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1. Introduction  
 

The electromagnetic wave interaction with layered structures constitutes a crucial topic of 
current interest in theoretical and experimental research. Generally speaking, several 
modelling and design problems, encountered, for instance, in SAR (Synthetic Aperture Radar) 
application, GPR (Ground Penetrating Radar) sensing, radar altimeter for planetary 
exploration, microstrip antennas and MMICs (Monolithic Microwave Integrated Circuits), 
radio-propagation in urban environment for wireless communications, through-the-wall 
detection technologies, optics, biomedical diagnostic of layered biological tissues, 
geophysical and seismic exploration, lead to the analysis of the electromagnetic wave 
interaction with multilayered structure, whose boundaries can exhibit some amount of 
roughness.  
This chapter is aimed primarily at providing a comprehensive analytical treatment of 
electromagnetic wave propagation and scattering in three-dimensional multilayered 
structures with rough interfaces. The emphasis is placed on the general formulation of the 
scattering problem in the analytic framework of the Boundary Perturbation Theory (BPT) 
developed by Imperatore et al. A systematic perturbative expansion of the fields in the 
layered structure, based on the gently rough interfaces assumption, enables the transferring 
of the geometry randomness into a non-uniform boundary conditions formulation. 
Subsequently, the fields’ expansion can be analytically evaluated by using a recursive matrix 
formalism approach encompassing a proper scattered field representation in each layer and 
a matrix reformulation of non-uniform boundary conditions. A key-point in the 
development resides in the appropriate exploitation of the generalized reflection/transmission 
notion, which has strong implications in order to make the mathematical treatment 
manageable and to effectively capture the physics of the problem. Two relevant compact 
closed-form solutions, derived in the first-order limit of the perturbative development, are 
presented. They refer to two complementary bi-static configurations for the scattering, 
respectively, from and through layered structures with arbitrary number of rough 
interfaces. The employed formalism is fully-polarimetric and suitable for applications. In 
addition, it is demonstrated how the symmetrical character of the BPT formalism reflects the 
inherent conformity with the reciprocity theorem of the electromagnetic theory.  

1

www.intechopen.com



Passive Microwave Components and Antennas2

 

 
Fig. 1. Geometry for an N-rough boundaries layered medium 

 
2. Statement of the problem   
 

When stratified media with rough interfaces are concerned, the possible approaches to cope 
with the EM scattering problem fall within three main categories. First, the numerical 
approaches do not permit to attain a comprehensive understanding of the general functional 
dependence of the scattering response on the structure parameters, as well as do not allow 
capturing the physics of the involved scattering mechanisms. In addition, the numerical 
approach turns out to be feasible for non-fully 3D geometry or configurations in which a 
very limited number of rough interfaces is accounted for. Layered structures with rough 
interfaces have been also treated resorting to radiative transfer theory (RT). However, coherent 
effects are not accounted for in RT theory and could not be contemplated without 
employing full wave analysis, which preserves phase information. Another approach relies 
on the full-wave methods. Although, to deal with the electromagnetic propagation and 
scattering in complex random layered media,  several analytical formulation involving some 
idealized cases and suitable approximations have been conducted in last decades, the 
relevant solutions usually turn out to be too complicated to be generally useful in 
applications, even if simplified geometries are accounted for. The proliferation of the 
proposed methods for the simulation of wave propagation and scattering in stratified media 
and the continuous interest in this topic are indicative of the need of appropriate modelling 
and interpretation of the complex physical phenomena that take place in layered structures. 
Indeed, the availability of accurate, sound physical and manageable models turns out still to 

 

be a strong necessity, in perspective to apply them, for instance, in retrieving of add-valued 
information from the data acquired by microwave sensors.  
Generally speaking, an exact analytical solution of Maxwell equations can be found only for 
a few idealized problems. Subsequently, appropriate approximation methods are needed. 
Regarding the perturbative approaches, noticeable progress has been attained in the analytic 
investigation on the extension of the classical SPM (small perturbation method) solution for 
the scattering from rough surface to specific layered configurations. Most of previous 
existing works analyze different layered configurations in the first-order limit, using 
procedures, formalisms and final solutions that can appear of difficult comparison (Yarovoy 
et al., 2000), (Azadegan and Sarabandi, 2003), (Fuks, 2001). All these formulations, which 
refer to the case of a single rough interface, have been recently unified in (Franceschetti et al, 
2008). On the other hand, solution for the case of two rough boundaries has also been 
proposed in (Tabatabaeenejad and Moghaddam, 2006).  
Methodologically, we underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from simplified geometry, 
imply an inherent analytical complexity, which precludes the treatment to structures with 
more than one (Fuks, 2001) (Azadegan et al., 2003) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad er al., 2006) rough interfaces.  
The general problem we intend to deal with here refers to the analytical evaluation of the 
electromagnetic scattering from and through layered structure with an arbitrary number of 
rough interfaces (see Fig.1). As schematically shown in fig.1, an arbitrary polarized 
monochromatic plane wave 
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i ˆˆ k  is the two-dimensional projection of incident wave-number vector on 
the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Fig.1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
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spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
the rough interfaces are correlated.  
A general methodology has been developed by Imperatore et al. to analytically treat EM 
bistatic scattering from this class of layered structures that can be described by small 
changes with respect to an idealized (unperturbed) structure, whose associated problem is 
exactly solvable. A thorough analysis of the results of this theoretical investigation (BPT), 
which is based on perturbation of the boundary condition, will be presented in the 
following, methodologically emphasizing the development of the several inherent aspects. 
 

