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1. Introduction 
 

In today’s world, embedded systems can be seen everywhere around us. These systems 
range from consumer electronics such as mobile phones, cameras and portable music 
players to sophisticated devices such as planes and satellite systems. In either form 
embedded systems are designed to perform specific tasks with constraints on their qualities 
and available resources. These constraints can either be soft or hard depending on the 
nature of the system: a satellite system, for example, has hard safety constraints. Some of the 
major constraints for embedded systems are high reliability, performance, safety and 
dependability, small memory size, low power and low processing capabilities. Designing 
systems with such constraints is a challenge.  
Developing system architectures during system development has gained importance as it 
helps in analyzing the system before its implementation. A system architecture is a formal 
description of a system that describes its building blocks, their properties and the 
interactions among them. System architectures can be used to analyze various properties of 
a system such as memory consumption and system safety. For embedded systems, this is of 
extreme importance since a well described system architecture allows us to predict whether 
any of the previously mentioned constraints can be met, without requiring the construction 
of an often expensive prototype implementation.  
Description of system architectures can be achieved using the formal notations offered by  
Architecture Description Languages (ADLs). Such ADLs often also provide tool support for 
the modelling and analysis of the system architecture. Many ADLs for embedded systems 
are available in both academic and industrial communities, such as Rapide, MetaH, AADL 
and Wright. Among the available ADLs, the best known and most actively used language is 
the Architecture Analysis and Design Language (AADL). Standardized by the Society of 
Automotive Engineers, AADL was originally developed for modelling and analysis of 
systems in the domain of avionics. However, because of its rich modelling and analysis 
capabilities, it is widely used for embedded systems in other domains as well. AADL 
provides a modelling formalism accompanied by a toolset to support modelling activities 
and system analyses. AADL models can be used to perform various analyses such as flow 
latency, resource consumption, real-time schedulability, security and safety analysis. 
Because of its history in the avionics domain, AADL does not address each and every 
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modelling and analysis requirement of other embedded domains. However, during its 
design, it was foreseen that use of AADL in other domains could require additional 
modelling concepts and analyses. To meet potential needs AADL was designed as an 
extensible ADL. 
This chapter is intended to provide insight into the design needs of embedded systems and 
the formalisms available to address those needs; we discuss them in section 2 and 3 
respectively. We will explain the suitability of AADL and will present its architectural 
elements for modelling embedded systems in section 4. We will also highlight the 
shortcomings currently present in AADL and describe its extension mechanism by 
addressing one of the shortcomings with the help of an example, in section 5. 

 
2. Embedded Systems 
 

There is no standard, universally accepted definition of embedded systems. Some recognize 
embedded systems as a computer inside a product; some view them as computing systems 
embedded inside electronic devices; some refer them as electronic programmable devices 
integrated in a larger heterogeneous system. Despite the lack of a standard definition, a 
general consensus about embedded systems is that they are computer systems designed to 
perform dedicated functions. Today we can see many such systems ranging from very 
simple single-chip systems to complex and highly distributed embedded systems. They are 
present around us in various forms at various places such as digital cameras, home appliances, 
elevators, planes and medical devices. The role of embedded systems in human life has 
increased drastically over the last decade as human dependency on electronic systems has 
surged. In past, embedded systems were mainly used to address needs of the mission-critical 
systems. Recently however, they are used in devices such as mobile phones and PDAs as well. 
One example of a very common embedded system is a digital camera, which is a 
composition of hardware and software components. The hardware is mainly responsible for 
capturing objects through sensors and storing images whereas the software facilitates image 
processing functions. Digital cameras usually have constraints such as low computation 
power, small size and low power consumption. 
Physical constrains, such as size and weight, and cost are reasons why embedded systems, 
such as mobile phones or digital cameras are forced to perform their functions with 
considerably fewer resources than conventional systems. Other systems, such as flight-
computers or transportation systems have high safety and reliability requirements. It is the 
presence of these non-functional constraints that makes the design and development of such 
systems a daunting task. 
Embedded systems can be divided in to real-time and non-real time embedded systems. 
Real-time embedded systems have various timing constraints on their behavior, they are 
required to react and respond to such constraints. Correctness of their behavior depends on 
the ability to perform it in the given time frame or before a certain deadline. Whereas, non-
real time embedded systems do not have time obligations.  
Real-time embedded systems can further be categorized in hard and soft real-time 
embedded systems. Hard real-time systems have tight timing constrains with nearly zero-
tolerance level. Failure to meet the deadlines causes the operations to stop and is considered 
an anomaly. Mission critical systems usually fall in hard real-time embedded systems 
category. Soft real-time constrains can be found in video streaming applications for 

 

example. Failure to achieve required deadlines or throughput is annoying but does not 
necessarily invalidate the results. An embedded system may have both hard and soft real-
time constraints for different functional and non-functional requirements.  
The affordability of embedded systems is an indicator for a further increase of their use in 
the near future. Not only they are more widely used, embedded systems also provide more 
and more features and grow increasingly more complex each year. In a study, in 2008, about 
30 embedded microprocessors were found per person in developed countries, with at least 
2.5 million function points in the associated embedded software (Christof & Capers, 2009). 
The number of embedded devices in automobiles is an important growth rate indicator. 
Modern cars contain 20 – 70 electronic control units with up to 1Gigabyte total size of the 
accompanied software. A similar growth rate is predicted for embedded systems in other 
domains too. Embedded systems with complex specifications require sophisticated 
development methodologies in general and especially for modelling their architecture 
(Bouyssounouse & Sifakis, 2005).  
 
Embedded Systems Specification and Modelling Needs 
Embedded systems consist of both functional and non-functional properties. Although the 
nature of their functional properties differs between different domains, embedded systems 
often have similar non-functional properties known as Quality Attributes (QA). A camera for 
instance has different functional properties than a mobile phone but both of them are required 
to work with a small amount of memory and less computation power. QAs are system 
requirements used to describe quality aspects of the system. The quality aspects may include 
performance, usability, security, portability, availability, robustness and testability. There is no 
standard list of such QAs that define system quality, however a general criteria that 
distinguishes them from other requirements is that they only describe non functional aspects 
of system. The quality of a system is analyzed against these requirements; importantly they are 
used during architecture level analysis to find and fix any discrepancy to system requirements 
early in the development life cycle. Trudy Sherman in his research work identified QAs for 
embedded systems by examining eleven architectural designs of embedded systems 
developed by three different organizations. He produced a list of 30 QAs that are used to 
define various quality aspects of embedded systems (Sherman, 2007). Following are some 
commonly used QAs for embedded systems given in the list he produced: 
 

Quality Attributes Description 
Reliability The ability of a system to perform desired behavior under 

previously specified circumstances, and recover from 
undesired states if occurred. 

Safety The ability of a system to avoid potential hazards to itself, 
its users and the environment in which it is used.  

Security The ability of a system to resist any unauthorized usage. 
Memory Usage The capability to work with a limited amount of memory.  
Performance 
 

The degree to which a system or component accomplishes 
its designated functions within given constraints, such as 
speed and accuracy. 

Usability The system must be easy to use, operate and handle. 

