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Abstract 
The book chapter will aim at introducing the background knowledge, basic theories, 
supporting techniques, numerical results, and future research for the high-order symplectic 
finite-difference time-domain scheme. The theories of symplectic geometry and Hamiltonian 
are reviewed in Section 2 followed by the symplectiness of Maxwell’s equations presented 
in Section 3. Next, the numerical stability and dispersion analyses are given in Section 4. 
Then, in Section 5, we will make a tour of the supporting techniques but do not discuss them 
in detail. These techniques involve source excitation, perfectly matched layer, near-to-far-
field transformation, inhomogeneous boundary treatments, and parameter extractions. The 
numerical results on propagation, scattering, and guided-wave problems are shown in 
Section 6. The high-order symplectic finite-difference time-domain scheme demonstrates the 
powerful advantages and potentials for the time-domain solution of Maxwell’s equations, 
especially for electrically-large objects and for long-term simulation. Finally, the conclusion 
and future research are summarized in Section 7. 
 
Keywords: Symplectic Finite-Difference Time-Domain Scheme; High-Order Techniques; 
Symplectic Geometry and Hamiltonian; Numerical Stability and Dispersion; Maxwell’s 
Equations. 

 
1. Introduction 
 

The traditional finite-difference time-domain (FDTD) method [1-4] , which is explicit 
second-order-accurate in both space and time, has been widely applied to electromagnetic 
computation and simulation. The main advantages of the FDTD-based techniques for 
solving electromagnetic problems are computational simplicity and low operation count. 
Furthermore, it is well suited to analyze transient problems and is good at modeling 
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inhomogeneous geometries. Most important of all, the method can readily be implemented 
on the massive computers. 
However, the FDTD method has two primary drawbacks, one is the inability to accurately 
model the curved complex surfaces and material discontinuities by using the staircasing 
approach with structured grids, and another is the significant accumulated errors from 
numerical instability, dispersion and anisotropy. Hence fine grids are required to obtain 
satisfying numerical results, which leads to vast memory requirements and high 
computational costs, especially for electrically-large domains and for long-term simulation. 
For the first pitfall, a variety of alternative methods in conjugation with unstructured grids 
were proposed to reduce the inaccuracy owing to the staircase approximation, including the 
finite-volume time-domain (FVTD) [5], finite-element time-domain (FETD) [6], and 
discontinuous Galerkin time-domain (DGTD) methods [7]. Although the methods are easy 
to treat boundaries, they are less efficient than the traditional FDTD method. Meanwhile, for 
the traditional FDTD method, a variety of conformal [8-11] and subgridding strategies [12] 
were proposed also.  
To overcome the second problem, other high-order spatial discretization strategies were 
developed. The multi-resolution time-domain (MRTD) [13] and pseudo-spectral time-
domain (PSTD) [14] methods reduce the spatial sampling rate drastically, but they are 
difficult to handle the material interface for modeling the three-dimensional complex objects 
[15, 16]. Another approach is the staggered fourth-order FDTD method [17-21], which 
retains the simplicity of the original Yee algorithm and can save computational resources 
with coarse grids compared to the traditional FDTD method. However, the approach must 
set lower Courant-Friedrichs-Levy (CFL) number to comply with the stability criterion.  
Furthermore, the high-order compact difference [22, 23] is easier to treat the inhomogeneous 
boundaries,  but it requires the sparse matrix inversion for each time step. 
Except for the solvers in space direction, novel solvers in time direction were proposed as 
well. The Runge-Kutta (R-K) method used in [3, 22] can achieve the high-order accuracy. 
However, it will consume additional memory and has amplitude error. The alternative 
direction implicit time-stepping strategy [24-26] is unconditionally stable, but it suffers from 
the intolerable numerical dispersion once the CFL number is too large. Moreover, the 
strategy will consume more CPU times caused by the sparse matrix inversion. For the time 
direction, does a high-order-accurate and energy-conserving solver with low computational 
costs exist? Surprisingly, Yes! 
Most physical and chemical phenomenons can be modeled by Hamiltonian differential 
equations whose time evolution is symplectic transform and flow conserves the symplectic 
structure [27-29]. The symplectic schemes include a variety of different temporal 
discretization strategies designed to preserve the global symplectic structure of the phase 
space for a Hamiltonian system. They have demonstrated their advantages in numerical 
computation for the Hamiltonian system, especially for long-term simulation. Since 
Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system, a stable 
and accurate solution can be obtained by using the symplectic schemes, which preserve the 
energy of the Hamiltonian system constant. The symplectic schemes can be explicit or 
implicit and can be generalized to high-order with controllable computational complexity. 
Recently, researchers from computational electromagnetics society have focused on the 
symplectic schemes for solving Maxwell’s equations. Symplectic finite-difference time-
domain (SFDTD) scheme [30-41], symplectic discrete singular convolution method [42], 

