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1. Introduction     
 

As is known to us, common Euclidean distance based SVMs are easily influenced by outliers 
in given samples and might subsequently cause big prediction errors in testing processes. 
Therefore, many scholars propose various preprocessing methods such as whitening or 
normalizing the data to a sphere shape to remove the outliers and then call the routine SVM 
methods to build a more reasonable machine. However, since Euclidean distance is often 
sub-optimal especially in high dimension learning problem and might cause the learning 
machine fail due to the ill-conditioned Gram kernel, then it is necessary to find some more 
efficient and robust way to resolve the problem, which is the motivation of this chapter.  
The Mahalanobis distance is superior to Euclidean Distance in handling with outliers and is 
widely used in statistics and machine learning area. Currently there are some methods in 
building SVMs combined with Mahalanobis distances. Some of them use it in the kernel and 
replace common kernel by a Mahalanobis one in SVMs. Some of them use it in 
preprocessing phase to remove the outlier first and then build SVMs using common 
methods. Others use it in the postprocessing phase to extract key support vectors for 
speedup and efficiency. Most of them achieve superior performances compared with SVM 
counterpart. However, it should be pointed out that the complexity of the combined 
algorithm is the most concerned factor in building such an algorithm.  
As is known to us, none of them incorporates the Mahalanobis distance into models, which 
tradeoff the complexity and performance in the same algorithm meantime and make the 
algorithm more robust. The obvious feature of this new method is that there is no more 
necessary to remove the outlier first, since it is already considered and will be identified 
automatically in the model. It is also expected to improve and simplify the whole learning 
process efficiently.  
One Class Classification (OCC) (Scholkopf, 2001) now becomes an active topic in machine 
learning domain. One Class Support Vector Machines (OCSVM) is firstly proposed via 
constructing a hyperplane in kernel feature space which separates the mapped patterns 
from the origin with maximum margin. Support vector domain description (SVDD) (Tax, 
1999) is another popular OCC method, which seeks the minimum hypersphere that encloses 
all the data of the target class in a feature space. In this way, it finds the descriptive area that 
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covers the data and excludes the superfluous space that results in false alarms existed in 
OCSVM.  
However, although OCSVM does provide good representation for the classes of interest, it 
overlooks the discrimination issue between them. Moreover, the hypersphere model of 
SVDD is not flexible enough to give a tight description of the target class generally.  
Therefore, in our previous works, we proposed two Mahalanobis distance based learning 
machine called QP-MELM and QP-MHLM respectively via solving their duals. However, as 
is suggested in (Löfberg, 2004), if both the primal form and dual form of an optimization 
problem are solvable, then the primal form is more commendable for approximation ability. 
Therefore, (Wei, 2007A) rewrote the MELM as a Second Order Cone Programming (SOCP) 
representable form and proposed a SOCP-MELM for class description. Applications to real 
world UCI benchmark datasets show promising results. 
Recently, Wei etc al proposed a novel learning concept called enclosing machine learning 
(Wei, 2007D), which imitates the human being’s cognition process, i.e. cognizing things of 
the same kind (To obtain a minimum bounding boundary for class description) and 
recognizing unknown things via point detection. Wei illustrated the concept using 
minimum volume enclosing ellipsoid learner for one class description and extended it to 
imbalanced data set classification. Except this, (Wang, 2005) and (Liu, 2006) proposed two 
SVDD based pattern classification algorithms (called SSPC and MEME respectively for 
simplicity) for imbalanced data set, which can also been classified to enclosing machine 
leaning’s framework .  
This chapter will be organized as follows. First, review of Mahalanobis distance\property 
and related learning methods will be briefed. Then, the new optimization models based on 
linear programming for Data Description, Classification incorporating Mahalanobis distance 
will be proposed. Third, benchmark datasets experiments for classification and regression 
will be investigated in detail. Finally, conclusions and discussions will be made. 