Table 1. Embedded System Quality Attributes 
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modelling and analysis requirement of other embedded domains. However, during its 
design, it was foreseen that use of AADL in other domains could require additional 
modelling concepts and analyses. To meet potential needs AADL was designed as an 
extensible ADL. 
This chapter is intended to provide insight into the design needs of embedded systems and 
the formalisms available to address those needs; we discuss them in section 2 and 3 
respectively. We will explain the suitability of AADL and will present its architectural 
elements for modelling embedded systems in section 4. We will also highlight the 
shortcomings currently present in AADL and describe its extension mechanism by 
addressing one of the shortcomings with the help of an example, in section 5. 

 
2. Embedded Systems 
 

There is no standard, universally accepted definition of embedded systems. Some recognize 
embedded systems as a computer inside a product; some view them as computing systems 
embedded inside electronic devices; some refer them as electronic programmable devices 
integrated in a larger heterogeneous system. Despite the lack of a standard definition, a 
general consensus about embedded systems is that they are computer systems designed to 
perform dedicated functions. Today we can see many such systems ranging from very 
simple single-chip systems to complex and highly distributed embedded systems. They are 
present around us in various forms at various places such as digital cameras, home appliances, 
elevators, planes and medical devices. The role of embedded systems in human life has 
increased drastically over the last decade as human dependency on electronic systems has 
surged. In past, embedded systems were mainly used to address needs of the mission-critical 
systems. Recently however, they are used in devices such as mobile phones and PDAs as well. 
One example of a very common embedded system is a digital camera, which is a 
composition of hardware and software components. The hardware is mainly responsible for 
capturing objects through sensors and storing images whereas the software facilitates image 
processing functions. Digital cameras usually have constraints such as low computation 
power, small size and low power consumption. 
Physical constrains, such as size and weight, and cost are reasons why embedded systems, 
such as mobile phones or digital cameras are forced to perform their functions with 
considerably fewer resources than conventional systems. Other systems, such as flight-
computers or transportation systems have high safety and reliability requirements. It is the 
presence of these non-functional constraints that makes the design and development of such 
systems a daunting task. 
Embedded systems can be divided in to real-time and non-real time embedded systems. 
Real-time embedded systems have various timing constraints on their behavior, they are 
required to react and respond to such constraints. Correctness of their behavior depends on 
the ability to perform it in the given time frame or before a certain deadline. Whereas, non-
real time embedded systems do not have time obligations.  
Real-time embedded systems can further be categorized in hard and soft real-time 
embedded systems. Hard real-time systems have tight timing constrains with nearly zero-
tolerance level. Failure to meet the deadlines causes the operations to stop and is considered 
an anomaly. Mission critical systems usually fall in hard real-time embedded systems 
category. Soft real-time constrains can be found in video streaming applications for 

 

example. Failure to achieve required deadlines or throughput is annoying but does not 
necessarily invalidate the results. An embedded system may have both hard and soft real-
time constraints for different functional and non-functional requirements.  
The affordability of embedded systems is an indicator for a further increase of their use in 
the near future. Not only they are more widely used, embedded systems also provide more 
and more features and grow increasingly more complex each year. In a study, in 2008, about 
30 embedded microprocessors were found per person in developed countries, with at least 
2.5 million function points in the associated embedded software (Christof & Capers, 2009). 
The number of embedded devices in automobiles is an important growth rate indicator. 
Modern cars contain 20 – 70 electronic control units with up to 1Gigabyte total size of the 
accompanied software. A similar growth rate is predicted for embedded systems in other 
domains too. Embedded systems with complex specifications require sophisticated 
development methodologies in general and especially for modelling their architecture 
(Bouyssounouse & Sifakis, 2005).  
 
Embedded Systems Specification and Modelling Needs 
Embedded systems consist of both functional and non-functional properties. Although the 
nature of their functional properties differs between different domains, embedded systems 
often have similar non-functional properties known as Quality Attributes (QA). A camera for 
instance has different functional properties than a mobile phone but both of them are required 
to work with a small amount of memory and less computation power. QAs are system 
requirements used to describe quality aspects of the system. The quality aspects may include 
performance, usability, security, portability, availability, robustness and testability. There is no 
standard list of such QAs that define system quality, however a general criteria that 
distinguishes them from other requirements is that they only describe non functional aspects 
of system. The quality of a system is analyzed against these requirements; importantly they are 
used during architecture level analysis to find and fix any discrepancy to system requirements 
early in the development life cycle. Trudy Sherman in his research work identified QAs for 
embedded systems by examining eleven architectural designs of embedded systems 
developed by three different organizations. He produced a list of 30 QAs that are used to 
define various quality aspects of embedded systems (Sherman, 2007). Following are some 
commonly used QAs for embedded systems given in the list he produced: 
 

Quality Attributes Description 
Reliability The ability of a system to perform desired behavior under 

previously specified circumstances, and recover from 
undesired states if occurred. 

Safety The ability of a system to avoid potential hazards to itself, 
its users and the environment in which it is used.  

Security The ability of a system to resist any unauthorized usage. 
Memory Usage The capability to work with a limited amount of memory.  
Performance 
 

The degree to which a system or component accomplishes 
its designated functions within given constraints, such as 
speed and accuracy. 

Usability The system must be easy to use, operate and handle. 

Table 1. Embedded System Quality Attributes 

www.intechopen.com



 New, Advanced Technologies250

 

The magnitude of constraints on QAs defines the nature of a system as either a non-real 
time, soft or hard real-time embedded system. This magnitude must be explicitly defined 
and is based on the domain for which the system is developed. Furthermore, it serves as an 
important factor during QAs’ tradeoff. 
Because of the high pressure to produce embedded systems with previously mentioned 
characteristics in a low-cost and short time-to-market setting, embedded systems design 
methodologies are required to well address functional and non-functional constraints, and 
resolve potential issues before implementation. According to Talarico et al. they must 
provide support mainly to (Talarico et al., 2005)  

1. Describe the interactions between the system and the external environment 
2. Describe the system architecture 
3. Model the behavior of hardware and software components that make up the 

system  
4. Describe the system constraints and requirements 
5. Describe the test scenarios used to simulate the system 
6. Define a set of gauges to measure various performance metrics during simulation 

execution 
Although the criteria of Talarico et al. are valid for every software system a number of 
aspects are especially different for embedded systems. For example, the forth requirement 
support for a cost-effective method to formally specify system constrains is difficult for 
embedded systems, since the exact nature of all constraints is often not yet known in the 
early stages of development.  
In addition, embedded systems are composed of software and hardware components which 
require that the modeling needs of both domains are well addressed. These needs include 
the specification of all types of software elements (such as processes, threads, 
communication among software elements and shared data), hardware elements ( for 
instance processors, memory and physical communication channels), and most importantly 
the mapping of software elements to hardware elements. Additionally support is required 
for describing system dynamics. These dynamics may include system flows, system states 
and run-time interactions among system components. 
It is also important that the support offered by the design methodology is not restricted to 
the modelling only but that it also facilitates system designers to analyze designs for issues 
and fix them early. Therefore, for modern system development methodologies the presence 
of design artifacts is extremely important. They not only serve as input to the next phase but 
are used for early system verification and validation (V&V). They can be analyzed to find 
potential performance deficiencies, security leaks and safety hazards. As previously 
discussed fixing these issues at early stage is cost effective. Any unaddressed performance 
deficiency or security leak that propagates to later stages of development may lead to a 
major refactoring and cost afterwards. With this additional perspective design techniques 
and tools are required to support V&V activities. 
Moreover, it is important to assist design activities with rich set of toolsets to make these 
activities quick and correct. Although, many tools are available for modeling and analysis of 
functional and non-functional behaviours, some non-functional aspects remain unaddressed 
which are of primary focus for embedded systems. Tool support should be enhanced not 
only to deal with unaddressed areas but to tackle future design complexities.  

