radio Communications

moment, the Tx-Rx PCs are ready to process another frame while the acquired signals are
converted to discrete-time sequences in the same format required by the end user. Finally, the
discrete-time sequences are forwarded to the user application through the TIL, completing the
entire process.

The previous example clearly shows the advantages derived from the use of a multilayer
architecture instead of a monolithic system: the hardware is better exploited and each layer
can be customized or extended according to specific capabilities of the hardware or particular
needs demanded by users, all without developing a completely new monolithic system each
time the specifications change. The last advantage turns especially valuable in a research
environment where specifications change very fast.

5.5 Testbed Interface Layer

After describing the complete system architecture in the previous sections, this and the fol-
lowing sub-sections focus on the layers that compound the architecture designed for our
MIMO testbed (Ramirez et al., 2008). In this subsection we deal with the topmost testbed
interface layer (TIL), leaving the description of the other two lower-level layers for the next
sub-sections.

The TIL interacts with the researcher or the final user by calling a simple function imple-
mented and specifically adapted to the development environment under consideration, with
the only requirement of supporting standard TCP socket connections. At the transmitter side,
its main task consists in sending to the SPL the discrete-time sequences to be transmitted plus
the necessary parameters. In the same way, the TIL receives the acquired signals, being no-
ticed if any error occurs.

The main goal of the TIL is making the rest of the layers accessible to the final users by taking
into account the type of development environment they use. For this reason, the user layer
is jointly executed with the user application (see Fig. 3 and Fig. 4), being also integrated
in the same process (or set of processes) forming the user application (i.e. a simulation or a
demonstration software showing the rest of the testbed capabilities). Therefore, a different TIL
implementation satisfying the particular user development environment requirements can be
made available (Matlab, Simulink, C/C++, Java, etc).

5.6 Signal Processing Layer

The signal processing layer (SPL) is network-connected to both the TIL and the MWL (see Fig.
3 and Fig. 4). It provides remote access and makes the other two layers platform-independent
with respect to each other. This fact permits the SPL to be run in a PC cluster, allowing inten-
sive computing to generate the data to be transmitted and to process the acquired sequences.
This layer consists of two different processes that carry out the signal processing operations
needed to link the TIL and the MWL. The first process (TxProc) receives the discrete sequences
to be transmitted from the TIL and performs all necessary operations such as up sampling,
pulse-shape filtering, I/Q modulation and frame assembly, in order to generate the discrete-
time signals that will be sent to the middleware (TxHost). Similarly, the second process (Rx-
Proc) waits for the acquired signals from the MWL and performs the time and frequency
synchronization operations followed by the demodulation, filtering and down sampling. The
resulting vectors are sent to the TIL. It is important to emphasize that the SPL is designed and
implemented by clearly separating its two main tasks: interconnection with the adjacent lay-
ers (TIL and MWL) and execution of the required signal processing tasks. Depending on the

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 91

type of sequences given to TxProc, not all operations will be required either at the transmitter
or the receiver side.

The SPL can also incorporate advanced features such as a limited feedback channel for the
evaluation of precoded MIMO systems. This feedback channel is easily implemented using
the network connection available between the transmitter and the receiver.

A SPL detached from the other architecture layers is fundamental to deploy multiuser MIMO
scenarios. After extending the current TxProc and RxProc implementations in order to sup-
port multiuser MIMO techniques, the set of TxProc processes run at the transmitter users
while the RxProc processes do at the receiver users.

In some cases, the researchers may wish to implement most or even all operations present in
the SPL. It is still possible to configure the layer as a bypass, making only use of the intercon-
nection capabilities and not performing any signal processing operation at all.

5.7 Middleware Layer

The middleware layer (MWL) fills the gap between the testbed hardware and the signal pro-
cessing layer, allowing discrete-time signals to be transferred through the system bus and
making possible the synchronization between the TxPC and the RxPC using standard TCP
network connections. The MWL is split into two different sub-layers (see Fig. 3 and Fig.
4). The topmost sub-layer is responsible of establishing the network connections between the
transmitter and the receiver, and with the higher layer (the SPL). The bottom sub-layer corre-
sponds to the testbed hardware configuration and control software. Fig. 3 and Fig. 4 shows
the MWL with its two sub-layers plus the connections with adjacent layers.