 
Fig. 2.  Geometry for a flat boundaries layered medium 
 
3. Basic definition and notations 
 

This section is devoted preliminary to introduce the formalism used in the following of this 
chapter. The Flat Boundaries layered medium (unperturbed structure) is defined as a stack of 
parallel slabs (Fig.2), sandwiched in between two half-spaces, whose structure is shift 
invariant in the direction of x and y (infinite lateral extent in x-y directions). With the 
notations p

mmT 1
and p

mmR 1
, respectively, we indicate the ordinary transmission and reflection 

coefficients at the interface between the regions m-1 and m+1,  
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with the superscript p{v, h} indicating the polarization state for the incident wave and may 
stand for horizontal (h) or vertical (v) polarization (Tsang et al., 1985) (Imperatore et al. 2009a), 
and where  

  mmmzm kkk cos22  k ,     (9) 

where mmm kk 0  is the wave number for the electromagnetic medium in the mth layer, 

with  /2/0  ck , and where ykxk yx ˆˆ k  is the two-dimensional projection of 
vector wave-number on the plane z=0. In addition, we stress that: 
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3.1 Generalized reflection formalism 
The generalized reflection coefficients p

mm 1  at the interface between the regions (m-1) and m, 

for the p-polarization, are  defined  as  the  ratio  of  the  amplitudes  of  upward-  and  
downward-propagating  waves  immediately above  the  interface, respectively. They can be 
expressed by recursive relations as in (Chew W. C., 1997) (Imperatore et al. 2009a):  
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Furthermore, it should be noted that the factors 
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take into account the multiple reflections in the mth layer.  
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where p {v, h}. The generalized transmission coefficients in upward direction p
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Equations (17) and (18) formally express the reciprocity of the generalized transmission 
coefficients for an arbitrary flat-boundaries layered structure (Imperatore et al. 2009b).  
Here we introduce notion of layered slab, which refers to a layered structure sandwiched 
between two half-spaces. Accordingly, the generalized transmission coefficients in downward 
direction for a layered slab between two half-spaces (0, N), )(
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It should be noted that the parenthesized superscript slab indicates that both the media 0 
and N are half-space. Similarly, the generalized transmission coefficients in downward direction 
for the layered slab between two half-spaces (m+1, N), )(

1
slabp

Nm , are defined as: 

 

11

2
1

1

1

1

2

)(
1 exp)(













 























  p

n

N

mn

p
nn

N

mn

N

mn
nzn

slabp
Nm MTkjk


.  (20) 

Note also that  
)(

1
1

11 ][ slabp
Nm

p
m

p
Nm M 


 


.   (21) 

Moreover, we consider the generalized transmission coefficients in upward direction for the 
layered slab between two half-spaces (m, 0), )(
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (0, m), )(

0
slabp

m , can be defined as 
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It should be noted that the p
m0  are distinct from the coefficients )(

0
slabp

m , because in the 

evaluation of p
m0  the effect of all the layers under the layer m is taken into account, 

whereas )(
0

slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m.  
We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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take into account the multiple reflections in the mth layer.  

 
3.2 Generalized transmission formalism 
The generalized transmission coefficients in downward direction p

m0 can be defined as: 

1

1
1

1

0

1

1
0 exp)(






































  p

n

m

n

p
nn

m

n

m

n
nzn

p
m MTkjk

 ,  (16) 

where p {v, h}. The generalized transmission coefficients in upward direction p
m 0  are then 

given by 
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As a counterpart of (17), we have 
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Equations (17) and (18) formally express the reciprocity of the generalized transmission 
coefficients for an arbitrary flat-boundaries layered structure (Imperatore et al. 2009b).  
Here we introduce notion of layered slab, which refers to a layered structure sandwiched 
between two half-spaces. Accordingly, the generalized transmission coefficients in downward 
direction for a layered slab between two half-spaces (0, N), )(
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It should be noted that the parenthesized superscript slab indicates that both the media 0 
and N are half-space. Similarly, the generalized transmission coefficients in downward direction 
for the layered slab between two half-spaces (m+1, N), )(

1
slabp

Nm , are defined as: 
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Note also that  
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Moreover, we consider the generalized transmission coefficients in upward direction for the 
layered slab between two half-spaces (m, 0), )(

0
slabp

m , which are defined as 
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Note also that 
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (0, m), )(
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It should be noted that the p
m0  are distinct from the coefficients )(

0
slabp

m , because in the 

evaluation of p
m0  the effect of all the layers under the layer m is taken into account, 

whereas )(
0

slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m.  
We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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m
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m ed  .   (26) 

Let us assume now that )( rm ,  which describes the generic (mth) rough interface, is a 2-D 
stochastic process satisfying the conditions 

   0)(  rm ,    (27) 

  )()()( ρrρr mBmm    ,   (28) 

where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (27)-(28) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
consideration are invariant to a spatial shift. Similarly, concerning two mutually correlated 
random rough interfaces m and n , we also assume that they are jointly WSS, i.e. 

