
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Cache Coherence Protocols for Many-Core CMPs 93

Cache Coherence Protocols for Many-Core CMPs

Alberto Ros, Manuel E. Acacio and Jos´e M. Garc´ıa

0

Cache Coherence Protocols for Many-Core CMPs

Alberto Ros, Manuel E. Acacio and José M. Garcı́a
Universidad de Murcia

Spain

1. Introduction

Multi-core architectures have emerged as the best alternative to take advantage of the increas-
ing number of transistors currently offered in a single die. For example, the dual-core IBM
Power6 (Le et al., 2007) and the eight-core Sun UltraSPARC T2 (Shah et al., 2007) have a rela-
tively small number of cores, which are typically connected through a shared medium, i.e., a
bus or a crossbar. However, CMP architectures that integrate tens of processor cores (usually
known as many-core CMPs) are expected for the near future, after Intel recently unveiled the
80-core Polaris prototype (Azimi et al., 2007). Since the area required by a shared intercon-
nect becomes impractical as the number of cores grows (Kumar et al., 2005), it seems that the
processing cores of future CMPs will be connected by means of unordered point-to-point net-
works. Hence, tiled CMP architectures (Taylor et al., 2002; Zhang & Asanovic, 2005), which
are designed as arrays of replicated tiles connected over a point-to-point network, have arisen
as a scalable alternative to current small-scale CMP designs and they will help in keeping
complexity manageable.
On the other hand, most CMP systems provide programmers with the intuitive shared-
memory model, which requires efficient support for cache coherence. Although a great deal
of attention was devoted to scalable cache coherence protocols in the last decades in the con-
text of shared-memory multiprocessors, the technological parameters and constraints entailed
by many-core CMPs demand new solutions to the cache coherence problem (Bosschere et al.,
2007; Azimi et al., 2007).
In this chapter, we focus on three main design goals for cache coherence protocols aimed
at being employed in many-core CMPs: performance, on-chip network traffic, and area re-
quirements. For example, area constraints prevent from using an ordered interconnection
network and, consequently, the popular snooping-based cache coherence protocol. Addition-
ally, on-chip network traffic has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power (Wang et al., 2003; Magen et al.,
2004).
We will firstly describe two cache coherence protocols which are used in current commodity
chip multiprocessors, discussing their scalability constraints and bottlenecks: Hammer, imple-
mented in the AMD OpteronTM(Ahmed et al., 2002), and Directory used in Piranha (Barroso
et al., 2000). Hammer avoids keeping coherence information at the cost of broadcasting re-
quests to all cores. Although it is very efficient in terms of area requirements, it generates a
prohibitive amount of network traffic, which translates into excessive power consumption.
On the other hand, Directory reduces network traffic compared to Hammer by storing in a di-
rectory structure precise information about the private caches holding memory blocks. Unfor-

6

www.intechopen.com

Parallel and Distributed Computing94

tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 95

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
irectory

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols

In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent

www.intechopen.com

Parallel and Distributed Computing96

to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP

Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 97

R

H M

II
I

2
Inv

3 Ack

1
G
e
t
X

2 Inv

3
Dat a4

U
n
b
l

(a) Hammer-CMP.

R

H M

II
I

1
G
e
t
X

2 Fwd

3
Dat a

3 Unbl

(b) Directory-CMP.

R

H M

II
I

1 Ge t X

1
G
e
t
X 1

Ge t X

2
Dat a

(c) Token-CMP.

R

H M

II
I

1
Ge t X

2
Dat a

2 ChOwn

3
A
c
k
C
h

(d) DiCo-CMP.

Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP

The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the

www.intechopen.com

Parallel and Distributed Computing98

critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols

Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP

keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP

Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 99

Traditional Indirection-aware

Traffic-intensive Hammer-CMP Token-CMP

Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP

Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary

Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.

www.intechopen.com

Parallel and Distributed Computing100

R O

H&D

1
G
e
t
S 2

F
w
d

3 Dat a

3
U
n
b
l

(a) Directory protocols.

R

O&D1 Ge t S

2 Dat a

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis

As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 101

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-

www.intechopen.com

Parallel and Distributed Computing102

O

H&D

S

2
In
v

3 Ack

1
Upgr

2
A
ck

4
U
nb
l

(a) Directory protocols.