 

symplectic pseudo-spectral time-domain approach [43], symplectic wave equation strategy 
[44], and multi-symplectic method [45, 46] were proposed and studied. This chapter we will 
focus on the explicit high-order symplectic integration schemes with the high-order 
staggered spatial differences for solving the Maxwell’s equations. 

 
2. Mathematical foundations 
 

The partial mathematical proofs are cited from [28, 29, 47]. 
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inhomogeneous geometries. Most important of all, the method can readily be implemented 
on the massive computers. 
However, the FDTD method has two primary drawbacks, one is the inability to accurately 
model the curved complex surfaces and material discontinuities by using the staircasing 
approach with structured grids, and another is the significant accumulated errors from 
numerical instability, dispersion and anisotropy. Hence fine grids are required to obtain 
satisfying numerical results, which leads to vast memory requirements and high 
computational costs, especially for electrically-large domains and for long-term simulation. 
For the first pitfall, a variety of alternative methods in conjugation with unstructured grids 
were proposed to reduce the inaccuracy owing to the staircase approximation, including the 
finite-volume time-domain (FVTD) [5], finite-element time-domain (FETD) [6], and 
discontinuous Galerkin time-domain (DGTD) methods [7]. Although the methods are easy 
to treat boundaries, they are less efficient than the traditional FDTD method. Meanwhile, for 
the traditional FDTD method, a variety of conformal [8-11] and subgridding strategies [12] 
were proposed also.  
To overcome the second problem, other high-order spatial discretization strategies were 
developed. The multi-resolution time-domain (MRTD) [13] and pseudo-spectral time-
domain (PSTD) [14] methods reduce the spatial sampling rate drastically, but they are 
difficult to handle the material interface for modeling the three-dimensional complex objects 
[15, 16]. Another approach is the staggered fourth-order FDTD method [17-21], which 
retains the simplicity of the original Yee algorithm and can save computational resources 
with coarse grids compared to the traditional FDTD method. However, the approach must 
set lower Courant-Friedrichs-Levy (CFL) number to comply with the stability criterion.  
Furthermore, the high-order compact difference [22, 23] is easier to treat the inhomogeneous 
boundaries,  but it requires the sparse matrix inversion for each time step. 
Except for the solvers in space direction, novel solvers in time direction were proposed as 
well. The Runge-Kutta (R-K) method used in [3, 22] can achieve the high-order accuracy. 
However, it will consume additional memory and has amplitude error. The alternative 
direction implicit time-stepping strategy [24-26] is unconditionally stable, but it suffers from 
the intolerable numerical dispersion once the CFL number is too large. Moreover, the 
strategy will consume more CPU times caused by the sparse matrix inversion. For the time 
direction, does a high-order-accurate and energy-conserving solver with low computational 
costs exist? Surprisingly, Yes! 
Most physical and chemical phenomenons can be modeled by Hamiltonian differential 
equations whose time evolution is symplectic transform and flow conserves the symplectic 
structure [27-29]. The symplectic schemes include a variety of different temporal 
discretization strategies designed to preserve the global symplectic structure of the phase 
space for a Hamiltonian system. They have demonstrated their advantages in numerical 
computation for the Hamiltonian system, especially for long-term simulation. Since 
Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system, a stable 
and accurate solution can be obtained by using the symplectic schemes, which preserve the 
energy of the Hamiltonian system constant. The symplectic schemes can be explicit or 
implicit and can be generalized to high-order with controllable computational complexity. 
Recently, researchers from computational electromagnetics society have focused on the 
symplectic schemes for solving Maxwell’s equations. Symplectic finite-difference time-
domain (SFDTD) scheme [30-41], symplectic discrete singular convolution method [42], 
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[44], and multi-symplectic method [45, 46] were proposed and studied. This chapter we will 
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staggered spatial differences for solving the Maxwell’s equations. 
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where H  denotes complex conjugate transpose or adjoint. 
The complex-symplectic inner product has the following properties: 
(1)  Conjugate bilinear property:  
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Theory 4. If the time evolution operator of (3) from 0t  to t  is ),( 0tt  and 
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3. Symplectic framework of Maxwell’s equations 
 