  )()()( ρrρr nmBnm    ,   (29) 

where )(ρnmB  is the corresponding cross-correlation function of the two random processes.  
It can be readily derived that 

 )()( ρρ  mnnm BB  .    (30) 

The integral in (25) is a Riemann integral representation for )( rm , and it exists if )( rm  is 
piecewise continuous and absolutely integrable. On the other hand, when the spectral analysis 
of a stationary random process is concerned, the integral (25) does not in general exist in the 
framework of theory of the ordinary functions. Indeed, a WSS process describing an 
interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (25) can be introduced as 
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A
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is not an ordinary function. Nevertheless, we will 

use again the (25)-(26), regarding them as symbolic formulas, which hold a rigorous 
mathematical meaning beyond the ordinary function theory (generalized Fourier 
Transform). We underline that by virtue of the condition (27) directly follows also that 

0)(~
 km . Let us consider  
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (29), the LHS of (32) must be a function of   rr only; therefore, 
it is required that  
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where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (33) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (33) into (32), we obtain 
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where the RHS of (34) involves an (ordinary) 2D Fourier Transform. Note also that as a 
direct consequence of the fact that )( rn  is real we have the relation )(~)(~ *

  kk nn  . 
Therefore, setting   rrρ in (34), we have  
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The cross-correlation function )(ρnmB   of two interfaces m  and n  is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (35) 
together with its Fourier inverse 

  )()2()( 2 ρρκ ρκ
nmBedW j

mn    ,  (36) 

may be regarded as the (generalized) Wiener-Khinchin theorem. In particular, when n=m, (33) 
reduces to  
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where )(κmW is called the (spatial) power spectral density of nth corrugated interface m and 
can be expressed as the (ordinary) 2D Fourier transform of n-corrugated interface 
autocorrelation function, i.e., satisfying the transform pair: 
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where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (33) states that the different spectral components of the two considered interfaces 
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The cross-correlation function )(ρnmB   of two interfaces m  and n  is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (35) 
together with its Fourier inverse 
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where )(κmW is called the (spatial) power spectral density of nth corrugated interface m and 
can be expressed as the (ordinary) 2D Fourier transform of n-corrugated interface 
autocorrelation function, i.e., satisfying the transform pair: 
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which is the statement of the classical Wiener-Khinchin theorem. We emphasize the physical 
meaning of yxyxmm dκdκ,κκWdW )()( κκ : it represents the power of the spectral 
components of the mth rough interface having spatial wave number between x and x +dx  
and y and y +dy,  respectively, in x and y direction. Furthermore, from (30) and (36) it 
follows that  
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This is to say that, unlike the power spectral density, the cross power spectral density is, in 
general, neither real nor necessarily positive. Furthermore, it should be noted that the 
Dirac’s delta function can be defined by the integral representation 
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By using in (37) and (33) the relation 2)2/();0(  AA  , we have, respectively, that the 
(spatial) power spectral density of nth corrugated interface can be also expressed as  
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and the (spatial) cross power spectral density of two interfaces m  and n  is given by  
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It should be noted that the domain of a rough interface is physically limited by the 
illumination beamwidth. Note also that the different definitions of the Fourier transform are 
available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (25)-(26). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 

 
5. Boundary Perturbation Theory (BPT)  
 

In this section, we first introduce the general perturbative expansion on which the BPT 
formulation is based. A systematic matrix reformulation, which enables the formal 
evaluation of pertinent scattered field solutions, is then presented.  

 
5.1 Perturbative formulation  
With reference to the geometry of Fig.1, in order to obtain a solution valid in each region of 
the structure, we have to enforce the continuity of the tangential fields: 
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where mmm EEE  1 , mmm HHH  1 , and the surface normal vector is given 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of the interface, with respect to the reference mean plane 
z=-dm, are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the 
fields can be expanded about the reference mean plane. Assume that the fields can be 
expanded about the reference mean plane z=-dm as: 














2
2

2
)(

2
1)()( m

dz

m
m

dz

m
dz

mm dz
z

dz
z

z
mm

m

EEEE ,  (48) 















2
2

2
)(

2
1)()( m

dz

m
m

dz

m
dz

mm dz
z

dz
z

z
mm

m

HHHH , (49) 

where the dependence on r  is understood. Then (48), (49) are the fields expansions in 
perturbative orders of the fields and their derivatives at the interfaces of the structure; they 
can be injected into the boundary conditions (44-45). Retaining only up to the first-order 
terms with respect to m and m, we obtain:  
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The field solutions can then be represented formally as 

  ...),( )2()1()0(  mmmm z EEErE   ,   (52)  

...),( )2()1()0(  mmmm z HHHrH  .   (53) 

where the parenthesized superscript  refers to the perturbation field of  order n: )0()0( , mm HE  is 

the unperturbed solution and )1()1( , mm HE is correction to the first-order of m and m. It should 
be noted that the unperturbed solution represents the field existing in flat boundaries 
stratification, and satisfying: 
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available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (25)-(26). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 
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In this section, we first introduce the general perturbative expansion on which the BPT 
formulation is based. A systematic matrix reformulation, which enables the formal 
evaluation of pertinent scattered field solutions, is then presented.  

 
5.1 Perturbative formulation  
With reference to the geometry of Fig.1, in order to obtain a solution valid in each region of 
the structure, we have to enforce the continuity of the tangential fields: 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of the interface, with respect to the reference mean plane 
z=-dm, are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the 
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where the dependence on r  is understood. Then (48), (49) are the fields expansions in 
perturbative orders of the fields and their derivatives at the interfaces of the structure; they 
can be injected into the boundary conditions (44-45). Retaining only up to the first-order 
terms with respect to m and m, we obtain:  
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The field solutions can then be represented formally as 
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where the parenthesized superscript  refers to the perturbation field of  order n: )0()0( , mm HE  is 

the unperturbed solution and )1()1( , mm HE is correction to the first-order of m and m. It should 
be noted that the unperturbed solution represents the field existing in flat boundaries 
stratification, and satisfying: 
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0ˆ )0( 
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 mdz

mz H .  (54) 