Four different processes constitute the middleware. The first two, termed TxHost and RxHost,
run respectively on the TxPC and RxPC. They are implemented in standard C++ language and
use sockets to establish the necessary network connections:

e One connection between the TxHost and RxHost processes. It is used to synchronize the
transmitter and the receiver, so the receiver knows when the signal acquisition process
has to start.

e Another connection is established between the TxHost and the TxProc processes and
it is used to link the transmitter side of both the middleware and the signal processing
layers.

e Finally, there is also a connection between the RxHost and the RxProc processes.

The remaining two processes are the transmitter and the receiver processes that run on their
respective Digital Signal Processors (DSPs) available in the testbed hardware. Thus, the trans-
mitter DSP process (TxDSP) performs data transfers through the PCI bus jointly with the Tx-
Host process and configures and controls the hardware components at the TxPC. In the same
way, the RxHost process and the DSP receiver process (RxDSP) are responsible of transferring
the data through the PCI bus and, from the DSP side, controlling and configuring the testbed
hardware components.

The MWL serves the maximum number of requests that the hardware supports. It serves
a request while the data for the next frame is still being generated by any computer in the
network and, when the first frame is passed to the SPL, the MWL is ready to accept a new
frame. With this architecture scheme, the MWL simultaneously serves requests from other
SPL instances running in different PCs.

For the specific case of our MIMO testbed, in order to release the MWL implementation from
dealing with the lowest level hardware details, the Sundance SMT6025 software development

www.intechopen.com

92 Radio Communications

User Interface TxProc RxProc
application TIL SPL SPL
Function call - Signals are sent to the MWL and
Params + data _ then to the testbed hardware.
c---—----- 7] Data - (2] o | e———
Acquired data | Acquired data
‘Function return

Fig. 6. Sequence diagram describing the interaction among the user application, the testbed
interface layer (TIL) and the signal processing layer (SPL).

kit and the Sundance SMT6300 operating system driver are used in the TxHost and the Rx-
Host implementations. The Texas Instruments Code Composer (Texas Instruments, 2009), as
well as the 3L Diamond DSP+FPGA (3L Ltd., 2009), are utilized for the TxDSP and RxDSP
implementations. If a different hardware type is considered, there should exist different tools
avoiding dealing with the lowest-level hardware details.

The middleware concept constitutes a great leap forward in MIMO testbed technology, allow-
ing access to hardware using ordinary network connections and allowing synchronization
between the transmitter and the receiver. It also permits to incorporate a wired feedback
channel. The MWL design supports extensibility in many senses. For instance, many trans-
mitter and receivers can be used through broadcast network connections. Also, although the
DSP processes are hardware dependent, the control logic between the transmitter and the re-
ceiver, as well as with the higher layers, is valid for different hardware testbeds. Finally, since
the hardware interfaces from the host side and the software related to DSPs are developed as
separated software modules, they can be replaced by implementations suitable for any other
testbed.

6. Interaction between TIL, SPL and the User Application

Fig. 6 shows a simplified version of the interaction among the user application, the TIL and
the SPL. When the user application has generated the discrete-time sequences to be trans-
mitted, the testbed calls some function in the TIL. Both sequences, as well as their type, are
included as input parameters. Then, depending on the specified additional input parameters,
the TIL offers the possibility to return the control to the user application in order to carry on
doing other tasks while the signals are being transmitted and acquired. The TIL establishes
a connection with the TxProc at the SPL and sends the transmit data. Next, the interaction
described in Fig. 7 takes place and, as a result, the signals are properly transmitted and after-
wards acquired by the MWL and sent to the RxProc at the SPL. Finally, the acquired data is
transferred to the TIL and sent to the user application. If the user application got the control
after calling the TIL, then the acquired sequences are not transferred to the TIL until the user
application calls again the TIL.

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 93

TxProc TxHost RxHost RxProc
Starts | TxDSP RxDSP h Starts

. . Hardware

Config. HW; p Config. HW Initialization
[-------- Rxready [----------- >
I e e
Tx Init R Rx Init o
= ers | “Tp Transmission
(- - arameters | _ | _|Tarams) Configuration
Frame(s) |
P Send frame
Frame(s) > Tx init Transmission
I"{HF tansm: . Acquisition
Frame(s) <7 Reception
> |Frame(s)
| Data

processing

IF Re-acquire OK/ Re- Acknow-

N acquure ledgement

IF OK
End > / i End End of
> transmission
End R P End

Fig. 7. Basic sequence diagram of one of the variety of protocols implemented in our testbed. It
is termed basic operation mode. Dashed arrows represent acknowledgements (ACK). Regular
arrows represent messages sent from a source to a destination.