A Helicity generating function [48] for Maxwell’s equations in free space is introduced as 
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where H  denotes complex conjugate transpose or adjoint. 
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According to the variation principle, we can derive Maxwell’s equations of free space from 
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where 33}0{   is the 33  null matrix and R  is the three-dimensional curl operator. 
However, the Helicity generating function has little physical meaning.  
It is known however that the total stored energy of electromagnetic field is constant in an 
energy conserving system. Hence, the total stored energy is taken to be the Hamiltonian 
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where A  and   are the vector and scalar potentials and can be uniquely defined by using 
a Lorentz gauge or a Coulomb gauge. If we define the conjugate momentum and coordinate 
as 
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The equations of motion is to be 
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 (Lorentz gauge), the above is equivalent to 

Maxwell’s equations. 
The time evolution of (8) from 0t  to tt   can be written as 
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where )exp( Lt  is the time evolution matrix (TEMA) or symplectic flow of Maxwell’s 
equations. 
For infinite-dimensional real space, we define the inner product 
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where zy zyx eeer x   is the position vector and t  is the time variable. According 

to the identity both in the generalized distribution space and in the Hilbert space 
  /,,/ GFGF , zyx ,,     (20) 

we can know  /  is a skew-symmetric operator. Hence R  is a symmetric operator, i.e. 
TRR  . Based on Theory 6, the TEMA of Maxwell’s equations is a symplectic-orthogonal 

matrix in real space. 
For infinite-dimensional complex space, we define the inner product 
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The forward and inverse Fourier transforms for electromagnetic field components are 
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where 0j  is the imaginary unit and zzyyx kkk eeek x0   is the wave vector. For 

simplicity, we use the shorthand notations FF ~
 and FF ~1 .  

In the beginning, with the help of Parseval theorem 

  GFGF ~,~, 1           (24) 

we know that the Fourier operator   is a unitary operator, i.e. H 1 . 

Next, using the differential property of Fourier transform zyxFkjF ,,,~
0 


 
  , 

we can obtain the spectral-domain form of Maxwell’s equations 
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where R~  is a Hermitian matrix, i.e. RR H ~~  . 
Finally, considering the unitary property of the Fourier operator, we can convert the 
spectral-domain form (25) into the spatial-domain form (27) 















































E
H

E
H

ˆ
}0{~1

~1}0{

ˆ
33333333

00

333333
00

33

R

R

t H

H




 (27) 

where 3 3 ( )diag   . It is easy to show that 3 3 3 3 3 3
HR R      is a Hermitian matrix, i.e. 