 
2. The Mahalanobis Distance 
 

2.1 Definitions 
Let X  be a m N  sample matrix containing N  random observations 

, 1, 2, ,m
i R i N x  . The sample mean μ  and covariance matrix Σ  can be concisely 

expressed in terms of sample matrix. 
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where 1  is a N  dimensional all one vector. 
If the covariance matrix is singular, it is difficult to calculate the inverse of Σ . Instead, we 

can use the pseudoinverse Σ  to approximate as 1 T Σ PΣ P  using inverse of nonzero 

 

eigenvalues. This gives the minimum squared error approximation to the true solutions. It 
should be noted that pseudoinverse restricts inversion to the range of the operator, i.e. the 
subspace where it is not degenerate. This is often unavoidable in high dimensional feature 
spaces. If the covariance is real symmetric and positive semidefinite, then the covariance 

matrix can be decomposed as TΣ P GP , and thus 1 1T Σ P G P  . Then the 
Mahalanobis distance from a sample x  to the population X  is 
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2.2 The Mahalanobis Distance in Kernel Feature Space 
In implicit high-dimensional feature space defined by kernel functions, the Mahalanobis 
distance can be represented in terms of the dot products of data maps. Suppose 

, ,  X μ Σ  are the sample matrix, mean vector, and covariance matrix in the feature 
space, respectively. The centered kernel matrix is defined as 
 

 2

1 1 1
C N N N
   K K EK KE EKE                           (3) 

 

where E  is a N N  all one matrix,  
, 1, ,

( ) ( ) ( , )i j i j i j N
k


   K x x x x


 is a

N N   symmetric matrix. 
Using (1), we obtain    
 

2T  Σ X Z X                                                             (4) 
 

where 
1
21 1( ( ))

N N
 Z I E  is a N N  symmetric matrix, I  is a N N  unit matrix. 

The kernel Mahalanobis distance in the feature space can then be written as 
 

2 1

( )
2

1

1

( ( ), ) ( ( ) ) ( ( ) )
1( ( , ) ( , )) ( )

1( ( , ) ( , ))

T

Nk
T

i
i
N

i
i

d

k k
N

k k
N

   







     

  

 





x X x μ Σ x μ

X x X x ZM Z

X x X x


          (5) 

 

www.intechopen.com



Mahalanobis Support Vector Machines Made Fast and Robust 229

 

covers the data and excludes the superfluous space that results in false alarms existed in 
OCSVM.  
However, although OCSVM does provide good representation for the classes of interest, it 
overlooks the discrimination issue between them. Moreover, the hypersphere model of 
SVDD is not flexible enough to give a tight description of the target class generally.  
Therefore, in our previous works, we proposed two Mahalanobis distance based learning 
machine called QP-MELM and QP-MHLM respectively via solving their duals. However, as 
is suggested in (Löfberg, 2004), if both the primal form and dual form of an optimization 
problem are solvable, then the primal form is more commendable for approximation ability. 
Therefore, (Wei, 2007A) rewrote the MELM as a Second Order Cone Programming (SOCP) 
representable form and proposed a SOCP-MELM for class description. Applications to real 
world UCI benchmark datasets show promising results. 
Recently, Wei etc al proposed a novel learning concept called enclosing machine learning 
(Wei, 2007D), which imitates the human being’s cognition process, i.e. cognizing things of 
the same kind (To obtain a minimum bounding boundary for class description) and 
recognizing unknown things via point detection. Wei illustrated the concept using 
minimum volume enclosing ellipsoid learner for one class description and extended it to 
imbalanced data set classification. Except this, (Wang, 2005) and (Liu, 2006) proposed two 
SVDD based pattern classification algorithms (called SSPC and MEME respectively for 
simplicity) for imbalanced data set, which can also been classified to enclosing machine 
leaning’s framework .  
This chapter will be organized as follows. First, review of Mahalanobis distance\property 
and related learning methods will be briefed. Then, the new optimization models based on 
linear programming for Data Description, Classification incorporating Mahalanobis distance 
will be proposed. Third, benchmark datasets experiments for classification and regression 
will be investigated in detail. Finally, conclusions and discussions will be made. 

 
2. The Mahalanobis Distance 
 

2.1 Definitions 
Let X  be a m N  sample matrix containing N  random observations 

, 1, 2, ,m
i R i N x  . The sample mean μ  and covariance matrix Σ  can be concisely 

expressed in terms of sample matrix. 
 