The fields expansion (52)-(53) can be then injected into the boundary conditions (50)-(51), so 
that, retaining only up to the first-order terms, the following nonuniform boundary conditions 
can be obtained (Imperatore et al. 2008a) (Imperatore et al. 2008b) (Imperatore et al. 2009a)  
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Therefore, the boundary conditions from each mth rough interface can be transferred to the 
associated equivalent flat interface.  In addition, the right-hand sides of Eqs. (55) and (56) 
can be interpreted as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current densities, 

respectively, with p denoting the incident polarization; so that we can identify the first-order 
fluctuation fields as being excited by these effective surface current densities imposed on the 
unperturbed interfaces. Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each reference mean plane 
(z=-dm), which radiate in an unperturbed (flat boundaries) layered medium. As a result, 
within the first-order approximation, the field can be than represented as the sum of an 
unperturbed part )0()0( , nn HE  and a random part, so that ,),( )1()0(

nnn z EErE    
)1()0(),( nnn z HHrH  . The first is the primary field, which exists in absence of surface 

boundaries roughness (flat-boundaries stratification), detailed in (Imperatore et al. 2009a); 
whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
scattered field in each region of the layered structure is then represented as the sum of up- 
and down-going waves, and the first-order scattered field in each region of the layered 
structure can be then characterized by adopting the following field spectral representation in 
terms of the unknown coefficients )()1(


 kq
mS : 
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where Zm is the intrinsic impedance of the medium m, and where  
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is a basis for the horizontal/vertical polarization vectors. 

 
5.2 Matrix reformulation  
In this section, we reformulate the non-uniform boundaries condition (55, 56), reducing the 
scattering problem to the formal solution of a linear system of equations; the unknowns are 
the scalar amplitudes, )()1(


 kq
mS , of the scattered fields. Eqs. (55, 56) can be rewritten by 

using their spectral representation: 
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where the spectral densities )1()1( ~,~ p
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p
Em JJ  are the two-dimensional Fourier transform (2D-FT), 

with respect to k , of the right-hand sides of (55) and (56), respectively, so that: 
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where )(~
km  is the spectral representation (2D-FT) of the corrugation )( rm , and where 
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e HH rk    , p  {v, h} is associated with the incident field 
polarization, and where we have taken into account that the 2D-FT of )(  rm  is 
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 kk mj  , and that the 2D-FT of  
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Therefore, a solution valid in each region of the layered structure can be obtained from (57)-
(62) taking into account the non uniform boundary conditions (63)-(64). In order to solve the 
scattering problem in terms of the unknown expansion coefficients )()1(


 kq
mS , we arrange 

their amplitudes in a single vector according to the notation: 
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The fields expansion (52)-(53) can be then injected into the boundary conditions (50)-(51), so 
that, retaining only up to the first-order terms, the following nonuniform boundary conditions 
can be obtained (Imperatore et al. 2008a) (Imperatore et al. 2008b) (Imperatore et al. 2009a)  
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whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
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and down-going waves, and the first-order scattered field in each region of the layered 
structure can be then characterized by adopting the following field spectral representation in 
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scattering problem in terms of the unknown expansion coefficients )()1(


 kq
mS , we arrange 

their amplitudes in a single vector according to the notation: 
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Subsequently, the nonuniform boundary conditions (63)-(64) can be reformulated by employing 
a suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
(Imperatore et al. 2008a) (Imperatore et al. 2009a): 
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is the term associated with the effective source distribution, where the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
is given by:  
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (68) reduces to the uniform boundary conditions, thus getting: 
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We emphasize that equations (68) state in a simpler form the problem originally set by Eqs. 
(55)-(56): as matter of fact, solving Eq. (68) m implies dealing with the determination of 
unknown scalar amplitudes )()1(


 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (67). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (68)-(69) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
notation (68)-(69) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Fig.1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (68), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(

0
)1(





 kk qq
N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. It can be demonstrated that, making use of a recursive 
approach involving the key-concept of generalized transmission/reflection (see also Sect. 3), 
the system of equations (68, 69) is susceptible of a straightforward closed form solution, so 
that the first-order perturbation fields anywhere in the upper half-space that arise from each 
mth rough interface can be formally found (Imperatore et al. 2009a) (Imperatore et al. 2009b). 

 

In conclusion, the derivation of scattering field contribution, due to each rough interface, for 
instance in the upper or the lower half-space, can be then accomplished by avoiding the use 
of the cumbersome Green functions formalism. 
We finally emphasize that here we are interested in the scattering from and through the 
stratification; therefore, the determination of the pertinent unknown expansion coefficients 

)()1(
0 
 kqS  and )()1( sq

NS 
 k  of the scattered wave, respectively, into the upper and the lower 

half-space, is required only. Full expressions for these coefficients are reported in 
(Imperatore et al. 2009a) (Imperatore et al. 2009b).   

 
6. BPT closed-form solutions 
 

The aim of this section is to present the relevant BPT solutions for the scattering from and 
through the 3-D layered rough structure pictured schematically in Fig.1. We underline that 
the corresponding first-order solutions refer to two complementary bistatic configuration: in 
the first case, both the transmitter and the receiver are into the same half-space, whereas, in 
the second case, each one is located in a different half-space. 

 
6.1 Scattering from layered structure with an arbitrary number of rough interfaces  
First we consider the case of one rough interface embedded in the layered structure. The 
field scattered upward in the upper half-space in the first-order limit can be written in the 
form (see (57)-(60)):  
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By employing the method of stationary phase, we evaluate the integral (72) in the far field zone, 
obtaining: 
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with q  {v, h} is the polarization of the scattered field. Taking into account the expressions 
for the unknowns expansion coefficients )()1(
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Subsequently, the nonuniform boundary conditions (63)-(64) can be reformulated by employing 
a suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
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is the term associated with the effective source distribution, where the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (68) reduces to the uniform boundary conditions, thus getting: 
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result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
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approach involving the key-concept of generalized transmission/reflection (see also Sect. 3), 
the system of equations (68, 69) is susceptible of a straightforward closed form solution, so 
that the first-order perturbation fields anywhere in the upper half-space that arise from each 
mth rough interface can be formally found (Imperatore et al. 2009a) (Imperatore et al. 2009b). 