 

 

3. Architecture Description Languages 
 

Architecture Description Languages (ADLs) are modelling formalisms that provide support 
for describing system architectures through their formal notations. These are considered as 
modelling-language-plus as they can model more than conventional modelling languages. 
ADLs can model not only static but dynamic properties of systems as well. There is no 
consensus on a standard definition of ADL yet, for our discussions we will however use the 
one provided by Medvidovic and Taylor (Medvidovic & Taylor, 2000) “an ADL must 
explicitly model components, connectors, and their configurations; furthermore, to be truly usable 
and useful, it must provide tool support for architecture-based development and evolution”.  
The definition identifies three essential requirements an AADL must fulfil. Firstly, it should 
provide support for modelling a static structure in the form of components and connectors. 
Secondly, ADLs should provide support for modelling configurations of components and 
connectors, which usually define system’s dynamic behaviour. The third pivotal 
requirement for an ADL is to provide tool support to assist modelling and analysis 
activities. There are several ADLs available to date; some of them are given in the following 
table. 
 

ADL Application Domain 
AADL Is used to model real time embedded systems particularly in the avionics 

domain. 
Acme Interchanges architecture description information between ADLs. 
Aesop Is used to model style-specific architecture descriptions, also provides 

support for designing custom architecture styles. 
ArchC Is a SystemC based language used to describe hardware elements.  
ArchJava Checks conformance of an architecture of a software system to its 

implementation, and keeps architecture and code consistent during their 
evolution. 

ControlH Is used to develop the architecture specification and code generation for 
control and navigation systems. 

C2 Supports architecture description of highly-distributed, evolvable, and 
dynamic systems. 

Darwin Is used to describe architectures of dynamically changing highly-
distributed systems. 

EAST-ADL Addresses modelling and analysis needs of automotive electronic systems. 
MetaH Supports modelling of real-time systems in the domain of guidance, 

navigation and control. 
Modechart Is used to describe architecture for hard real-time embedded systems.  
Rapide Provides support for developing event based simulations for distributed 

event-extensive systems. 
SADL Is designed to simulate real-time properties for hard real-time systems 

from the avionics domain. 
Weaves Is used for describing architecture for data-flow-extensive systems with 

real-time processing on a high volume of data. 
Wright Is used for describing communication behaviour of concurrent systems. 

Table 2. Architecture Description Languages 
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3. Model the behavior of hardware and software components that make up the 

system  
4. Describe the system constraints and requirements 
5. Describe the test scenarios used to simulate the system 
6. Define a set of gauges to measure various performance metrics during simulation 

execution 
Although the criteria of Talarico et al. are valid for every software system a number of 
aspects are especially different for embedded systems. For example, the forth requirement 
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communication among software elements and shared data), hardware elements ( for 
instance processors, memory and physical communication channels), and most importantly 
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and run-time interactions among system components. 
It is also important that the support offered by the design methodology is not restricted to 
the modelling only but that it also facilitates system designers to analyze designs for issues 
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of design artifacts is extremely important. They not only serve as input to the next phase but 
are used for early system verification and validation (V&V). They can be analyzed to find 
potential performance deficiencies, security leaks and safety hazards. As previously 
discussed fixing these issues at early stage is cost effective. Any unaddressed performance 
deficiency or security leak that propagates to later stages of development may lead to a 
major refactoring and cost afterwards. With this additional perspective design techniques 
and tools are required to support V&V activities. 
Moreover, it is important to assist design activities with rich set of toolsets to make these 
activities quick and correct. Although, many tools are available for modeling and analysis of 
functional and non-functional behaviours, some non-functional aspects remain unaddressed 
which are of primary focus for embedded systems. Tool support should be enhanced not 
only to deal with unaddressed areas but to tackle future design complexities.  
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Acme Interchanges architecture description information between ADLs. 
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The ADLs given in the table clearly show that most of them are domain specific description 
languages addressing needs of systems for particular domains. They vary widely in their 
supported abstractions and analysis capabilities. Their incapability to be applicable for every 
domain is resulting in new ADLs. With a large number of ADLs available and most of them 
domain specific, and considering the fact that a single ADL does not address every 
modelling requirement particularly in the case of multidisciplinary systems, it is difficult to 
choose the right language. Some work however is being done in establishing a contact point 
among ADLs where multiple languages may be used together. Acme is serving as such a 
contact point, it is an ADL whose core purpose is to support the mapping of an architecture 
description of one ADL to another (Medvidovic & Taylor, 2000).  
The role of architecture for early system validation certainly is of great importance. 
However, the effectiveness of the validation activities can only be increased by a formal 
description of the architecture and assisting the activities with tool support. ADLs with their 
support for formal description and accompanied toolset for architecture modelling and 
analysis can serve for this purpose. 
The QAs of an embedded system are difficult to model and analyze because they are 
associated with a system’s dynamic behavior that is only available during the last phases of 
its development. It is nevertheless cost effective to resolve issues related to them as early as 
possible. ADLs’ support for modelling dynamic behavior and tools for analyzing 
architecture for quality attributes can be utilized for embedded systems. 
Although a large number of ADLs is available, most of those are present only in the research 
community, and are not applied in industry. In addition, some of them are no longer in use. 
In a survey, which we conducted to find a suitable ADL for modelling performance for an 
electron microscope embedded system we found that most of the candidate languages are 
no longer active. Among MetaH, Rapide, AADL and Wright, only AADL is active and being 
used in industry. In addition, the amount of literature published between 2000 and 2008 for 
AADL magnitudes greater than for others, suggesting a wide acceptance in the research 
community as well.  
Besides its wide acceptance, AADL distinguishes itself from other ADLs by its extensible 
nature. Although initially designed for the avionics industry it can be applied to other 
domains by extending its core concepts where required (Feiler et al., 2006). This will help in 
generalizing an ADL for various domains, previously an issue with many ADLs. 
In the following section we will discuss AADL in detail; we will highlight its modelling and 
analysis capabilities and discuss its toolset. Moreover, in section 5 we will explain how 
AADL can be extended to meet custom modelling needs using an example. 

 
4. Architecture Analysis and Design Language (AADL) 
 

In compliance to the definition of ADL, AADL provides a modelling formalism 
accompanied by a toolset to support modelling activities and analysis. Originally developed 
for modelling and analysis of systems in the domain of avionics, it has been standardized by 
the Society of Automotive Engineers. Because of its rich modelling and analysis capabilities 
it is widely used for embedded systems in other domains as well, especially suitable for 
model-based analysis and specification of complex real-time embed systems (Feiler et al., 
2006). In this section a brief introduction is given on the AADL architectural notations, its 
analysis and its tool support. 