7. Interaction between SPL, MWL and the Hardware

In this section we will explain some functioning modes of the testbed architecture. All of them
have been implemented in our MIMO testbed and they allow us different operational modes.

7.1 Basic Mode Operation

Fig. 7 shows the sequence diagram of the ”basic operation mode protocol”. The protocol
fully specifies the behaviour of the six processes of the software architecture. Thus, different
protocols allow using the testbed and the software architecture in different scenarios and for
distinct purposes. The basic operation protocol consists of the following seven stages:

1. Hardware initialization. Both transmitter and receiver hardware must be set up before
beginning the actual operation. At the operating system level, two ordinary processes
are started: TxHost and RxHost, which then load the TxDSP and RxDSP binaries into
the respective DSPs. Once loaded, these processes initialize the baseband hardware
modules. Additionally, they allocate the memory buffer needed for communication
through the PCI bus. In this stage, the “Starts” message ensures that the communication

www.intechopen.com

94 Radio Communications

| TxProc | | TxHost | | RxHost 1 | | RxProc 1 | | RxHost 2 | | RxProc 2 |
Starts TxDSP | | RxDSP 1 Starts RxDSP 2 Starts
Config. HW Config. HW Hardware Config. HW
: [---=----" User 1readyf----------- > Initialization [----------- >
Wait for ___________________y ____________ > User 2 ready
allusers | [e e e S 5l
e—, <
Tx Init Rx Init L. Rx Init
Parameters P Ir ron Params,
(] 2 2TAmerers__ | _ | Larams > Configuration JE DN
F
rame(s) Send frame
Multicast:
Frame(s) Tx init Transmission
liF tansm. Acquisition Acquisition
Frame(s 1 Reception Frame(s €
©) Frame(s) s) Frame(s)
| . Data
processing
- . OK/Re-
IF Re-acquire OK/ Re Acknow- IF Re-acquire / ~C
acquire [0 ont acquire | |
IF all IF OK 8 IF OK
users OK
: :) : : . . End of . . .
i End Multicast: 1 transmission 1
|—> End End I
End End End

Fig. 8. Sequence diagram of the multiuser testbed protocol particularized for the case when
just two receive users are considered.

between the host and the DSP can be successfully established. Afterwards, the “Config.
HW” messages are sent to the DSP and the TxDSP and RxDSP proceed to properly
configure the hardware. They reply with an acknowledgement (ACK) represented in
Fig. 7 by a dashed arrow.

2. Transmission configuration. At this stage an instance of the SPL accesses the MWL to
configure a transmission. The process starts when a user application that makes use
of the TIL transmits a set of discrete-time sequences. After receiving the sequences to
be sent, TxProc sends the “Tx Init.” message to the TxHost, which returns the parame-
ters needed by the TxProc. Control parameters such as the frame size or the number of
frames to be transmitted are configured. Moreover, other parameters such as the signal
power strength, can be sent to TxHost during this stage. Also, the frame or set of frames
to be transmitted is sent to TxHost. Finally, at the receiver side, a communication be-
tween RxHost and RxProc is established to ensure that the transmission can be carried
out.

3. Transmission. Once TxHost has received all parameters, the transmission process can
begin. First, RxHost must notify that it is able to receive frames by using the message
”Send Frame”. Then, TxHost sends to TxDSP the parameters and the frames acquired
in the previous step and TxDSP communicates the inminent cyclic transmission of the
current frame. Finally, TxHost sends the message “Tx init” to RxHost notifying the
availability of the frame; TxHost sends an ”Acquisition”message to TxDSP; and the
frame is acquired and transferred to the TxHost through the PCI bus. Later on, the
signals are sent to the RxProc and, finally, they are transferred to the user application

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 95

through the TIL. The transmitter side will continuously send the frame until a new
message “Send Frame” is received from RxHost.

4. Reception. After receiving the “Tx init” message from TxHost, RxHost sends the ”Ac-
quisition” message to RxDSP. Then, RxDSP captures the signals and sends them back
to RxHost through the PCI bus. Then, signals are sent to RxProc, properly processed
in this layer, and finally they are sent to the TIL, making them available to the user
application.

5. Data processing. In our testbed data processing is completely carried out off-line, even
though hardware permits real-time processing by means of, for instance, available FP-
GAs. Basically, during this stage the received data are properly adapted and processed.