HRR  . Based on Theory 7, the TEMA of Maxwell’s equations is a symplectic-unitary 
matrix in complex space. 
It is well known that the total energy of electromagnetic field in free space can be 
represented as 
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No matter in complex space or in real space, the TEMA )exp( Lt  accurately conserves 

the total energy of electromagnetic field. In other words, the TEMA )exp( Lt  only rotates 
the electromagnetic field components (Theory 5). In addition, if an algorithm can accurately 
conserve the total energy of electromagnetic field, it is to be unconditionally stable. 
Both in complex space and in real space, we can split L  into U  and V  
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The split TEMA can be approximated by the explicit m-stage pth-order symplectic 
integration scheme [32, 49] 
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where lc  and ld  are the symplectic integrators and satisfy the time-reversible [49] or 
symmetric relations [50], i.e. 

)1(1 mlcc lml   , )11(   mldd lml , 0md  (32) 

)1(1 mlcd lml       (33) 
Table 1 lists the three-order symmetric symplectic integrators and the fourth-order time-
reversible symplectic integrators [40]. The time-stepping diagram for the five-stage fourth-
order symplectic scheme [32] is shown in Fig. 1.  
 

 
Table 1. The three-order symmetric symplectic integrators and the fourth-order time-
reversible symplectic integrators. 
 

 

Fig. 1. Time-stepping diagram for the five-stage fourth-order symplectic scheme. 
 

For real space, TRR   and therefore U  and V  are the infinitesimally real-symplectic 

matrices. Likewise, for complex space, HRR   and therefore U  and V  are the 

infinitesimally complex-symplectic matrices. In particular, we have: (1) U  and V  can be 
composed of Lie algebra semicolon at Line 11. (2) )exp( Vd tl  and )exp( Uc tl  are the 
symplectic matrices.  
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where R~  is a Hermitian matrix, i.e. RR H ~~  . 
Finally, considering the unitary property of the Fourier operator, we can convert the 
spectral-domain form (25) into the spatial-domain form (27) 
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The split TEMA can be approximated by the explicit m-stage pth-order symplectic 
integration scheme [32, 49] 
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Although the orthogonal properties can not be retained by the two matrices )exp( Vd tl  

and )exp( Uc tl , the determinants of them are equal to 1 [51]. Thus the explicit 
symplectic integration scheme is conditionally stable and does not have amplitude error. 

 
4. Numerical stability and dispersion analyses 
 

We first present the numerical stability and dispersion analyses for the one-dimensional 
problem, then extend them to the three-dimensional problem. 

Given the field components  ),( n
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n
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n
y EH1nF  at the (n+1)-th time step can be represented as 
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where S   is the amplification matrix. 
The well-known plane wave expansions are 
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where 0k  is the numerical wave number, and   and  are spherical angles. 
Using the q-th staggered differences to approximate the spatial first-order derivatives, we 
get 
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Each stage of (40) is the symplectic transform, and therefore   1)exp(det  Uc tl  and 
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where 
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0 v  is the velocity of light. 
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Although the orthogonal properties can not be retained by the two matrices )exp( Vd tl  

and )exp( Uc tl , the determinants of them are equal to 1 [51]. Thus the explicit 
symplectic integration scheme is conditionally stable and does not have amplitude error. 

 
4. Numerical stability and dispersion analyses 
 

We first present the numerical stability and dispersion analyses for the one-dimensional 
problem, then extend them to the three-dimensional problem. 

Given the field components  ),( n
x

n
y EHnF  at the n-th time step, the field components  

),( 11   n
x

n
y EH1nF  at the (n+1)-th time step can be represented as 

n1n FF S               (34) 
where S   is the amplification matrix. 
The well-known plane wave expansions are 

 )(exp),,,( 00 zzyyxx kkkjkijftzyxF    (35) 

 cossin0kk x  ,  sinsin0kk y  , cos0kk z   (36) 

where 0k  is the numerical wave number, and   and  are spherical angles. 
Using the q-th staggered differences to approximate the spatial first-order derivatives, we 
get 

   

F

F
krjkrj

W

rkjiFrkjiFW
z
F

z

q

r z

zzzz
r

q

r z
r
























2/

1

00

2/

1

)2/1(exp)2/1(exp

)2/1,,()2/1,,(

         (37) 

where 
   

 