 

In conclusion, the derivation of scattering field contribution, due to each rough interface, for 
instance in the upper or the lower half-space, can be then accomplished by avoiding the use 
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The aim of this section is to present the relevant BPT solutions for the scattering from and 
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the corresponding first-order solutions refer to two complementary bistatic configuration: in 
the first case, both the transmitter and the receiver are into the same half-space, whereas, in 
the second case, each one is located in a different half-space. 

 
6.1 Scattering from layered structure with an arbitrary number of rough interfaces  
First we consider the case of one rough interface embedded in the layered structure. The 
field scattered upward in the upper half-space in the first-order limit can be written in the 
form (see (57)-(60)):  

 zjkqj

vhq

zeSqed 0)()(ˆ)( )1(
00

,

)1(
0 









 kkkrΕ rk  .  (72) 

By employing the method of stationary phase, we evaluate the integral (72) in the far field zone, 
obtaining: 

 )(cos2)(ˆ)( )1(
0000

)1(
0

0
sq

rkj
ss S

r
ekjq 




  kkrΕ  ,  (73) 
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where )( i
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i
zm kkk  , )( s
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s
zm kkk  , p

m0 and p
m 0 are, respectively, the generalized 

transmission coefficients in downward direction and the generalized transmission coefficients 

in upward direction (see (16)-(17)), and p
mm 1

 
are the generalized reflection coefficients (see 

eq. (11)). The coefficients 1,~ mm
qp are relative to the p-polarized incident wave impinging on 

the structure from upper half space 0 and to the q-polarized scattering contribution from 
structure into the upper half space, originated from the rough interface between the layers 
m, m+1. Finally, we emphasize that the total scattering from the N-rough interfaces layered 
structure can be straightforwardly obtained, in the first-order approximation, by 
superposition of the different contributions pertaining each rough interface: 
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6.2 Scattering through layered structure with an arbitrary number of rough interfaces 
Similarly, when one rough interface embedded in the layered structure is concerned, the 
field scattered into the last half-space, through the 3-D layered structure, in the first-order 
limit can be then written in the form:  
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In order to evaluate the integral (80) in far field zone, we firstly consider a suitable change of 
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then we use the method of stationary phase and obtain: 
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with q  {v, h}. Taking into account the expressions for the unknowns expansion coefficients 
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structure into the upper half space, originated from the rough interface between the layers 
m, m+1. Finally, we emphasize that the total scattering from the N-rough interfaces layered 
structure can be straightforwardly obtained, in the first-order approximation, by 
superposition of the different contributions pertaining each rough interface: 
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6.2 Scattering through layered structure with an arbitrary number of rough interfaces 
Similarly, when one rough interface embedded in the layered structure is concerned, the 
field scattered into the last half-space, through the 3-D layered structure, in the first-order 
limit can be then written in the form:  
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In order to evaluate the integral (80) in far field zone, we firstly consider a suitable change of 
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then we use the method of stationary phase and obtain: 
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with q  {v, h}. Taking into account the expressions for the unknowns expansion coefficients 
)()1( sq

NS 
 k  (Imperatore et al. 2009b), we get 
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m0 and 
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Nm 1 are, respectively, the generalized 

transmission coefficients in downward direction and the generalized transmission coefficients 

in downward direction given, respectively, by (16) and (21), and p
mm 1 are the generalized 

reflection coefficients (see (11)). The coefficients 1,0 ~ mm
qpN  are relative to the p-polarized 

incident wave impinging on the structure from half-space 0 and to q-polarized scattering 
contribution, originated from the rough interface between the layers m and m+1, through 
the structure into last half-space N. Finally, we emphasize that the total scattering through 
the N-rough interfaces layered structure can be straightforwardly obtained, in the first order 
approximation, by superposition of the different contributions pertaining each rough 
interface: 
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As a result, the relevant final solutions (79) and (88) turn out formally identical, provided 

that the coefficients 1,~ mm
qp are replaced with the complementary ones 1,0 ~ mm

qpN . 

 
7. Bi-static scattering cross sections  
 

In this section, we calculate the bi-static scattering cross sections of the layered structure 
arising from the BPT solutions, which have been derived in the first-order approximation in 
the previous sections. The estimate of the mean power density can be obtained by averaging 
over an ensemble of statistically identical interfaces. 

 
7.1 Scattering Cross Section of an arbitrary layered structure with an embedded 
rough interface  
In this section, we focus on the scattering property of a single rough interface embedded in 
the layered structure. The bi-static scattering cross section of a generic (nth) rough interface 
embedded in the layered structure can be then defined as 
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. Therefore, by substituting (74) into (89) and considering that the 
(spatial) power spectral density )(κnW of nth corrugated interface is defined as in (42), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); Furthermore, we 
stress when the backscattering case ( 0ˆˆ  

is kk ) is concerned, our cross-polarized scattering 
coefficients (75)-(78) evaluated in the plane of incidence vanish, in full accordance with the 
classical first-order SPM method for a rough surface between two different media (Ulaby et 
al, 1982) (Tsang et al., 1985). 