6. Acknowledgement. After processing the data, the receiver must tell the transmitter
what to do next. The receiver can ask for retransmission of the last frame or for a new
frame. In the first case, the receiver moves on the transmission stage. In the latter, the
receiver needs to prepare a new transmission, so it must go back to the transmission
configuration stage.

7. End of transmission. TxProc receives a finalization message, which is properly prop-
agated to the rest of the testbed processes with the objective of adequately closing all
opened resources and to finish all testbed processes.

7.2 Burst Transmission

This case involves the transmission of a number of data frames with the goal of testing a given
transmission system. The sequence diagram is the same as the one depicted in Fig. 7 with the
following two exceptions:

e At the beginning of the transmission configuration stage, TxProc notifies the number of
frames to be transmitted and sends them to TxHost.

e After finishing each single-frame transmission (probably with a certain number of re-
acquisitions carried out by the receiver side) TxHost automatically moves on the next
frame to be transmitted.

This mode can be exploited to emulate a real wireless communication system. For instance, a
video can be sent in real-time and the users can watch it at the receiver side.

7.3 Performance Measurements

Another case of use is the automation of performance measurements corresponding to a par-
ticular algorithm or a specific transmission system. In this case, the protocol works in a quite
similar way as in burst transmission: during the data processing stage the measurements are
performed and the receiver decides whether it has to keep on doing measurements or it has
already collected enough data. This functioning mode was used while doing performance
measurements in (Pérez-Iglesias et al., 2008; Ramirez et al., 2008), where different STBC tech-
niques were tested in real environments. The data processing stage can be modified in order
to just store the acquired signals at the receiver side to be later on processed off-line.

7.4 Using a Feedback Channel

MIMO systems performance can be improved if the receiver feeds back Channel State Infor-
mation (CSI) from the receiver to the transmitter, so it can adapt its transmssion scheme to the
actual channel characteristics. It is straightforward to implement a feedback channel within

www.intechopen.com

96 Radio Communications

the protocol: the CSI information must be sent during the acknowledgement stage to notify
the transmitter whether it has to re-configure the transmission parameters or not. To do so, in
the sequence diagram shown in Fig. 7 there should be added two “Send CSI” messages: one
from the RxHost to the TxHost and another from the TxHost to the TxProc.

If the signal adaptation at the transmitter side takes place at the user application, then no
feedback messages are needed in the protocol because everything is available at the user ap-
plication. It is necessary to call the testbed interface layer twice: one to be able to estimate the
channel and the following with the adapted signals.

7.5 Deployment of a Multiuser Environment

The last given case of study describes the functioning of the designed protocol when work-
ing in a multiuser environment where several nodes receive information from a central node
(broadcast channel). The protocol just needs to be generalized to support the synchronization
of several receiver nodes.

Fig. 8 presents the use case for two receiver users. In order to implement this scenario it is
necessary to incorporate some modifications:

e After configuring the testbed hardware, TxHost waits for the “ready” message from all
receive users.

e TxHost waits for the “Send Frame” message from all users before starting the transmis-
sion.

e The frame is cyclically transmitted and each individual user can carry out as many
acquisitions as desired. Once all users have acquired all necessary data, they send an
”"OK” message to the TxHost. When TxHost has received all “OK” messages from all
users, the current frame transmission is finished.

e When TxProc receives an end message, it passes it to TxHost which launches a multicast
message to all receive users in order to properly finish.

7.6 Using a Simpler Protocol

In some cases it is interesting to provide a simpler protocol in order to delegate most of the
control mechanisms to the user application. Now the TIL has two different functions allowing
the control of the transmitter and the receiver separately. After the hardware initialization
step (see Fig. 7), the user application decides to send a set of discrete-time sequences and
then uses the TIL to send them to the SPL. Afterwards, the SPL sends them to the MWL to
be transmitted, but RxHost is waiting for RxProc in order to carry out the acquisition. When
the user application decides to acquire the data, it calls again the TIL which asks RxProc to
acquire the data. Immediately, RxProc asks RxHost to acquire the data and returns it to the
user application through the RxProc and the TIL.