O&D

S

1 Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP

The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-

CMP can update this information in several ways, we consider in this chapter the Base

policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 103

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol

4.3.1 Requesting processor

When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner

When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile

Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.

www.intechopen.com

Parallel and Distributed Computing104

R O

HS

2
In
v3

A
ck

1 Ge t X

2 Dat a

2
C
h
O
w
n

3
AckCh

Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 105

R3 H

R2

R1

1
G
e
t
X

2
D
a
t
a

2 ChOwn

3 Ack
Ch

1
G
e
t
X

2
D
a
t
a

2 Ch
Ow

n

3 AckCh

1 Ge t X

2*
Fw

d

3*
Fw

d

4* Fwd

5* Fwd

Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements

In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation

Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.

www.intechopen.com

Parallel and Distributed Computing106

DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 107

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order

DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
DiCo-BT Binary Tree ⌈log2(1 + log2n)⌉ log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 2. Bits required for storing coherence information.

is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-

www.intechopen.com

Parallel and Distributed Computing108

GEMS Parameters SICOSYS Parameters

Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits
L2 cache 6 hit cycles Control message size 1 flit

L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection

In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 109

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).

In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,

www.intechopen.com

Parallel and Distributed Computing110

Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time

Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 111

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic

Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).

www.intechopen.com

Parallel and Distributed Computing112

(a) Overhead in terms of bits. (b) Overhead in terms of area (mm
2).

Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead

Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
L2 cache. However, this structure introduces a slight overhead which keeps constant with the
number of cores.
Directory-CMP stores the directory information either in the L2 tags, when the L2 cache holds
a copy of the block, or in a distributed directory cache, when the block is stored in any of the
L1 caches but not in the L2 cache. Since the information is stored using a full-map sharing
code, the number of required bits is n, and consequently the width of each directory entry
grows linearly with the number of cores.
Token-CMP keeps the token count for any block stored both in the L1 and L2 caches. This
information only requires ⌈log2(n + 1)⌉ bits for both the owner-token bit and the non-owner
token count. These additional bits are stored in the tags’ part of both cache levels. In this way,
Token-CMP has acceptable scalability in terms of area.
DiCo-FM stores directory information along with each owner block held in the L1 and L2
caches. Therefore, a full-map sharing code is added to the tags’ part of each cache entry.
Moreover, it uses two structures that store the identity of the owner tile, the L1C$ and the
L2C$. Each entry in these structures contains a tag and an owner field, which requires log2n
bits. Therefore, this is the protocol that more area overhead entails.
We propose to reduce this overhead by introducing compressed sharing codes in DiCo-CMP.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In contrast, DiCo-

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 113

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

Fig. 13. Trade-off of the three main design goals.

LP-1, which only adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. DiCo-BT reduces even more the area requirements
compared to DiCo-LP-1, and it scales better than Token-CMP. Finally, DiCo-NoSC, which does
not require to modify data caches to add coherence information, is the implementation of
DiCo with less overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small overhead in
the number of required bits results in a significant overhead when the area of the structures is
considered.

7.5 Trade-off analysis

Figure 13 shows the trade-off among execution time, network traffic, and area requirements
for the base protocols evaluated in this chapter, DiCo-FM, and DiCo-BT, which constitutes
a good alternative when the three metrics evaluated in this chapter are considered. In this
way, this graph summarizes the evaluation carried out in this chapter. Results in terms of
execution time and network traffic represent the average of all applications, normalized with
respect to Hammer-CMP. Results in terms of area requirements correspond to the area in mm2

of each protocol considering both the data caches and the extra structures required to keep the
coherence information.
We can see that, in general, the base protocols aimed to be used with tiled CMPs do not have
a good trade-off. Hammer-CMP has the highest traffic levels and execution times, but also the
lowest area requirements (7.4mm2). In contrast, Directory-CMP, which reduces both execution
time and network traffic compared to Hammer-CMP (by 10% and 61%, respectively), at the cost
of increasing area requirements (8.59mm2 for a 16-tiled CMP, and O(n)). Although Token-CMP
has acceptable area requirements (7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring
twice the traffic required by Directory-CMP. Finally, DiCo-FM, that reduces both execution time
and traffic requirements when compared to Token-CMP (by 4% and 47%, respectively), is the
one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and O(n)).
However, the use of different compressed sharing codes for DiCo-CMP can lead to a good
compromise between network traffic and area requirements, and still guaranteeing low av-
erage execution time. In general, DiCo-LP-1, DiCo-BT and DiCo-NoSC are very close to an

www.intechopen.com

Parallel and Distributed Computing114

ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 115

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).

10. Acknowledgements

This work has been jointly supported by Spanish MEC under grant “TIN2006-15516-C04-
03” and European Comission FEDER funds under grant “Consolider Ingenio-2010 CSD2006-
00046”. Alberto Ros is supported by a research grant from Spanish MEC under the FPU na-
tional plan (AP2004-3735).