 

4.1 Modelling 
AADL consists of a rich set of architectural elements for modelling components, their 
interactions and their configurations. Architectural elements and the core concepts of the 
language are given in figure 1.  
Components in AADL are used in terms of component types and component 
implementations. A component type defines the externally visible characteristics of a 
component usually by using features, flows and properties. Whereas, a component 
implementation models the internal structure of the component. An internal structure may 
consist of subcomponents, connection among them, flows across them and their operational 
behaviour. AADL distinguishes between three types of components: software components, 
hardware components and composite (system) components: 
 
Software Components: 
Thread: Represents a unit of sequential execution through source code. 
Thread group: Represents a logical grouping of threads. 
Process: Represents a protected address space. 
Data: Represents static data and data types. 
Subprogram: Represents a callable part of a source code. 
 
Hardware Components: 
Processor: Hardware that is responsible for executing threads. 
Device: Hardware that interacts with the external environment. 
Bus: Hardware that provides access to the other execution platform components. 
Memory: Hardware that stores digital data.  
 
Composite (System) Component: A component composed of software and hardware or even 
system components.  
 

 
Fig. 1. AADL Architectural Elements (Feiler et al., 2006) 
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modelling requirement particularly in the case of multidisciplinary systems, it is difficult to 
choose the right language. Some work however is being done in establishing a contact point 
among ADLs where multiple languages may be used together. Acme is serving as such a 
contact point, it is an ADL whose core purpose is to support the mapping of an architecture 
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support for formal description and accompanied toolset for architecture modelling and 
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The QAs of an embedded system are difficult to model and analyze because they are 
associated with a system’s dynamic behavior that is only available during the last phases of 
its development. It is nevertheless cost effective to resolve issues related to them as early as 
possible. ADLs’ support for modelling dynamic behavior and tools for analyzing 
architecture for quality attributes can be utilized for embedded systems. 
Although a large number of ADLs is available, most of those are present only in the research 
community, and are not applied in industry. In addition, some of them are no longer in use. 
In a survey, which we conducted to find a suitable ADL for modelling performance for an 
electron microscope embedded system we found that most of the candidate languages are 
no longer active. Among MetaH, Rapide, AADL and Wright, only AADL is active and being 
used in industry. In addition, the amount of literature published between 2000 and 2008 for 
AADL magnitudes greater than for others, suggesting a wide acceptance in the research 
community as well.  
Besides its wide acceptance, AADL distinguishes itself from other ADLs by its extensible 
nature. Although initially designed for the avionics industry it can be applied to other 
domains by extending its core concepts where required (Feiler et al., 2006). This will help in 
generalizing an ADL for various domains, previously an issue with many ADLs. 
In the following section we will discuss AADL in detail; we will highlight its modelling and 
analysis capabilities and discuss its toolset. Moreover, in section 5 we will explain how 
AADL can be extended to meet custom modelling needs using an example. 

 
4. Architecture Analysis and Design Language (AADL) 
 

In compliance to the definition of ADL, AADL provides a modelling formalism 
accompanied by a toolset to support modelling activities and analysis. Originally developed 
for modelling and analysis of systems in the domain of avionics, it has been standardized by 
the Society of Automotive Engineers. Because of its rich modelling and analysis capabilities 
it is widely used for embedded systems in other domains as well, especially suitable for 
model-based analysis and specification of complex real-time embed systems (Feiler et al., 
2006). In this section a brief introduction is given on the AADL architectural notations, its 
analysis and its tool support. 

 

4.1 Modelling 
AADL consists of a rich set of architectural elements for modelling components, their 
interactions and their configurations. Architectural elements and the core concepts of the 
language are given in figure 1.  
Components in AADL are used in terms of component types and component 
implementations. A component type defines the externally visible characteristics of a 
component usually by using features, flows and properties. Whereas, a component 
implementation models the internal structure of the component. An internal structure may 
consist of subcomponents, connection among them, flows across them and their operational 
behaviour. AADL distinguishes between three types of components: software components, 
hardware components and composite (system) components: 
 
Software Components: 
Thread: Represents a unit of sequential execution through source code. 
Thread group: Represents a logical grouping of threads. 
Process: Represents a protected address space. 
Data: Represents static data and data types. 
Subprogram: Represents a callable part of a source code. 
 
Hardware Components: 
Processor: Hardware that is responsible for executing threads. 
Device: Hardware that interacts with the external environment. 
Bus: Hardware that provides access to the other execution platform components. 
Memory: Hardware that stores digital data.  
 
Composite (System) Component: A component composed of software and hardware or even 
system components.  
 

 
Fig. 1. AADL Architectural Elements (Feiler et al., 2006) 
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Interactions between components can be realized by using features and connections. Features 
are interaction points of components, which are used for communication. Features are 
classified into ports, component access, subprogram calls and parameters. A port is a 
communication interface of components used to exchange data and events. AADL 
categorizes ports as data ports, event ports and event data ports. Moreover, multiple ports can 
be grouped together in a port group. Component access enables components to access shared 
data and bus. For access, components are required to explicitly use provides access and 
requires access declarations. Subprogram calls are used for synchronous calls to subprogram 
components, and parameters are used to represent data values passing in and out of a 
subprogram. Connectors are used to connect interaction points of components. AADL 
provides data, event, eventdata, dataaccess, bussaccess and portgroup connectors. 

 
4.2 Analysis and Tool Support 
In its conformity to the ADL definition, AADL provides support for various kinds of 
analyses along with conventional modelling. A few of the supported analysis are: 
Flow Latency Analysis 
Understand the amount of time consumed for information flows within a system, 
particularly the end-to-end time consumed from a starting point to a destination. 
Resource Consumption Analysis 
Allows system architects to perform resource allocation for processors, memory, and 
network bandwidth and analyze the requirements against the available resources. 
Real-Time Schedulability Analysis 
AADL models bind software elements such as threads to hardware elements like processors. 
Schedulability analysis helps in examining such bindings and scheduling policies. 
Safety Analysis 
Checks the safety criticality level of system components and highlights potential safety  
hazards that may occur because of communication among components with different safety 
levels.  
Security Analysis 
Like safety levels, AADL components can be assigned various security levels. The analysis 
helps in identifying the security loopholes that may happen because of mismatches in 
security levels between a component and its subcomponents, and communication among 
components with different security levels. 
Various tools are available to perform these analyses: 
OSATE (Open Source AADL Tool Environment) developed by SEI is a set of Eclipse plug-
ins for front-end processing and various analyses of AADL models (Feiler & Hansson, 2007). 
ADeS (Architecture Description Simulation) by Axlog simulates various aspects of the 
system behaviour, such as scheduling of processes and threads by processors (AXLOG, 2009). 
Cheddar (Singhoff & Plantec,  2007), developed by LISyC Team, is a real-time scheduling 
tool which provides support for quick prototyping of real-time schedulers and 
schedulability analysis. Like ADeS, Cheddar also supports simulation of scheduling 
properties of a system. 
ANDES (ANalysis-based DEsign tool for wireless Sensor networks) (Prasad et al., 2007) was 
developed for modelling and analysis of wireless sensor network systems. It provides 
support for real-time communication schedulability, target tracking and real-time capacity 
analyses.  