 
7.2 Scattering Cross Section into last half-space of an Arbitrary Layered Structure 
with an Embedded Rough Interface  
As counterparts of the configuration considered in the last subsection, we now refer to the 
complementary one in which the scattering through the structure is concerned. The bi-static 
scattering cross section into last half-space of the structure with one embedded (nth) rough 
interface can be defined as 
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where < > denotes ensemble averaging, where the index q  {v, h}  index p  {v, h} and 
denote, respectively, the polarization of scattered field and the polarization of incident field, 
A is the surface area, and where we have considered the Poynthing power density of the 
transmitted wave in Nth region normalized to the power density of the incident wave. 
Therefore, by substituting (82) into (91) and considering that the (spatial) power spectral 
density )(κnW of nth corrugated interface is defined as in (42), as final result, we obtain: 
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7.3 Scattering Cross Section of a Layered Structure with N-rough interfaces  
We now show that the solutions, given by the expressions (90) and (92) respectively, are 
susceptible of a straightforward generalization to the case of arbitrary stratification with N-
rough boundaries. Taking into account the contribution of each nth corrugated interface (see 
(79)), the global bi-static scattering cross section of the N-rough interface layered media can be 
expressed as: 
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Nm 1 are, respectively, the generalized 

transmission coefficients in downward direction and the generalized transmission coefficients 

in downward direction given, respectively, by (16) and (21), and p
mm 1 are the generalized 

reflection coefficients (see (11)). The coefficients 1,0 ~ mm
qpN  are relative to the p-polarized 

incident wave impinging on the structure from half-space 0 and to q-polarized scattering 
contribution, originated from the rough interface between the layers m and m+1, through 
the structure into last half-space N. Finally, we emphasize that the total scattering through 
the N-rough interfaces layered structure can be straightforwardly obtained, in the first order 
approximation, by superposition of the different contributions pertaining each rough 
interface: 
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As a result, the relevant final solutions (79) and (88) turn out formally identical, provided 

that the coefficients 1,~ mm
qp are replaced with the complementary ones 1,0 ~ mm

qpN . 

 
7. Bi-static scattering cross sections  
 

In this section, we calculate the bi-static scattering cross sections of the layered structure 
arising from the BPT solutions, which have been derived in the first-order approximation in 
the previous sections. The estimate of the mean power density can be obtained by averaging 
over an ensemble of statistically identical interfaces. 

 
7.1 Scattering Cross Section of an arbitrary layered structure with an embedded 
rough interface  
In this section, we focus on the scattering property of a single rough interface embedded in 
the layered structure. The bi-static scattering cross section of a generic (nth) rough interface 
embedded in the layered structure can be then defined as 
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. Therefore, by substituting (74) into (89) and considering that the 
(spatial) power spectral density )(κnW of nth corrugated interface is defined as in (42), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); Furthermore, we 
stress when the backscattering case ( 0ˆˆ  

is kk ) is concerned, our cross-polarized scattering 
coefficients (75)-(78) evaluated in the plane of incidence vanish, in full accordance with the 
classical first-order SPM method for a rough surface between two different media (Ulaby et 
al, 1982) (Tsang et al., 1985). 

 
7.2 Scattering Cross Section into last half-space of an Arbitrary Layered Structure 
with an Embedded Rough Interface  
As counterparts of the configuration considered in the last subsection, we now refer to the 
complementary one in which the scattering through the structure is concerned. The bi-static 
scattering cross section into last half-space of the structure with one embedded (nth) rough 
interface can be defined as 
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where < > denotes ensemble averaging, where the index q  {v, h}  index p  {v, h} and 
denote, respectively, the polarization of scattered field and the polarization of incident field, 
A is the surface area, and where we have considered the Poynthing power density of the 
transmitted wave in Nth region normalized to the power density of the incident wave. 
Therefore, by substituting (82) into (91) and considering that the (spatial) power spectral 
density )(κnW of nth corrugated interface is defined as in (42), as final result, we obtain: 
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7.3 Scattering Cross Section of a Layered Structure with N-rough interfaces  
We now show that the solutions, given by the expressions (90) and (92) respectively, are 
susceptible of a straightforward generalization to the case of arbitrary stratification with N-
rough boundaries. Taking into account the contribution of each nth corrugated interface (see 
(79)), the global bi-static scattering cross section of the N-rough interface layered media can be 
expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii
qp are given 

by (75)-(78), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (43).  
Likewise, the solution given by the expression (92), is susceptible of a straightforward 
generalization to the case of arbitrary stratification with N-rough boundaries. Taking into 
account the contribution of each nth corrugated interface (see (88)), the global bi-static 
scattering cross section into last half-space of the N-rough interface layered media can be 
expressed as: 
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where p, q  {v, h}, where the asterisk denotes the complex conjugated, 1,0 ~ ii
qpN  are given by 

(84)-(87), and where the cross power spectral density ijW , between the interfaces i and j, for the 
spatial frequencies of the roughness is given by (43).  
 