2

1

1 1T T T

N

N N

 

  


μ X1

Σ XX X11 X
                                  (1) 

 
where 1  is a N  dimensional all one vector. 
If the covariance matrix is singular, it is difficult to calculate the inverse of Σ . Instead, we 

can use the pseudoinverse Σ  to approximate as 1 T Σ PΣ P  using inverse of nonzero 

 

eigenvalues. This gives the minimum squared error approximation to the true solutions. It 
should be noted that pseudoinverse restricts inversion to the range of the operator, i.e. the 
subspace where it is not degenerate. This is often unavoidable in high dimensional feature 
spaces. If the covariance is real symmetric and positive semidefinite, then the covariance 

matrix can be decomposed as TΣ P GP , and thus 1 1T Σ P G P  . Then the 
Mahalanobis distance from a sample x  to the population X  is 
 

2 1( , ) ( ) ( )Td   x X x μ Σ x μ                                       (2) 

 
2.2 The Mahalanobis Distance in Kernel Feature Space 
In implicit high-dimensional feature space defined by kernel functions, the Mahalanobis 
distance can be represented in terms of the dot products of data maps. Suppose 

, ,  X μ Σ  are the sample matrix, mean vector, and covariance matrix in the feature 
space, respectively. The centered kernel matrix is defined as 
 

 2

1 1 1
C N N N
   K K EK KE EKE                           (3) 

 

where E  is a N N  all one matrix,  
, 1, ,

( ) ( ) ( , )i j i j i j N
k


   K x x x x


 is a

N N   symmetric matrix. 
Using (1), we obtain    
 

2T  Σ X Z X                                                             (4) 
 

where 
1
21 1( ( ))

N N
 Z I E  is a N N  symmetric matrix, I  is a N N  unit matrix. 

The kernel Mahalanobis distance in the feature space can then be written as 
 

2 1

( )
2

1

1

( ( ), ) ( ( ) ) ( ( ) )
1( ( , ) ( , )) ( )

1( ( , ) ( , ))

T

Nk
T

i
i
N

i
i

d

k k
N

k k
N

   







     

  

 





x X x μ Σ x μ

X x X x ZM Z

X x X x


          (5) 

 

www.intechopen.com



New Advances in Machine Learning230

 

where ( , )TkK X X , ix  is the i th sample of X , M ZKZ  is symmetric and 

semidefinite matrix and thus 2M  can be calculated via singular value decomposition, i.e. 
TM UΛU , 2 2 T M UΛ U . 

 
Using singular value decomposition method, we can easily conclude following theorem: 

Theorem 1: Let the eigenstructures of the centered matrix CK  be T
C K Q ΩQ , then the 

covariance matrix Σ  can be diagonalized as follows: 
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2 21( ) ( )( )TT T

N
   Σ Ω QX Ω Ω QX                              (6) 

 
where N  is the number of samples.  

Proof: Recall that the covariance matrix Σ  in the feature space, and suppose Σ  could be 

decomposed via Singular Value Decomposition (SVD): T Σ P GP , we have 
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Notice that the eigenvectors necessarily lie in the span of the centered data, thus P  can be 
written as following linear combination 
 

1( )T T

N
  P θ X EX                                                    (8) 

 
where θ  is the coeffient matrix to be determined, E  is a N N  all one matrix.  

Multiplying (8) by 
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N
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Multiplying (9) by pseudoinverse C
K  from the left side, we have 
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Since matrix G  is diagonal, and the centered kernel matrix can be decomposed as 
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where D  is some diagonal matrix.  
Since the eigenvectors of the covariance matrix are orthogonal, we have 
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Thus from (8), using (12), (15) and (16), we have 
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1
2 T P Ω QX                                                                 (17) 

 
Consequently, from (7), using (13), (17), we obtain 
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And this ends the complete proof of Theorem 1. 

According to Theorem 1, we can calculate the pseudoinverse Σ  to approximate 1Σ  as 
 

2T TN   Σ X Q Ω QX                                                (19) 
 

Thus (5) can be simplified as  
 

2

1

2

1

1( ( ), ) ( ( , ) ( , ))

( )
1( ( , ) ( , ))

N
T

i
i

T

N

i
i

d N k k
N

k k
N









  



 





x X X x X x

Q Ω Q

X x X x

                              (20) 

 
As we mentioned before, there often exists zero eigenvalues condition in high dimensional 
feature spaces, (7) is represented to approximate the true inverse of sample covariance 
matrix. Later, we will introduce another regularization method for avoiding the zero 
eigenvalues condition in Section 3.   