 

5. Extension to AADL 
 

Initially designed as a language for modelling avionic systems, AADL includes core 
modelling concepts and certain analyses essential for real-time systems in the aerospace 
domain. However, during its design, it was foreseen that use of AADL in other domains 
could require additional modelling concepts and analyses. To meet potential needs AADL 
was designed as an extensible ADL. 
It is possible to extend the AADL concepts either by introducing new properties to the 
modelling elements, by addition of new modelling notations, or by developing a 
sublanguage as annex to the AADL standard (Frana et al., 2007). The latter technique is 
mainly used for large-scale extensions and was considered out of scope for our own 
purpose. Since, for our research work we extended AADL by using the property based 
extension technique, the scope of the example we present here will be restricted to this 
technique only. In this ecample, we will extend AADL End-to-End (EtE) flows to provide 
support for Composite EtE flow modelling and latency analysis. 
EtE flow latency is the amount of time consumed by the contributing components for a 
specific flow of information from a source to a destination. Currently, AADL requires that 
flow specifications of the contributing components are connected through the AADL 
connector element and does not provide support for composite EtE flows: flows that 
themselves consist of multiple discrete EtE flows. We will describe how this issue can be 
overcome with an extension to AADL, by introducing a new property for the AADL EtE 
flow element. Latter we will discuss results of the extended EtE flow analysis with the help 
of an analysis tool that we developed for this purpose. 
We will apply this technique on an electron microscope embedded system. An electron  
microscope is a sophisticated microscope used to examine minute specimens by creating 
highly-magnified images.  

 
5.1 AADL EtE Flow Extension 
Flows in AADL describe the different sequences of an information flow through a set of 
contributing components. The description of this flow is subsequently used in certain 
analyses such as a flow latency analysis. In AADL, flows are defined with a flow 
specification and a flow implementation. A flow specification represents the externally 
visible flow of information in a component; it is specified within the component type 
declarations using flow sources, flow paths and flow sinks (Feiler & Hansson,2007). A flow 
source represents the originator of the flow, the flow sink represents the end consumer of 
the flow information, and the flow path embodies the link between incoming and outgoing 
ports involved in the flow. A flow implementation on the other hand represents the actual 
realization of a flow within a component; it is specified within the component 
implementation declarations.  
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Interactions between components can be realized by using features and connections. Features 
are interaction points of components, which are used for communication. Features are 
classified into ports, component access, subprogram calls and parameters. A port is a 
communication interface of components used to exchange data and events. AADL 
categorizes ports as data ports, event ports and event data ports. Moreover, multiple ports can 
be grouped together in a port group. Component access enables components to access shared 
data and bus. For access, components are required to explicitly use provides access and 
requires access declarations. Subprogram calls are used for synchronous calls to subprogram 
components, and parameters are used to represent data values passing in and out of a 
subprogram. Connectors are used to connect interaction points of components. AADL 
provides data, event, eventdata, dataaccess, bussaccess and portgroup connectors. 

 
4.2 Analysis and Tool Support 
In its conformity to the ADL definition, AADL provides support for various kinds of 
analyses along with conventional modelling. A few of the supported analysis are: 
Flow Latency Analysis 
Understand the amount of time consumed for information flows within a system, 
particularly the end-to-end time consumed from a starting point to a destination. 
Resource Consumption Analysis 
Allows system architects to perform resource allocation for processors, memory, and 
network bandwidth and analyze the requirements against the available resources. 
Real-Time Schedulability Analysis 
AADL models bind software elements such as threads to hardware elements like processors. 
Schedulability analysis helps in examining such bindings and scheduling policies. 
Safety Analysis 
Checks the safety criticality level of system components and highlights potential safety  
hazards that may occur because of communication among components with different safety 
levels.  
Security Analysis 
Like safety levels, AADL components can be assigned various security levels. The analysis 
helps in identifying the security loopholes that may happen because of mismatches in 
security levels between a component and its subcomponents, and communication among 
components with different security levels. 
Various tools are available to perform these analyses: 
OSATE (Open Source AADL Tool Environment) developed by SEI is a set of Eclipse plug-
ins for front-end processing and various analyses of AADL models (Feiler & Hansson, 2007). 
ADeS (Architecture Description Simulation) by Axlog simulates various aspects of the 
system behaviour, such as scheduling of processes and threads by processors (AXLOG, 2009). 
Cheddar (Singhoff & Plantec,  2007), developed by LISyC Team, is a real-time scheduling 
tool which provides support for quick prototyping of real-time schedulers and 
schedulability analysis. Like ADeS, Cheddar also supports simulation of scheduling 
properties of a system. 
ANDES (ANalysis-based DEsign tool for wireless Sensor networks) (Prasad et al., 2007) was 
developed for modelling and analysis of wireless sensor network systems. It provides 
support for real-time communication schedulability, target tracking and real-time capacity 
analyses.  

 

5. Extension to AADL 
 

Initially designed as a language for modelling avionic systems, AADL includes core 
modelling concepts and certain analyses essential for real-time systems in the aerospace 
domain. However, during its design, it was foreseen that use of AADL in other domains 
could require additional modelling concepts and analyses. To meet potential needs AADL 
was designed as an extensible ADL. 
It is possible to extend the AADL concepts either by introducing new properties to the 
modelling elements, by addition of new modelling notations, or by developing a 
sublanguage as annex to the AADL standard (Frana et al., 2007). The latter technique is 
mainly used for large-scale extensions and was considered out of scope for our own 
purpose. Since, for our research work we extended AADL by using the property based 
extension technique, the scope of the example we present here will be restricted to this 
technique only. In this ecample, we will extend AADL End-to-End (EtE) flows to provide 
support for Composite EtE flow modelling and latency analysis. 
EtE flow latency is the amount of time consumed by the contributing components for a 
specific flow of information from a source to a destination. Currently, AADL requires that 
flow specifications of the contributing components are connected through the AADL 
connector element and does not provide support for composite EtE flows: flows that 
themselves consist of multiple discrete EtE flows. We will describe how this issue can be 
overcome with an extension to AADL, by introducing a new property for the AADL EtE 
flow element. Latter we will discuss results of the extended EtE flow analysis with the help 
of an analysis tool that we developed for this purpose. 
We will apply this technique on an electron microscope embedded system. An electron  
microscope is a sophisticated microscope used to examine minute specimens by creating 
highly-magnified images.  

 
5.1 AADL EtE Flow Extension 
Flows in AADL describe the different sequences of an information flow through a set of 
contributing components. The description of this flow is subsequently used in certain 
analyses such as a flow latency analysis. In AADL, flows are defined with a flow 
specification and a flow implementation. A flow specification represents the externally 
visible flow of information in a component; it is specified within the component type 
declarations using flow sources, flow paths and flow sinks (Feiler & Hansson,2007). A flow 
source represents the originator of the flow, the flow sink represents the end consumer of 
the flow information, and the flow path embodies the link between incoming and outgoing 
ports involved in the flow. A flow implementation on the other hand represents the actual 
realization of a flow within a component; it is specified within the component 
implementation declarations.  
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system motion_client 
flows 
start_motion_flow: flow source C_start_motion; 
move_status_flow: flow sink C_motion_status; 

end motion_client; 

system motion_server 
flows 
start_motion_flow: flow sink S_start_motion;  
axis_move_flow: flow source S_move_axis; 
move_status_flow: flow path S_move_status ->  

                                                             S_motion_status; 
end motion_server; 

device motion_controller 
flows 
axis_move_flow: flow sink Ctr_move_axis; 
move_status_flow: flow source Ctr_move_status; 

end motion_controller; 

Fig. 2. AADL Flow Specification 
 
An example of both a flow specification and a flow implementation is given in Figures 2 and 
4. The excerpts are taken from the electron microscope’s motion-subsystem that is 
responsible for moving the specimen holder. The system consists of three major components 
working in a client-server environment: the motion client, the motion server and the motion 
controller. The motion server receives its stage movement commands from a client 
application, processes it and moves the motion controller to the desired position. The 
externally visible flow of the move command is shown in Figure 3, which corresponds with 
the textual AADL representation in Figure 2.  
 