Some final considerations are now in order. As a matter of fact, the presented closed-form 
solutions permit the polarimetric evaluation of the scattering for a bi-static configuration, from 
or through the layered rough structure, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. As a result, an elegant closed form solution is established, 
which takes into account parametrically the dependence of scattering properties on 
structure (geometric and electromagnetic) parameters. Therefore, BPT formulation leads to 
solutions which exhibit a direct functional dependence (no integral evaluation is required) 
and, subsequently, permit to show that the scattered field can be parametrically evaluated 
considering a set of parameters: some of them refer to an unperturbed structure 
configuration, i.e. intrinsically the physical parameters of the smooth boundary structure, 
and others which are determined exclusively by (random) deviations of the corrugated 
boundaries from their reference position. Note also that the coefficients 1,~ mm

qp  and 1,0 ~ ii
qpN   

depend parametrically on the unperturbed structure parameters only. Procedurally, once 
the generalized reflection/transmission coefficients are recursively evaluated, the coefficients 

 

1,~ ii
qp and/or 1,0 ~ ii

qpN   can be than directly computed, so that the scattering cross sections 
(93) and/or (94) for the pertinent structure with rough interfaces can be finally predicted. 
Furthermore, the scattering from or through the rough layered media is sensitive to the 
correlation between rough profiles of different interfaces. In fact, a real layered structure 
will have interfaces cross-correlation somewhere between two limiting situations: perfectly 
correlated and uncorrelated roughness. Consequently, the degree of correlation affects the 
phase relation between the fields scattered by each rough interface. Obviously, when the 
interfaces are supposed to be uncorrelated, the second terms respectively in (93) and (94) 
vanish and accordingly, in the first-order approximation, the total scattering from or 
through the structure arises from the incoherent superposition of radiation scattered from 
each interface. We emphasize that the effects of the interaction between the rough interfaces 
can limited be treated, in the first-order approximation, only when the rough interfaces 
exhibit some correlation. In addition, it has been demonstrated that the proposed global 
solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms (Imperatore et al 2008c) 
(Imperatore et al. 2009c). Finally, it should be noted that the method to be applied needs 
only the classical gently-roughness assumption, without any further approximation.  
 

 
Fig. 3.  Reciprocity for scattering from and through a layered structure with rough 
interfaces. 
 
8. Reciprocal character of the BPT solutions 
 

In this section, the emphasis is placed on the reciprocal character of the final BPT scattering 
solutions, which evidently constitutes a crucial point in the formal framework of the BPT.  
Generally speaking, the reciprocity principle is a statement that expresses some form of 
symmetry in the laws governing a physical system. Analytically speaking, both the BPT 
final solutions (79) and (88), respectively, from and through the layered structure with N-
rough interfaces can be expressed in a common formal frame exhibiting a symmetric nature: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii
qp are given 

by (75)-(78), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (43).  
Likewise, the solution given by the expression (92), is susceptible of a straightforward 
generalization to the case of arbitrary stratification with N-rough boundaries. Taking into 
account the contribution of each nth corrugated interface (see (88)), the global bi-static 
scattering cross section into last half-space of the N-rough interface layered media can be 
expressed as: 
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where p, q  {v, h}, where the asterisk denotes the complex conjugated, 1,0 ~ ii
qpN  are given by 

(84)-(87), and where the cross power spectral density ijW , between the interfaces i and j, for the 
spatial frequencies of the roughness is given by (43).  
 
Some final considerations are now in order. As a matter of fact, the presented closed-form 
solutions permit the polarimetric evaluation of the scattering for a bi-static configuration, from 
or through the layered rough structure, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. As a result, an elegant closed form solution is established, 
which takes into account parametrically the dependence of scattering properties on 
structure (geometric and electromagnetic) parameters. Therefore, BPT formulation leads to 
solutions which exhibit a direct functional dependence (no integral evaluation is required) 
and, subsequently, permit to show that the scattered field can be parametrically evaluated 
considering a set of parameters: some of them refer to an unperturbed structure 
configuration, i.e. intrinsically the physical parameters of the smooth boundary structure, 
and others which are determined exclusively by (random) deviations of the corrugated 
boundaries from their reference position. Note also that the coefficients 1,~ mm

qp  and 1,0 ~ ii
qpN   

depend parametrically on the unperturbed structure parameters only. Procedurally, once 
the generalized reflection/transmission coefficients are recursively evaluated, the coefficients 

 

1,~ ii
qp and/or 1,0 ~ ii

qpN   can be than directly computed, so that the scattering cross sections 
(93) and/or (94) for the pertinent structure with rough interfaces can be finally predicted. 
Furthermore, the scattering from or through the rough layered media is sensitive to the 
correlation between rough profiles of different interfaces. In fact, a real layered structure 
will have interfaces cross-correlation somewhere between two limiting situations: perfectly 
correlated and uncorrelated roughness. Consequently, the degree of correlation affects the 
phase relation between the fields scattered by each rough interface. Obviously, when the 
interfaces are supposed to be uncorrelated, the second terms respectively in (93) and (94) 
vanish and accordingly, in the first-order approximation, the total scattering from or 
through the structure arises from the incoherent superposition of radiation scattered from 
each interface. We emphasize that the effects of the interaction between the rough interfaces 
can limited be treated, in the first-order approximation, only when the rough interfaces 
exhibit some correlation. In addition, it has been demonstrated that the proposed global 
solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms (Imperatore et al 2008c) 
(Imperatore et al. 2009c). Finally, it should be noted that the method to be applied needs 
only the classical gently-roughness assumption, without any further approximation.  
 

 
Fig. 3.  Reciprocity for scattering from and through a layered structure with rough 
interfaces. 
 