 
3. Mahalanobis One Class SVMs 
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the feature space   via a nonlinear map  . In the sequel, the OCSVM is obtained via 
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where T x w  is the decision hyperplane, 0i   is slack variable, N  is the number of 
samples. Using kernel trick, the corresponding dual  
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is a quadratic convex optimization problem, where α  is the dual variable, T K X X  is 
a kernel matrix. By using the Mahalanobis distance metric instead of Euclidean distance 
metric, the primal now becomes: 
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where Σ  is the sample covariance matrix. 

Using w Σu , then the separation hyperplane is now T x u  and the distance to the 

origin becomes
T


u Σu

. Therefore, (23) is equivalent to  
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The dual is as follows using optimality conditions: 
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is a quadratic convex optimization problem, where α  is the dual variable, T K X X  is 
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where Σ  is the sample covariance matrix. 
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origin becomes
T


u Σu

. Therefore, (23) is equivalent to  

, 0, 1

1 1min
2

,
. .

0, 1, 2, , .

i

N
T

i
i

T
i i

i

N
x

s t
i N

 
 



 





 

  


 

u
u Σu

u


                                   (24) 

 
The dual is as follows using optimality conditions: 
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Note that the kernel trick is  
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Using the kernel trick and (21), the kernel Mahalanobis hyperplane learning machine can be 
written in kernel form as: 
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where the symbols are defined as previously noted. 
We can easily conclude that (13) is a QP problem, thus can be efficiently solved via 
YALMIP[12]. 
As is mentioned before, there is uncertainty in the estimation of Σ  in general. We can 
assume that Σ  is only known to be within the set [5] 
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where 0r   is fixed and 

F
  denotes the Frobenius norm, 0Σ is estimated via (1).  

Then the primal in (10) can be modified as 
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where 0

r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 
Actually, this is a regularization method.  
The dual is now 

11max
2

1
. .

1.

T T
r

T

s t N

  

  

 

α
α X Σ X α

0 α 1

α 1

                                                (31) 

 
By using the Woodbury formula [10] 
 

1 1 1 1 1 1( ) ( )        A BC A A B I CA B CA                       (32) 
 

and (4), we obtain 
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Using the kernel trick, (17) then becomes 
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where r r M I ZKZ . Again, we get a standard QP problem, and the inverse of the real 

symmetric and positive definite matrix rM can be exactly estimated using stable and 
efficient eigenvalue decomposition method. 

 
3.2 Mahalanobis Data Description Machine 
Given a set of unlabeled patterns 1 2{ , , , }Nx x x , the SVDD first maps them to the 

feature space   via a nonlinear map  . In the sequel, the SVDD is obtained via solving 
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where R  is radius, 0i   is slack variable, c  is the center, ( )d   is the given distance 

metric (the default is the Euclid norm) , C  is a tradeoff that controls the size of sphere and 
the errors, N  is the number of samples. 
The corresponding dual  
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is a convex optimization problem, where 0i   is dual variable, ( )k   is a kernel function 
that satisfies Mercer condition.  
 
By using the Mahalanobis distance metric instead of Euclidean distance metric, the primal 
now becomes: 
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where Σ  is the sample covariance matrix. 
 
The dual is as follows using optimality conditions: 
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Using the kernel trick, and following equations, 
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the kernel Mahalanobis Ellipsoidal learning machine can be written in kernel form as: 
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the kernel Mahalanobis Ellipsoidal learning machine can be written in kernel form as: 

www.intechopen.com



New Advances in Machine Learning238

 

2

0 1

2

1 1

1

max ( , ) ( , )

( , ) ( , )

0 , 1,2, ,
. .