The main difference of this functioning mode with respect to the basic operation mode is the
lack of messages between TxHost and RxHost, which are now completely autonomous. This
presents the advantage of easier integration of the testbed nodes with other nodes and, at
the same time, all nodes can be directly controlled from the user application. However, as
a disadvantage, the testbed control is moved to the user application. Consequently, the user
application has now to deal with some hardware details (e.g. the size of buffers) but properly
encapsulated in the TIL. In addition, performance losses arise as a consequence of the testbed
being controlled from the user application.

www.intechopen.com

A Distributed Multilayer Software Architecture for MIMO Testbeds 97

8. Conclusion

In this chapter we propose a new distributed multilayer software architecture for MIMO
testbed user access. The architecture fills the gap that currently exists between commercial
hardware components and the most common abstraction level used by researchers. The archi-
tecture overcomes the limitations of implementing new algorithms directly from the testbed.
Instead of using the low-level interfaces typically provided by manufacturers, the architecture
supplies a high-level interface access for testbeds. It releases researchers from the necessity of
knowing the details of the testbed hardware. For instance, they can easily test new algorithms
without developing a completely new source code release specifically for the testbed, thus
speeding up the implementation and test tasks.

The key point to the multilayer architecture design is the use of ordinary network connec-
tions to link both software modules and hardware components. These connections are also
useful for decoupling the software layers. Several advantages are obtained as a consequence
of the multilayer software architecture. Also, multiuser scenarios and feedback channels can
be constructed extending the proposed architecture. Finally, it is also possible to simplify the
presented architecture protocols in order to ease the integration with heterogeneous nodes.
The testbed control is moved to the user application instead of keeping it in the inner layers.

9. References

3L Ltd (2009), http://www.31.com/

Borkowski, D.; Brhl, L.; Degen, C.; Keusgen, W.; Alirezaei, G.; Geschewski, F.; Oikonomopou-
los, C. & Rembold, B. (2006). SABA: A testbed for real-time MIMO systems. EURASIP
Journal on Applied Signal Processing, Vol. 2006, 2006.

Caban, S.; Mehlfiihrer, C.; Langwieser, R.; Scholtz, A.L. & Rupp, M. (2005), Vienna MIMO
Testbed, EURASIP Journal on Applied Signal Processing, Vol. 2006, 2006.

Fabregas, A.G.; Guillaud, M.; Slock, D.T.M.; Caire, G.; Gosse, G.; Rouquette, S.; Ribeiro Dias,
A.; Bernardin, P.; Miet, X.; Conrat,].M; Toutain, Y.; Peden, A. & Li, Z. (2005), A
MIMO-OFDM Testbed for Wireless Local Area Networks, EURASIP Journal on Ap-
plied Signal Processing, Vol. 2006, 2006.

Foschini, G. & Gans, M. (1998), On Limits of Wireless Communications in a Fading Environ-
ment when Using Multiple Antennas, Wireless Personal Communications, Vol. 6, 1998,
pp- 311-335.

Garcia-Naya, José A.; Gonzélez-Lopez, M. & Castedo, L. (2008), An Overview of MIMO
Testbed Technology, Proceedings of 4th International Symposium on Image/Video Com-
munications over Fixed and Mobile Networks (ISIVC 2008), July, 2008, Bilbao

Garcia-Naya, José A.; Pérez-Iglesias, Héctor J.; Fernandez-Caramés, T. M.; Gonzélez-Lépez,
M. & Castedo, L. (2008), A distributed multilayer architecture enabling end-user
access to MIMO testbeds, Proceedings of IEEE 19th International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, 2008 (PIMRC 2008), September, 2008,
Cannes.

Haustein, T.; Forck, A.; Géber, H.; Jungnickel, V. & Schiffermdiiller, S. (2005), Real-Time Signal
Processing for Multiantenna Systems: Algorithms, Optimization, and Implementa-
tion on an Experimental Test-Bed, EURASIP Journal on Applied Signal Processing, Vol.
2006, 2006.

www.intechopen.com

98 Radio Communications

Kaiser, T.; Wilzeck, A.; Berentsen, M. & Rupp, M. (2004). Prototyping for MIMO Systems An
Overview, Proceedings of the XII European Signal Processing Conference (EUSIPCO 2004),
September, 2004, Vienna.

The Mathworks (2009), http://www.mathworks.com/

Moore, G. (1998), Cramming more components onto integrated circuits, Proceedings of the IEEE,
Vol. 86, No. 1, 1998, pp. 82-85.

Nieto, X.; Ventura, L.M. & Mollfulleda, A. (2006), GEDOMIS: a broadband wireless MIMO-
OFDM testbed, design and implementation, Proceedings of 2nd International Conference
on Testbeds and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM 2006), 2006, Barcelona.