8. Reciprocal character of the BPT solutions 
 

In this section, the emphasis is placed on the reciprocal character of the final BPT scattering 
solutions, which evidently constitutes a crucial point in the formal framework of the BPT.  
Generally speaking, the reciprocity principle is a statement that expresses some form of 
symmetry in the laws governing a physical system. Analytically speaking, both the BPT 
final solutions (79) and (88), respectively, from and through the layered structure with N-
rough interfaces can be expressed in a common formal frame exhibiting a symmetric nature: 
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These formal relations are not only a mere matter of aesthetic; in fact their symmetry 
inherently reflects the conformity with the reciprocity principle of the electromagnetic 
theory. We emphasize that the relations (95), (96) imply that the wave amplitude for the 
scattering process si kk  equals that of reciprocal scattering process is kk  .Therefore, 
(95) and (96) are also reciprocity relationships for the scattering, respectively, from and 
through a layered structure with an (mth) embedded rough interface. This is to say that for 
the presented scattering solutions the role of the source and the receiver can be exchanged 
(see Fig.3), in conformity with the reciprocity principle of the electromagnetic theory. It 
should be noted that when the N-rough interfaces structure is concerned the properties (95)-
(96) are satisfied as well, since the solutions in first-order limit are obtainable by 
superposition of the contribution of each (mth) rough interface. In order to provide general 
demonstration of these fundamental relationships, we found a more compact expression for 
(75)-(78) and (84)-(87), respectively. First, we introduce the following suitable notation: 
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Next, when the solution for the scattering from the layered structure with an embedded 
rough interface is concerned, substituting relations (17) into (75)-(78), we obtain the 
alternative and more compact expressions for the relevant solution: 
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Then, by direct inspection of (99)-(102) we ultimately find Eq. (95).  

 

On the other hand, when the solution for the scattering through the layered structure with 
an embedded rough interface is concerned, we proceed similarly as done previously. 
Substituting relations (18) into (84)-(87), we obtain the alternative and more compact 
expressions for the relevant solution: 
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Then, by direct inspection of (103)-(106) we ultimately find Eq. (96). This is to say that BPT 
formalism satisfies reciprocity.  

 
9. Conclusion 
 

The problem of electromagnetic scattering in 3D layered rough structures can be analytical 
treated by relying on effective results of the Boundary Perturbation Theory (BPT), whose 
formulation has been introduced by P. Imperatore and his coauthors in many different 
papers. A structured presentation of the pertinent theoretical body of results has been 
provided in this chapter. The first-order scattering models obtained in the framework of the 
BPT allow us to polarimetrically deal with the (bi-static) scattering, from and through three-
dimensional layered structures with an arbitrary number of gently rough interfaces.  
Analytically speaking, two relevant closed-form solutions, obtained for two different 
configurations, respectively, for the scattering from and through the structure, are presented 
in a common formal frame. As a matter of fact, beyond a certain economy and mathematical 
elegance in the final analytical solutions, their inherent symmetry is intimately related to the 
reciprocity. 
Some remarkable considerations on the meaning of the BPT solutions are in order. It can be 
demonstrated that, beyond the technicalities of the BPT formulation, the pertinent analytical 
results are also susceptible of a powerful physical interpretation; so that the fundamental 
interactions contemplated by the BPT can be revealed, gaining a coherent explanation and a 
neat picture of the physical meaning of the BPT theoretical construct (Imperatore et al 2008c) 
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(95) and (96) are also reciprocity relationships for the scattering, respectively, from and 
through a layered structure with an (mth) embedded rough interface. This is to say that for 
the presented scattering solutions the role of the source and the receiver can be exchanged 
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(96) are satisfied as well, since the solutions in first-order limit are obtainable by 
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Then, by direct inspection of (99)-(102) we ultimately find Eq. (95).  

 

On the other hand, when the solution for the scattering through the layered structure with 
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Then, by direct inspection of (103)-(106) we ultimately find Eq. (96). This is to say that BPT 
formalism satisfies reciprocity.  

 
9. Conclusion 
 

The problem of electromagnetic scattering in 3D layered rough structures can be analytical 
treated by relying on effective results of the Boundary Perturbation Theory (BPT), whose 
formulation has been introduced by P. Imperatore and his coauthors in many different 
papers. A structured presentation of the pertinent theoretical body of results has been 
provided in this chapter. The first-order scattering models obtained in the framework of the 
BPT allow us to polarimetrically deal with the (bi-static) scattering, from and through three-
dimensional layered structures with an arbitrary number of gently rough interfaces.  
Analytically speaking, two relevant closed-form solutions, obtained for two different 
configurations, respectively, for the scattering from and through the structure, are presented 
in a common formal frame. As a matter of fact, beyond a certain economy and mathematical 
elegance in the final analytical solutions, their inherent symmetry is intimately related to the 
reciprocity. 
Some remarkable considerations on the meaning of the BPT solutions are in order. It can be 
demonstrated that, beyond the technicalities of the BPT formulation, the pertinent analytical 
results are also susceptible of a powerful physical interpretation; so that the fundamental 
interactions contemplated by the BPT can be revealed, gaining a coherent explanation and a 
neat picture of the physical meaning of the BPT theoretical construct (Imperatore et al 2008c) 
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(Imperatore et al. 2009c). The consequent phenomenological implications on the practical 
applications are then considerable. 
Therefore, the formally symmetric, physically revealing, and fully polarimetric BPT solutions 
are amenable of direct and parametric numerical evaluation and, therefore, can be 
effectively applied to several practical situations of interest. We underline that it can be also 
demonstrated that all the previous existing perturbative scattering models, introduced by 
other authors to deal with simplified layered geometry with one (Yarovoy et al., 2000), 
(Azadegan and Sarabandi, 2003), (Fuks, 2001) or two rough interfaces (Tabatabaeenejad and 
Moghaddam, 2006), can be all rigorously regarded as a special cases of the general BPT 
solutions (see also Franceschetti et al, 2008).  This analytical consistency also provides a 
unifying perspective on the perturbative approaches. Finally, the body of the BPT 
theoretical results can be also regarded as a generalization to the case of layered media with 
rough interfaces of the classical SPM for rough surface.  
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