 
Fig. 3. Motion-Subsystem Move Command Flow 

 

system implementation motion_server.server_app 
 
--following flow receives information at a sink port of the server and passes it to a flow specification  
--of the MdlMotion subcomponent of the server through a connector.  
start_motion_flow: flow sink S_start_motion -> ServertoMdlConnector 
                             -> MdlMotion.start_motion_flow; 
 
--following flow connects a flow specification of the MdlMotion subcomponent to a flow specification  
--of the HalMotion subcomponent through a connector and continues through another connector to  
--an out port of the Server.  
axis_move_flow: flow source MdlMotion.axis_move_flow -> MdltoHalConnector 
                          -> HalMotion.axis_move_flow -> HaltoServerConnector- > S_move_axis; 
 
--following flow passes information received from an incoming port of the server to the HalMotion  
--subcomponent through a connector, subsequently it connects a flow specification of the HalMotion  
--to a flow specification of the MdlMotion by using another connector. Finally, it connects a  
--MdlMotion flow specification to an out port of the server.  
move_status_flow: flow path S_move_status -> ServertoHalConnector 
                              -> HalMotion.move_status_flow  -> HaltoMdlConnector 
                              -> MdlMotion.move_status_flow ->MdltoServerConnector 
                              ->S_motion_status; 
  
end motion_server.server_app; 

Fig. 4. AADL Flow Implementation 
 
An EtE flow latency analysis requires the specifications of EtE flows. An EtE flow represents 
a logical flow of information from a source to destination passing through various system 
components. It is defined in the component implementation (typically in the top level 
component in the system hierarchy) and refers to the specifications of other flows in the 
system. 
An EtE flow specification consists of the flow specifications of the contributing components 
connected through the AADL connector, Figure 5 contains the standard syntax for EtE flow 
specification. 
 

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow  
      start_subcomponent_flow_identifier 
     { -> connection_identifier ->  
        flow_path_subcomponent_flow_identifier 
      }*-> connection_identifier-> end_subcomponent_flow_identifier 
      [{(property_association)+}][in_modes_and_transitions]; 

Fig. 5. Standard AADL EtE Flow Syntax 

 
According to the standard specification, an EtE flow starts with a flow specification of the 
starting subcomponent, connects it to a flow specification of the subsequent subcomponent 
and so on, and finally connects to a flow specification of the last component in a flow. A 
notable point in the EtE flow modelling is that each contributing flow specification is 
connected to its adjacent flow specifications. The starting and ending flows are connected to 
one flow each, all intermediate flows are connected to both the predecessor and successor 
flows. This concept restricts EtE flow analysis only to those flow specifications that are 
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system motion_client 
flows 
start_motion_flow: flow source C_start_motion; 
move_status_flow: flow sink C_motion_status; 

end motion_client; 

system motion_server 
flows 
start_motion_flow: flow sink S_start_motion;  
axis_move_flow: flow source S_move_axis; 
move_status_flow: flow path S_move_status ->  

                                                             S_motion_status; 
end motion_server; 

device motion_controller 
flows 
axis_move_flow: flow sink Ctr_move_axis; 
move_status_flow: flow source Ctr_move_status; 

end motion_controller; 

Fig. 2. AADL Flow Specification 
 
An example of both a flow specification and a flow implementation is given in Figures 2 and 
4. The excerpts are taken from the electron microscope’s motion-subsystem that is 
responsible for moving the specimen holder. The system consists of three major components 
working in a client-server environment: the motion client, the motion server and the motion 
controller. The motion server receives its stage movement commands from a client 
application, processes it and moves the motion controller to the desired position. The 
externally visible flow of the move command is shown in Figure 3, which corresponds with 
the textual AADL representation in Figure 2.  
 

 
Fig. 3. Motion-Subsystem Move Command Flow 

 

system implementation motion_server.server_app 
 
--following flow receives information at a sink port of the server and passes it to a flow specification  
--of the MdlMotion subcomponent of the server through a connector.  
start_motion_flow: flow sink S_start_motion -> ServertoMdlConnector 
                             -> MdlMotion.start_motion_flow; 
 
--following flow connects a flow specification of the MdlMotion subcomponent to a flow specification  
--of the HalMotion subcomponent through a connector and continues through another connector to  
--an out port of the Server.  
axis_move_flow: flow source MdlMotion.axis_move_flow -> MdltoHalConnector 
                          -> HalMotion.axis_move_flow -> HaltoServerConnector- > S_move_axis; 
 
--following flow passes information received from an incoming port of the server to the HalMotion  
--subcomponent through a connector, subsequently it connects a flow specification of the HalMotion  
--to a flow specification of the MdlMotion by using another connector. Finally, it connects a  
--MdlMotion flow specification to an out port of the server.  
move_status_flow: flow path S_move_status -> ServertoHalConnector 
                              -> HalMotion.move_status_flow  -> HaltoMdlConnector 
                              -> MdlMotion.move_status_flow ->MdltoServerConnector 
                              ->S_motion_status; 
  
end motion_server.server_app; 

Fig. 4. AADL Flow Implementation 
 
An EtE flow latency analysis requires the specifications of EtE flows. An EtE flow represents 
a logical flow of information from a source to destination passing through various system 
components. It is defined in the component implementation (typically in the top level 
component in the system hierarchy) and refers to the specifications of other flows in the 
system. 
An EtE flow specification consists of the flow specifications of the contributing components 
connected through the AADL connector, Figure 5 contains the standard syntax for EtE flow 
specification. 
 

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow  
      start_subcomponent_flow_identifier 
     { -> connection_identifier ->  
        flow_path_subcomponent_flow_identifier 
      }*-> connection_identifier-> end_subcomponent_flow_identifier 
      [{(property_association)+}][in_modes_and_transitions]; 