2/

1

00 )2/1(exp)2/1(expq

r z

zzzz
rz

krjkrj
W , and rW  are 

the spatial difference coefficients [40] as shown in Table 2. 
The continuous Maxwell’s equations 

















































x

y

x

y

E
H

z

z
E
H

t 01

10



            (38) 

can be semi-discretized as 

 











































x

y

z

z

x

y

E
H

E
H

t 01

10





           (39) 

If we set 












 


00

10 zU 
 , 













 0

1
00

z
V 


, and use the symplectic integration 

scheme for approximating the TEMA of Maxwell’s equations, the amplification matrix S  
can be written as 


 












 















m

l

tlz

tlz

c
dS

1 10

11
11
01 




               (40) 

Each stage of (40) is the symplectic transform, and therefore   1)exp(det  Uc tl  and 

  1)exp(det  Vd tl  [51], which can be easily testified by (40). As a result, 1det S . 
The amplification matrix is 











2221

1211

SS
SS

S     (41) 

and  its eigenvalues  satisfy the following equation 

  0)( 211222112211
2  SSSSSS            (42) 

Notice that 2211)( SSStr   and 1det)( 21122211  SSSSS , (42) can be rewritten 
as 

01)(2   Str     (43) 

and its solutions
2

)(4)( 2
0

2,1
StrjStr 

 . A stable algorithm requires  1|| 2,1  , 

which says that 2|)(| Str . 
The right side of (40) is multiplied term by term, then we get 

 lzt

m

l
l vgStr 222

0
1

2)(  


          (44) 

ll

ll

ll

ll

ji
mjijiji

jijiji
mjijiji

jijil cdcdcddcdcdcg 






2211

2211

2211

2211
11

 (45) 

where 
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0 v  is the velocity of light. 
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For the three-dimensional problem, the continuous-time discrete-space Maxwell’s equations 
can be written as 
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Notice 0)( 222  zyx  ,  (46) can be rewritten as the tensor form 
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where K  is the tensor matrix defined by the spherical angles [52]. Although (47) is a 66  
matrix, it has only two independent eigenvalues related to TE and TM waves. Hence, (47) 
and (39) are isomorphic. Using the similar technique, we can get  

  lzyxt

m

l
l vgStr 22222

0
1

2)(   


         (48) 

Generally speaking，the stability limit maxCFL  for a time-domain solver can be written as 
[16, 40] 

S

TCFL



max               (49) 

where S  is the spatial stability factor which can be defined as 

sS Wd           (50) 

where 3,2,1d  are the spatial dimensions, and sW  is the summation of the spatial 

difference coefficients as shown in Table 2. T  is the time stability factor, which can be 

obtained by the spatial stability factor and the constraint 2|)(| Str . The form (49) 
decoupling the spatial stability factor from the time stability factor is more flexible and 
convenient for analyzing the stability limits of SFDTD(p,q) schemes, where p is the order for 
the time-stepping scheme and q is the order for the spatial differences. The stability limits 
[40] for the time-domain solvers are listed in Table 3. 
 
 
 
 
 

 

Order (q) 1W  2W  3W  4W  SW  

2 1    2 
4 9/8 -1/24   7/3 
6 75/64 -25/384 3/640  149/60 

8 1225/1024 -
245/3072 49/5120 -5/7168 2161/840 

Table. 2. The spatial difference coefficients. 
 

Algorithms CFL number 

FDTD(2,2) 0.577 

FDTD(2,4) 0.495 
J-Fang(4,4) 0.577 

R-K(4,4) 0.700 
SFDTD(4,4) 0.858 

Table. 3. The stability limits for different algorithms.  
 