PXI: PCI eXtensions for Instrumentation (2009), http://www.pxisa.org

Pérez-Iglesias, H.].; Garcia-Naya, J.A.; Dapena, A.; Castedo, L. & Zarzoso, V. (2008), Blind
channel identification in Alamouti coded systems: a comparative study of eigende-
composition methods in indoor transmissions at 2.4 GHz, European Transactions on
Telecomunications, Vol. 19, No. 7, November 2008, pp. 751-759.

Ramirez, D.; Santamaria, I.; Pérez,].; Via, J.; Garcia-Naya, J.A.; Ferndndez-Caramés, T.M.;
Pérez-Iglesias, H.J.; Gonzélez Lépez, M.; Castedo, L. & Torres-Royo,].M. (2008), A
comparative study of STBC transmissions at 2.4 GHz over indoor channels using a
2 x 2 MIMO testbed, Wireless Communications and Mobile Computing, Vol. 8, No. 9,
November 2008.

Rao, RM.; Wiejun Zhu Lang, S.; Oberli, C.; Browne, D.; Bhatia, J.; Frigon, J.-E; Jingming
Wang Gupta, P.; Heechoon Lee; Liu, D.N.; Wong, S.G.; Fitz, M.; Daneshrad, B. &
Takeshita, O. (2004), Multi-antenna testbeds for research and education in wireless
communications, Communications Magazine, IEEE, Vol. 42, No. 12, December 2004,
pp- 72-81, ISSN: 0163-6804.

Rupp, M,; Burg, A. & Beck, E. (2003). Rapid Prototyping for Wireless Designs: the Five-Ones
Approach, Signal Processing Europe, Vol. 83, 2003, pp. 1427-1444.

Rupp, M.; Mehlfhrer, C. & Caban, S. (2006), Testbeds and Rapid Prototyping in Wireless Sys-
tem Design, EURASIP Newsletter, Vol. 17, No. 3, 2006, pp. 32-50.

Rupp, M.; Caban, S. & Mehlfhrer, C. (2007), Challenges in Building MIMO Testbeds, Proceed-
ings of European Signal Processing Conference (EUSIPCO 2007), 2006, Poznan.

SDR Forum: Software Defined Radio Forum (2009), http://www.sdrforum.org

SCA: Software Communication Architecture (2009), http://sca. jpeojtrs.mil

Sundance Multiprocessor, Ltd. (2009), http: //www. sundance.com

Telatar, I. E. (1999), Capacity of Multi-Antenna Gaussian Channels, European Transactions on
Telecommunications, Vol. 10, No. 6, 1999, pp. 585-595.

Texas Instruments (2009), http://www.ti.com

Trygve, M. H. (1978), MVC, XEROX PARC, http://heim.ifi.uio.no/~trygver/
themes/mvce/mve—-index.html

Wilzeck, A.; El-Hadidy, M.; Cai, Q.; Amelingmeyer, M. & Kaiser, T. (2006). MIMO Prototyping
Testbed with off-the-shelf plug-in RF Hardware, IEEE Workshop on Smart Antennas
(WSA 2006), 2006 Ulm.

Zhu, W.; Browne, D. & Fitz, M. (2005). An Open Access Wideband Multi-Antenna Wireless
Testbed with Remote Control Capability, Proceedings of 2nd International Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM 2005), Trento.

www.intechopen.com

Radio Communications

Edited by Alessandro Bazzi

ISBN 978-953-307-091-9

Hard cover, 712 pages

Publisher InTech

Published online 01, April, 2010
Published in print edition April, 2010

In the last decades the restless evolution of information and communication technologies (ICT) brought to a
deep transformation of our habits. The growth of the Internet and the advances in hardware and software
implementations modified our way to communicate and to share information. In this book, an overview of the
major issues faced today by researchers in the field of radio communications is given through 35 high quality
chapters written by specialists working in universities and research centers all over the world. Various aspects
will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks,
opportunistic scheduling, advanced admission control, handover management, systems performance
assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio
resource management will be discussed both in single and multiple radio technologies; either in infrastructure,
mesh or ad hoc networks.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jose A. Garcia-Naya, M. Gonzalez-Lopez and L. Castedo (2010). A Distributed Multilayer Software
Architecture for MIMO Testbeds, Radio Communications, Alessandro Bazzi (Ed.), ISBN: 978-953-307-091-9,
InTech, Available from: http://www.intechopen.com/books/radio-communications/a-distributed-multilayer-
software-architecture-for-mimo-testbeds

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