Fig. 5. Standard AADL EtE Flow Syntax 

 
According to the standard specification, an EtE flow starts with a flow specification of the 
starting subcomponent, connects it to a flow specification of the subsequent subcomponent 
and so on, and finally connects to a flow specification of the last component in a flow. A 
notable point in the EtE flow modelling is that each contributing flow specification is 
connected to its adjacent flow specifications. The starting and ending flows are connected to 
one flow each, all intermediate flows are connected to both the predecessor and successor 
flows. This concept restricts EtE flow analysis only to those flow specifications that are 
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linked. AADL does not provide support for more abstract flows whose internal flows are 
not linked. For clarity, we distinguish in our discussion between discrete EtE flows (in 
which all sub-flows are connected) and composite EtE flows (that consists of unlinked sub-
flows). 
In case of our motion-subsystem example, Move_Stage is a composite EtE flow: the flow 
starts when a client application sends a move request to the server and ends when client gets 
acknowledgement that stage has been moved to a desire position. Internally, Move_Stage 
consists of three consecutive discrete (disconnected) EtE flows Start_motion_flow, 
Axis_move_flow and Move_status_flow. 
Start_motion_flow:  
The flow starts with a move request from the client application and ends with the server. 
Internally, the server simply places the command in a queue, therefore this flow ends here. 
A part of the AADL textual representation given in Figure 2 specifies this behaviour of the 
flow.  
Axis_move_flow:  
As soon as a move command is available in the queue, a component of the motion server 
processes it and generates a new instruction for the motion controller. Upon receipt of the 
instruction, the motion controller moves the stage to the desired position. The server 
component involved in this task is different from the component involved in previous EtE 
flow. More importantly, both are not connected with each other for this particular task. Since 
the flow specifications of both components are not linked with each other, according to the 
AADL specification they can not be a part of a single EtE flow. Hence, this results in another 
EtE flow starting from the motion server and ending with the motion controller. The 
specification of this flow can be seen in Figure 2.  
Move_status_flow:  
As soon as the stage is moved to its position, the motion controller sends a motion 
completion acknowledgement back to the server which subsequently dispatches it to the 
client application. Internally, two different subcomponents of the motion controller are 
responsible for stage movement and acknowledgement generation. As such, the flow 
specifications of both components are not connected with each other. Therefore, sending 
acknowledgement back to the server is the start of a separate EtE flow with the motion 
controller as its starting point and the client as its ending point. The specification of this flow 
is shown in Figure 2 as well. 
AADL’s incapability to model composite EtE flows exists at any level of abstraction in 
AADL models, although chances of having such flow specifications increase with higher 
level of abstraction. Therefore, need for modelling and analysis of such EtE flows is 
significant at higher abstraction (system architecture) levels. Providing modelling support 
for composite EtE flows will also enhance flow latency analysis. The capabilities will enable 
system architects to analyse system flows at higher abstraction. 
The incapability, as we described earlier, exists because AADL does not provide any 
support for linking disconnected flow specifications. Bridging such flow specifications can 
enable modelling and analysis of composite EtE flows. We will introduce a new property 
that will serve as a bridge between disconnected flow specifications.  
Property Based Extenstion 
An AADL property provides descriptive information about components, subcomponents, 
features, connections, modes, subprogram calls and flows (Feiler et al., 2006). A property 
consists of an associated value and type; the AADL standard consists of a set of predefined 

 

properties. However, new properties can be introduced in order to add additional 
information about the above mentioned architectural elements. The standard properties for 
EtE flows are: 
 
Expected_Latency: Time 
Actual_Latency: Time 
Expected_Throughput: Data_Volume 
Actual_Throughput: Data_Volume 
 
We introduce a new property called Link_Flow to the existing properties. The new property 
holds a string value representing the identifier of the EtE flow that is to be linked. As new 
properties are defined in the AADL property sets, we declare the new property in the 
FLOWCONN property set. The declaration of the property is: 
 
property set FLOWCONN is 
Link_Flow: aadlstring applies to (flow); 
end FLOWCONN; 
 
Afterwards, the Link_Flow property can be used in the EtE flow declaration, in which it is 
assigned the identifier of the EtE flow to be linked.  
While linking discrete EtE flows by using a property we assume that the delay between 
adjacent EtE flows is zero. Although this is the case in the motion subsystem (information is 
passed on through shared memory), many scenarios can be thought of in which this is not 
the case (such as the presence of a queue). Although not addressed in depth here, the 
solution remains applicable for those cases as well by including the delay in the model as a 
connector-like construct and applying a statistical model to them. The resulting latency of 
the EtE flow will also be a statistical distribution. 
The introduction of properties allows us to attach additional information to the different 
elements of the AADL model. Subsequently this information can be inspected and/or 
manipulated by the accompanying tools that carry out the EtE flow latency analysis.  

 
5.2 Applying Our Solution 
In the previous section we defined a new property Link_Flow to connect discrete EtE flows. 
Now, we apply the proposed solution on the motion-subsystem, by using the property to 
connect internal discrete EtE flows of the Move_Stage flow. The use of our property within 
the standard AADL syntax is shown in Figure 6. 
 

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow  
     start_subcomponent_flow_identifier 
       { -> connection_identifier -> 
            flow_path_subcomponent_flow_identifier 
        }* -> connection_identifier -> end_subcomponent_flow_identifier 
[{(FLOWCON::Link_Flow=>”identifier_of_subsequent_EtE_flow”) |       
  (property_association)+}][in_modes_and_transitions]; 

Fig. 6. EtE Flow Syntax with Link_Flow Property 
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linked. AADL does not provide support for more abstract flows whose internal flows are 
not linked. For clarity, we distinguish in our discussion between discrete EtE flows (in 
which all sub-flows are connected) and composite EtE flows (that consists of unlinked sub-
flows). 
In case of our motion-subsystem example, Move_Stage is a composite EtE flow: the flow 
starts when a client application sends a move request to the server and ends when client gets 
acknowledgement that stage has been moved to a desire position. Internally, Move_Stage 
consists of three consecutive discrete (disconnected) EtE flows Start_motion_flow, 
Axis_move_flow and Move_status_flow. 
Start_motion_flow:  
The flow starts with a move request from the client application and ends with the server. 
Internally, the server simply places the command in a queue, therefore this flow ends here. 
A part of the AADL textual representation given in Figure 2 specifies this behaviour of the 
flow.  
Axis_move_flow:  
As soon as a move command is available in the queue, a component of the motion server 
processes it and generates a new instruction for the motion controller. Upon receipt of the 
instruction, the motion controller moves the stage to the desired position. The server 
component involved in this task is different from the component involved in previous EtE 
flow. More importantly, both are not connected with each other for this particular task. Since 
the flow specifications of both components are not linked with each other, according to the 
AADL specification they can not be a part of a single EtE flow. Hence, this results in another 
EtE flow starting from the motion server and ending with the motion controller. The 
specification of this flow can be seen in Figure 2.  
Move_status_flow:  
As soon as the stage is moved to its position, the motion controller sends a motion 
completion acknowledgement back to the server which subsequently dispatches it to the 
client application. Internally, two different subcomponents of the motion controller are 
responsible for stage movement and acknowledgement generation. As such, the flow 
specifications of both components are not connected with each other. Therefore, sending 
acknowledgement back to the server is the start of a separate EtE flow with the motion 
controller as its starting point and the client as its ending point. The specification of this flow 
is shown in Figure 2 as well. 
AADL’s incapability to model composite EtE flows exists at any level of abstraction in 
AADL models, although chances of having such flow specifications increase with higher 
level of abstraction. Therefore, need for modelling and analysis of such EtE flows is 
significant at higher abstraction (system architecture) levels. Providing modelling support 
for composite EtE flows will also enhance flow latency analysis. The capabilities will enable 
system architects to analyse system flows at higher abstraction. 
The incapability, as we described earlier, exists because AADL does not provide any 
support for linking disconnected flow specifications. Bridging such flow specifications can 
enable modelling and analysis of composite EtE flows. We will introduce a new property 
that will serve as a bridge between disconnected flow specifications.  
Property Based Extenstion 
An AADL property provides descriptive information about components, subcomponents, 
features, connections, modes, subprogram calls and flows (Feiler et al., 2006). A property 
consists of an associated value and type; the AADL standard consists of a set of predefined 