11. References

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2001). A new scalable directory archi-
tecture for large-scale multiprocessors, 7th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 97–106.

www.intechopen.com

Parallel and Distributed Computing116

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002a). Owner prediction for accelerat-
ing cache-to-cache transfer misses in cc-NUMA multiprocessors, SC2002 High Perfor-
mance Networking and Computing.

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002b). The use of prediction for accel-
erating upgrade misses in cc-NUMA multiprocessors, 11th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–164.

Agarwal, A., Simoni, R., Hennessy, J. L. & Horowitz, M. A. (1988). An evaluation of direc-
tory schemes for cache coherence, 15th Int’l Symp. on Computer Architecture (ISCA),
pp. 280–289.

Agarwal, N., Peh, L.-S. & Jha, N. K. (2009). In-Network Snoop Ordering (INSO): Snoopy
coherence on unordered interconnects, 15th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 67–78.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures, 27th Int’l Symp. on Computer
Architecture (ISCA), pp. 248–259.

Ahmed, A., Conway, P., Hughes, B. & Weber, F. (2002). AMD OpteronTM shared-memory MP
systems, 14th HotChips Symp.

Azimi, M., Cherukuri, N., Jayasimha, D. N., Kumar, A., Kundu, P., Park, S., Schoinas, I. &
Vaidya, A. S. (2007). Integration challenges and tradeoffs for tera-scale architectures,
Intel Technology Journal 11(3): 173–184.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R. & Verghese, B. (2000). Piranha: A scalable architecture based on single-chip
multiprocessing, 27th Int’l Symp. on Computer Architecture (ISCA), pp. 12–14.

Beckmann, B. M., Marty, M. R. & Wood, D. A. (2006). ASR: Adaptive selective replication for
CMP caches, 39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 443–454.

Bosschere, K. D., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnevmatikatos, D., Ramirez,
A., Sainrat, P., Seznec, A., Stenstrom, P. & Temam, O. (2007). High-performance
embedded architecture and compilation roadmap, Transactions on HiPEAC I pp. 5–
29.

Cantin, J. F., Smith, J. E., Lipasti, M. H., Moshovos, A. & Falsafi, B. (2006). Coarse-grain
coherence tracking: RegionScout and region coherence arrays, IEEE Micro 26(1): 70–
79.

Chaiken, D., Kubiatowicz, J. & Agarwal, A. (1991). LimitLESS directories: A scalable cache
coherence scheme, 4th Int. Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pp. 224–234.

Cheng, L., Carter, J. B. & Dai, D. (2007). An adaptive cache coherence protocol optimized for
producer-consumer sharing, 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), pp. 328–339.

Culler, D. E., Singh, J. P. & Gupta, A. (1999). Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann Publishers, Inc.

Gupta, A., Weber, W.-D. & Mowry, T. C. (1990). Reducing memory traffic requirements for
scalable directory-based cache coherence schemes, Int’l Conference on Parallel Process-
ing (ICPP), pp. 312–321.

Ho, R., Mai, K. W. & Horowitz, M. A. (2001). The future of wires, Proceedings of the IEEE
89(4): 490–504.

Horel, T. & Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit perfor-
mance, IEEE Micro 19(3): 73–85.

www.intechopen.com

Cache Coherence Protocols for Many-Core CMPs 117

Hossain, H., Dwarkadas, S. & Huang, M. C. (2008). Improving support for locality and fine-
grain sharing in chip multiprocessors, 17th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 155–165.

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D. & Keckler, S. W. (2005). A NUCA substrate for
flexible CMP cache sharing, 19th Int’l Conference on Supercomputing (ICS), pp. 31–40.

Jerger, N. D. E., Peh, L.-S. & Lipasti, M. H. (2008). Virtual tree coherence: Leveraging re-
gions and in-network multicast tree for scalable cache coherence, 41th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), pp. 35–46.

Kim, C., Burger, D. & Keckler, S. W. (2002). An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, 10th Int. Conf. on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS), pp. 211–222.

Kumar, R., Zyuban, V. & Tullsen, D. M. (2005). Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling, 32nd Int’l Symp. on Computer
Architecture (ISCA), pp. 408–419.

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W. M., Schwarz, E. M. & Vaden, M. T. (2007). IBM POWER6 microarchitecture, IBM
Journal of Research and Development 51(6): 639–662.

Li, M.-L., Sasanka, R., Adve, S. V., Chen, Y.-K. & Debes, E. (2005). The ALPBench benchmark
suite for complex multimedia applications, Int’l Symp. on Workload Characterization,
pp. 34–45.