The disperision relation can be written as 
 2/)(arccos Strt            (51) 

and the phase velocity error can be defined as 

0

0
10log20

v
vv

Err p           (52) 

where 
0k

v p


  is the numerical phase velocity. The phase velocity error as a function of 

points per wavelength (PPW) is shown in Fig. 2. The SFDTD(4,4) scheme is superior to the 
traditional FDTD(2,2) method, FDTD(2,4) approach [18], and R-K(4,4) [3] strategy. Although 
the J-Fang(4,4) method [17] is the best solver, but it suffers from the intractable boundary 
treatments. 
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For the three-dimensional problem, the continuous-time discrete-space Maxwell’s equations 
can be written as 
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Fig. 2. Numerical dispersion comparisons. Dispersion curves for a plane wave traveling at 
60  and 30 . 

 
 
 

 

5. Supporting techniques 
The basic formulations of the high-order SFDTD scheme are presented in [32, 38]. The 
perfectly matched layer (PML) absorbing boundary conditions are given in [31, 41-43]. The 
total field and scattered field techniques are developed in [34, 53]. The near-to-far-field 
transformation is put forward in [38]. The high-order subcell and the high-order conformal 
strategies are proposed in [38, 39, 54, 55, 56].  The parameter extraction and source excitation 
techniques are discussed in [41]. 
A function of space and time evaluated at a discrete point in the Cartesian lattice and at a 
discrete stage in the time step can be notated as 
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where x , y , and z  are, respectively, the lattice space increments in the x , y , and z  

coordinate directions, t  is the time increment, i , j , k , ,n  l , and m  are integers, 

mln /  denotes the thl   stage after n  time steps, m  is the total stage number, and 

l  is the fixed time with respect to the thl   stage. 
Take the SFDTD(p,4) scheme for example, the update equation for the scaled electric field 
component is given by 
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Fig. 2. Numerical dispersion comparisons. Dispersion curves for a plane wave traveling at 
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5. Supporting techniques 
The basic formulations of the high-order SFDTD scheme are presented in [32, 38]. The 
perfectly matched layer (PML) absorbing boundary conditions are given in [31, 41-43]. The 
total field and scattered field techniques are developed in [34, 53]. The near-to-far-field 
transformation is put forward in [38]. The high-order subcell and the high-order conformal 
strategies are proposed in [38, 39, 54, 55, 56].  The parameter extraction and source excitation 
techniques are discussed in [41]. 
A function of space and time evaluated at a discrete point in the Cartesian lattice and at a 
discrete stage in the time step can be notated as 

))(,,,(),,,( /
tlzyx

mln nkjiFtzyxF               (53) 

where x , y , and z  are, respectively, the lattice space increments in the x , y , and z  

coordinate directions, t  is the time increment, i , j , k , ,n  l , and m  are integers, 

mln /  denotes the thl   stage after n  time steps, m  is the total stage number, and 

l  is the fixed time with respect to the thl   stage. 
Take the SFDTD(p,4) scheme for example, the update equation for the scaled electric field 
component is given by 
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where r  is the relative permittivity. For the cubic grid,  zyx  and 

CFLCFLCFLCFL zyx  . 

The source conditions for xÊ  field at the plane 2kk   are given as follows 
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where incyH ,  is the one-dimensional incident wave source. 

The discretized y  subcomponent of xÊ  field in the PML region can be deduced as 
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where y  is the local electric conductivity at 





  kji ,,

2
1

 in the PML region. Polynomial 

conductivities are employed varying from zeros at the vacuum-layer interface to max,y  at 

the outer side of the PML layer, i.e. 
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where   is the layer thickness,   is the distance from the interface, and   is the 
polynomial order. When 3 , max,y  can be set as 
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where  b
r  and b

r  are the permittivity and permeability of the background media. For the 
free space, 1b b

r r   .Considering the electric and magnetic fields are interleaved in the 
space lattice at intervals of half space increments, we must use efficient interpolation 
method to obtain the values of the scattered field components at the same locations. At one 
virtual plane 1kk   on the rectangular locus, the one-dimensional fourth-order cubic 
interpolation formula for the electric field can be defined as 
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where mln
xE

/ˆ   is the averaged value of the scaled electric field component mln
xE

/ˆ  . The 
two-dimensional interpolation formula for the magnetic field can be expressed in the form 
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where r  is the relative permittivity. For the cubic grid,  zyx  and 

CFLCFLCFLCFL zyx  . 
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where incyH ,  is the one-dimensional incident wave source. 