 

properties. However, new properties can be introduced in order to add additional 
information about the above mentioned architectural elements. The standard properties for 
EtE flows are: 
 
Expected_Latency: Time 
Actual_Latency: Time 
Expected_Throughput: Data_Volume 
Actual_Throughput: Data_Volume 
 
We introduce a new property called Link_Flow to the existing properties. The new property 
holds a string value representing the identifier of the EtE flow that is to be linked. As new 
properties are defined in the AADL property sets, we declare the new property in the 
FLOWCONN property set. The declaration of the property is: 
 
property set FLOWCONN is 
Link_Flow: aadlstring applies to (flow); 
end FLOWCONN; 
 
Afterwards, the Link_Flow property can be used in the EtE flow declaration, in which it is 
assigned the identifier of the EtE flow to be linked.  
While linking discrete EtE flows by using a property we assume that the delay between 
adjacent EtE flows is zero. Although this is the case in the motion subsystem (information is 
passed on through shared memory), many scenarios can be thought of in which this is not 
the case (such as the presence of a queue). Although not addressed in depth here, the 
solution remains applicable for those cases as well by including the delay in the model as a 
connector-like construct and applying a statistical model to them. The resulting latency of 
the EtE flow will also be a statistical distribution. 
The introduction of properties allows us to attach additional information to the different 
elements of the AADL model. Subsequently this information can be inspected and/or 
manipulated by the accompanying tools that carry out the EtE flow latency analysis.  

 
5.2 Applying Our Solution 
In the previous section we defined a new property Link_Flow to connect discrete EtE flows. 
Now, we apply the proposed solution on the motion-subsystem, by using the property to 
connect internal discrete EtE flows of the Move_Stage flow. The use of our property within 
the standard AADL syntax is shown in Figure 6. 
 

end_to_end_flow_spec::=defining_end_to_flow_identifier:end to end flow  
     start_subcomponent_flow_identifier 
       { -> connection_identifier -> 
            flow_path_subcomponent_flow_identifier 
        }* -> connection_identifier -> end_subcomponent_flow_identifier 
[{(FLOWCON::Link_Flow=>”identifier_of_subsequent_EtE_flow”) |       
  (property_association)+}][in_modes_and_transitions]; 

Fig. 6. EtE Flow Syntax with Link_Flow Property 
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As stated earlier the Move_Stage EtE flow is composed of Start_motion_flow, Axis_move_flow 
and Move_status_flow in sequence. By using the Link_Flow property we will link 
Start_motion_flow to Axis_move_flow, and Axis_move_flow to Move_status_flow. An AADL 
textual description of the linkage is given in subfigures 7(a) and 7(b). 
 

Start_motion_flow:end to end flow  
MotionClient.move_request_flow ->  
  ClienttoServerMotionConnection -> 
  MotionServer.move_request_flow 
{ FLOWCONN::Link_Flow =>”Axis_move_flow”;};  
                                (a)    
 

Axis_move_flow: end to end flow 
  MotionServer.axis_request_flow ->  
  ServertoControllerAxisConnection -> 
  MotionController.axis_request_flow 
{FLOWCONN::Link_Flow =>”Move_status_flow”;};  
                                (b)                              
 

Move_status_flow: end to end flow 
 MotionController.status_flow -> 
 ControllertoServerStatusConnection -> 
 MotionServer.status_flow -> 
 ServertoClientStatusConnection -> 
 MotionClient.status_flow; 
                                 (c) 

Fig. 7. Link_Flow Property for Move_Stage Composite EtE flow 
 
Since Move_status_flow is the last EtE flow in the composition it is not linked further, as 
shown in subfigure 7(c). 
Using our technique, any number of EtE flows in a composition can be linked. Afterwards, 
the value of the defined property can be used during analysis to calculate the total flow 
latency of the Move_stage EtE flow. The calculation starts with the latency of the first flow, 
 subsequently adding the latency of the EtE flow given in the Link_Flow property value. The 
addition continues until an EtE flow without Link_Flow property (or with empty value) is 
found.  
We developed an OSATE-plugin that analyzes AADL models for composite EtE flows. 
OSATE is built on top of the Eclipse platform and is very well suited as a basis for the 
development of tools that operate on AADL models. OSATE’s extensible plug-in 
architecture provides a wide range of methods and services generated from the AADL 
meta-model that can be used by plug-ins to manipulate AADL models.  
By using the proposed property Link_Flow the developed plug-in differentiates composite 
flows from distinct flows, counts them, identifies their compositions (list of the contributing 
discrete EtE flows) and calculates their latencies (total time consumed by the composite EtE 
flow).The results of the analysis on the motion-subsystem is shown in Figure 8. 
 

 

 
Fig. 8. Composite End-to-End Flow Analysis 
 
The analysis shows that the motions-subsystem contains 31 flow specifications, 7 discrete 
and 2 composite EtE flows. The Move_stage composite EtE flow that we are discussing in our 
example is among the two identified by the tool. The encircled part of the Figure contains its 
composition and latency.  

 
6. Summary 
 

In this chapter we highlighted the design needs for embedded systems and discussed the 
formalisms available to address those needs. We found that development of embedded 
systems is more complex than that of general IT systems because of the constraints 
associated to them. In spite of the development complexity their use is increasing 
significantly and their rapid growth imposes challenges to the current development 
methodologies. Sophisticated and formal approaches are required to tackle their growing 
complexity throughout their development life cycle in general and for their design in 
particular. 
We also discussed how the magnitude of constraints on requirements of embedded systems 
categorizes them in non-real time, hard and soft real-time embedded systems.  
Quality attributes are the driving force for embedded system design as they have great 
impact on design decisions. During our discussions we identified some quality attributes 
specific for embedded systems and highlighted the needs for modelling those attributes.  
Architecture description languages with their formal notations and analysis capabilities can 
reduce design complexities for embedded systems. In this chapter we gave a brief overview 
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Architecture description languages with their formal notations and analysis capabilities can 
reduce design complexities for embedded systems. In this chapter we gave a brief overview 
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of some of the existing ADLs with a brief description of their scope. Although a significant 
number of ADLs exists, many of those only operate in an academic setting or are no longer 
actively used and maintained. AADL is one of the best known and most actively used 
architecture description language for embedded systems. With a rich set of architectural 
elements for describing both software and hardware elements of embedded systems it is 
quite useful for designing their soft and hard real-time properties. Furthermore AADL 
provides support for analyzing and fixing those properties. Since most ADLs are domain 
specific, no single ADL can serve for all domains. AADL, although designed for the avionics 
domain, is an extensible language that makes it possible to enhance its applicability to other 
domains. In this chapter we presented an introduction to AADL and showed with an 
example how it can be extended for custom needs. We extended its EtE flows to include 
support for modelling and analysis of composite flows. We applied the proposed solution to 
an industrial case of the motion-control subsystem of an electron microscope. The 
application included modelling a composite EtE flow of the motion-subsystem, which is 
composed of three discrete EtE flows. With the help of a new AADL property we 
successfully linked the discrete EtE flows to model them as a single abstract EtE flow. In 
addition, we presented the results of the extended EtE flow analysis which we performed 
with the help of an analysis tool (an OSATE plug-in) that we developed for this purpose. 
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