Magen, N., Kolodny, A., Weiser, U. & Shamir, N. (2004). Interconnect-power dissipation in a
microprocessor, Int’l workshop on System Level Interconnect Prediction (SLIP’04), pp. 7–
13.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Lars-
son, F., Moestedt, A. & Werner, B. (2002). Simics: A full system simulation platform,
IEEE Computer 35(2): 50–58.

Martin, M. M. (2003). Token Coherence, PhD thesis, University of Wisconsin-Madison.
Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D. & Wood, D. A. (2003). Using destination-set

prediction to improve the latency/bandwidth tradeoff in shared-memory multipro-
cessors, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 206–217.

Martin, M. M., Hill, M. D. & Wood, D. A. (2003). Token coherence: Decoupling performance
and correctness, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 182–193.

Martin, M. M., Sorin, D. J., Ailamaki, A., Alameldeen, A. R., Dickson, R. M., Mauer, C. J.,
Moore, K. E., Plakal, M., Hill, M. D. & Wood, D. A. (2000). Timestamp snooping: An
approach for extending SMPs, 9th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pp. 25–36.

Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M., Alameldeen, A. R., Moore,
K. E., Hill, M. D. & Wood, D. A. (2005). Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset, Computer Architecture News 33(4): 92–99.

Marty, M. R., Bingham, J., Hill, M. D., Hu, A., Martin, M. M. & Wood, D. A. (2005). Improving
multiple-cmp systems using token coherence, 11th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pp. 328–339.

Mukherjee, S. S. & Hill, M. D. (1994). An evaluation of directory protocols for medium-scale
shared-memory multiprocessors, 8th Int’l Conference on Supercomputing (ICS), pp. 64–
74.

Owner, J. M., Hummel, M. D., Meyer, D. R. & Keller, J. B. (2006). System and method of main-
taining coherency in a distributed communication system, U.S. Patent 7069361.

www.intechopen.com

Parallel and Distributed Computing118

Puente, V., Gregorio, J. A. & Beivide, R. (2002). SICOSYS: An integrated framework for study-
ing interconnection network in multiprocessor systems, 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing, pp. 15–22.

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008a). DiCo-CMP: Efficient cache coherency in tiled
cmp architectures, 22nd Int’l Parallel and Distributed Processing Symp. (IPDPS).

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008b). Scalable directory organization for tiled cmp
architectures, Int’l Conference on Computer Design (CDES), pp. 112–118.

Shah, M., Barreh, J., Brooks, J., Golla, R., Grohoski, G., Gura, N., Hetherington, R., Jordan,
P., Luttrell, M., Olson, C., Saha, B., Sheahan, D., Spracklen, L. & Wynn, A. (2007).
UltraSPARC T2: A highly-threaded, power-efficient, SPARC SoC, IEEE Asian Solid-
State Circuits Conference, pp. 22–25.

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H., Lee,
J.-W., Johnson, P., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen,
V., Frank, M., Amarasinghe, S. & Agarwal, A. (2002). The raw microprocessor: A
computational fabric for software circuits and general purpose programs, IEEE Micro
22(2): 25–35.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H. & Jouppi, N. P. (2008). Cacti 5.1, Technical Report
HPL-2008-20, HP Labs.

Wang, H., Peh, L.-S. & Malik, S. (2003). Power-driven design of router microarchitectures in
on-chip networks, 36th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 105–
111.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P. & Gupta, A. (1995). The SPLASH-2 programs:
Characterization and methodological considerations, 22nd Int’l Symp. on Computer
Architecture (ISCA), pp. 24–36.

Zhang, M. & Asanovic, K. (2005). Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors, 32nd Int’l Symp. on Computer Architecture (ISCA),
pp. 336–345.

www.intechopen.com

Parallel and Distributed Computing

Edited by Alberto Ros

ISBN 978-953-307-057-5

Hard cover, 290 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware

design to application development. Particularly, the topics that are addressed are programmable and

reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,

cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale

network simulation, and parallel routines and algorithms. In this way, the articles included in this book

constitute an excellent reference for engineers and researchers who have particular interests in each of these

topics in parallel and distributed computing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alberto Ros, Manuel E. Acacio and Jose M. Garcia (2010). Cache Coherence Protocols for Many-Core CMPs,

Parallel and Distributed Computing, Alberto Ros (Ed.), ISBN: 978-953-307-057-5, InTech, Available from:

http://www.intechopen.com/books/parallel-and-distributed-computing/cache-coherence-protocols-for-many-

core-cmps

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