The discretized y  subcomponent of xÊ  field in the PML region can be deduced as 
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where y  is the local electric conductivity at 


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
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 in the PML region. Polynomial 

conductivities are employed varying from zeros at the vacuum-layer interface to max,y  at 

the outer side of the PML layer, i.e. 


 









 max,)( yy    (63) 

where   is the layer thickness,   is the distance from the interface, and   is the 
polynomial order. When 3 , max,y  can be set as 
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where  b
r  and b

r  are the permittivity and permeability of the background media. For the 
free space, 1b b

r r   .Considering the electric and magnetic fields are interleaved in the 
space lattice at intervals of half space increments, we must use efficient interpolation 
method to obtain the values of the scattered field components at the same locations. At one 
virtual plane 1kk   on the rectangular locus, the one-dimensional fourth-order cubic 
interpolation formula for the electric field can be defined as 
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where mln
xE

/ˆ   is the averaged value of the scaled electric field component mln
xE

/ˆ  . The 
two-dimensional interpolation formula for the magnetic field can be expressed in the form 
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where mln
xH

/  is the averaged value of the x  component of magnetic field mln /H . 

 
6. Numerical results 
 
a. One-dimensional propagation problem 
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s81033.1  . The space increment is set as mz 1.0 , and the CFL number is 
chosen to be 0.5. The time-domain waveforms are recorded in Fig. 3 after the pulse travels 
10000 cells. Compared with the traditional FDTD(2,2) method and the staggered FDTD(2,4) 
method, the SFDTD(4,4) scheme agrees with the analytical solution very well. 
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Fig. 3. The time-domain waveforms of the Gaussian pulse by the traditional FDTD(2,2) 
method, the staggered FDTD(2,4) method, and the SFDTD(4,4) scheme. 
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Fig. 4. The normalized averaged energy of two-dimensional waveguide resonator calculated 
by the R-K(4,4) approach and the SFDTD(4,4) scheme. 
 
b. Two-dimensional waveguide resonator problem 
A two-dimensional waveguide resonator with size cmcm 016.1286.2   is driven in 

21TE  mode. Calculated by the above mentioned SFDTD(4,4) scheme and the R-K (4,4) 
approach, the normalized averaged energy per three periods is drawn in Fig. 4. The uniform 
space increment mm27.1 , the CFL number is chosen to be 0.797, and the time step 

5100n . To obtain high-order accuracy, we use the analytical solution to treat the perfect 
electric conductor (PEC) boundary. Compared with the SFDTD(4,4) scheme, the R-K (4,4) 
approach has obvious amplitude error. Furthermore, within given numerical precision, the 
required memory of the R-K approach is four times more than that of the symplectic 
scheme. 
 
c. Three-dimensional waveguide resonator  problem 
The resonant frequency is analyzed for a rectangular waveguide cavity. The size of the 
waveguide resonator is mmmmmmcba 288.14525.9050.19  . Other 
parameters are taken as mm381.2 , CFL=0.4, and 10000max n . The frequency of 
the cosine-modulated Gaussian pulse ranges form 12GHz to 21GHz. Within the frequency 
range, all possible resonant modes include 101TE , 110TE ( 110TM ), 011TE , and 

111TE ( 111TM ). In particular, the PEC boundary is treated with the image theory [15] for 
the SFDTD(3,4) scheme. Fig. 5 shows the curves of the normalized total energy and their 
peaks correspond to the resonant frequencies. One can see that compared with the high-
order FDTD(2,4) approach and the traditional FDTD(2,2) method, the SFDTD(3,4) scheme 
can find the resonant frequencies better. 
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Fig. 5. The resonant frequencies of the rectangular waveguide cavity. 
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Fig. 6.  The scattering parameter of the dielectric-loaded waveguide. 
 
d. Three-dimensional waveguide discontinuity problem 
Partially filled with a dielectric of permittivity 3.7, the WR-3 waveguide is driven in 10TE  

dominant-mode. The size of the waveguide is mmmm 4318.08636.0  , and the length 

 

of the loaded-dielectric is mm504.0 . The settings are taken as mm072.0  and 
CFL=0.5. The ten layered PML is used to truncate the two waveguide ports, and the 
sinusoidal-modulated Gaussian pulse is employed as the excitation source. In particular, the 
PEC boundary is treated with the image technique [15], and the air-dielectric interface is 
modeled by the scheme proposed in [38]. As shown in Fig. 6, the wide-band scattering 
parameter is extracted after 5000 time steps. Compared with the traditional FDTD(2,2) 
method, the SFDTD(3,4) scheme can obtain satisfying numerical solution under the coarse 
grid condition. 

 
e. Three-dimensional scattering problem of electrically-large sphere 
The next example considered is the scattering from a electrically-large conducting sphere of 
diameter 14 wavelengths. In particular, we use only 7 PPW to model the curved surfaces. 
From Fig. 7 and Fig. 8, compared with the low-order conformal (LC)-FDTD(2,2) method [8] 
and the High-order staircased (HS)-SFDTD(3,4) approach, the high-order conformal (HC)-
SFDTD(3,4) scheme [55, 56] agrees with the analytical solution very well. The relative two-
norm errors of the bistatic RCS by different methods in the E-plane and H-plane are listed in 
Table 4. The numerical error of the HC-SFDTD(3,4) scheme is controlled by 1%. It can be 
clearly seen that the locations of the error peaks for the HS-SFDTD(3,4) and the LC-
FDTD(2,2) methods are different. The error by the HS-SFDTD(3,4) method is due to the 
staircase approximation, while the error by the LC-FDTD(2,2) method is due to the 
numerical dispersion. Within the same relative two-norm errors bound (1%), we change the 
settings of the space step and the CFL number, and the CPU time and memory consumed by 
different algorithms are recorded in Table 5. From the table, the HC-SFDTD(3,4) scheme 
saves considerable memory and CPU time. 
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Fig. 7. The E-plane bistatic RCS of the conducting sphere. 
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Fig. 8.  The H-plane bistatic RCS of the conducting sphere. 
 

Error HS-SFDTD(3,4) LC-FDTD(2,2) HC-SFDTD(3,4) 
E-plane 9.89% 11.08% 1.35% 
H-plane 12.33% 7.31% 0.85% 

Table 4. The relative two-norm errors of bistatic RCS. Seven points per wavelength are 
adopted.  

 
Algorithms PPW CFL Time (s) Memory (MB) 

HC-SFDTD(3,4) 7 0.50 5891 258 
HS-SFDTD(3,4) 16 1.00 56279 1318 
LC-FDTD(2,2) 13 0.20 23359 820 

Table 5. The consumed CPU time and memory under the same relative two-norm errors 
condition. 

 
7. Conclusion and future work 
 

The SFDTD scheme, which is explicit high-order accurate in both space and time, is energy-
conserving, highly stable, and efficient. On one hand, the scheme can achieve high-order 
accuracy by using the high-order spatial differences with the simple Yee lattice. On the other 
hand, by using the symplectic integrators, the scheme demonstrates satisfying numerical 
performances under long-term simulation. Finally, with the supporting techniques, the 
scheme is suitable for the electromagnetic modeling of complex structures and media.  The 
future work will focus on the following aspects: (1) The other symplectic integrators, such as 
composite symplectic integrators [57], can be introduced and optimized for computational 
electromagnetics; (2) The symplectic integration scheme can be combined with other spatial 
discretization methods, such as multi-resolution expansion method; (3) The high-order 
implicit symplectic scheme can be developed for some engineering applications; (4) The 

 

symplectic integration scheme is a general solver for a variety of Hamiltonian systems and 
can be applied to the multi-physics simulation. 
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