1.

i

N
T

i i i
i
N N

T
i j i j

i j

i
N

i
i

Tk k

k k

C i N
s t




 












 





  

 







x X Q Ω Q X x

x X Q Ω Q X x



                     (40) 

 
Accordingly we can obtain the following Mahanlanobis distance of the sample x  from the 
center c  in the feature space: 
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The parameters , iR   can be determined by the following relations via KKT conditions: 
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Again, we can assume that Σ  is only known to be within the set 
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Suppose 0 r  Σ Σ Σ . Then for any given v , according to the Cauchy-Schwarz 
inequality, we get 
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Therefore, (44) can be modified as 
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where 0
r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 

Actually, this is a regularization method. 
The dual is now 
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Again, we can assume that Σ  is only known to be within the set 
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where 0r   is fixed and called regularization constant and 
F
  denote s the Frobenius 

norm, 0Σ  is estimated via (1).  
 
Then the primal in (37) can be modified as 

 

2

, 0, 1

1 2

0

min max

( ) ( ) ,
. . 0, 1,2, , ,

i

N

iR i

T
i i i

i

F

R C

R
s t i N

r














      
  

c Σ

x c Σ x c

Σ Σ


                              (44) 

 

Suppose 0 r  Σ Σ Σ . Then for any given v , according to the Cauchy-Schwarz 
inequality, we get 
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where 0
r r Σ Σ I , now the sample covariance matrix is always nonsingular for 0r  . 

Actually, this is a regularization method. 
The dual is now 
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By using the Woodbury formula 
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Using the kernel trick, (47) then becomes 
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where r r M I ZKZ . Again, the inverse of the real symmetric and positive definite 

matrix rM can be estimated via singular value decomposition. 
Note that above mentioned models are both QP based, which might converge slowly in 
large dataset case. In order to further reduce the model complexity of above Mahalanobis 
Distance based SVM, here we introduce a new linear programming based model for 
ellipsoidal data description. 
Let { ( ), 1, , }i i N x   be the images of the samples in feature space through mapping 

 .  We first center all the samples in feature space, and then we can build ellipsoidal 
machine centered at origin enclosing a majority of the imaged vectors. Then according to (5), 
the distance from any sample x to the origin can be kernelized as 
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Therefore, now we can rewrite the primal form as: 
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The Lagrange function for the primal form will be as follows:  
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where , 0i i    are Lagrange multipliers or the dual variables. According to the KKT 

conditions, and equating the partial derivatives of Lwith respect to 2 , iR   to zero yields: 
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From (55), we get  
0i iC                                                               (56) 

 
From (56) and using , 0i i   , we can obtain 
 

0 i C                                                             (57) 
 

Using (57), and substituting (54), (55) into (53) results in the dual problem: 
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Let { ( ), 1, , }i i N x   be the images of the samples in feature space through mapping 

 .  We first center all the samples in feature space, and then we can build ellipsoidal 
machine centered at origin enclosing a majority of the imaged vectors. Then according to (5), 
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The Lagrange function for the primal form will be as follows:  
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From (56) and using , 0i i   , we can obtain 
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Using (57), and substituting (54), (55) into (53) results in the dual problem: 
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We can see that the optimization problem (58) is in a linear programming form. This LP 
form is superior to QP form in computational complexity. 
From the solution of (58), the samples with  0i   will fall inside the ellipsoid.  The 

samples with 0i  is called support vectors. Support vectors with i C  is called 
border support vectors. And the radius of the ellipsoid can be obtained using  
 

1
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via using any border support vectors svx .  

Again, we assume that Σ  is only known to be within the set 0{ : }
F
r Σ Σ Σ ,where 

0r   is fixed and called regularization constant and F  denotes the Frobenius norm.  

Then, the kernelized distance formula from any sample x to the origin is as follows: 
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Therefore, the robust Mahalanobis data description in kernel form is 
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where 1 2: ( ( , ), ( , ), , ( , ))i i i N ik x x k x x k x xk  . 
And the dual form is  
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Accordingly, we can get the ellipsoidal radius function in robust form for any sample x , 
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4. Mahalanobis Classification SVMs 
 

4.1 The main idea 

Given a set of training data 1 1 2 2{( , ),( , ), ,( , )}N Ny y yx x x , where ,ki iR yx
{1, 1}  , 1iy   denotes target class, 1iy    denotes outlier class. Recall that SVM tries 

to find an optimum separation hyperplane by maximizing the margin as shown in Fig. 1(a). 
One can also try to find a hypersphere with a maximum separation shell which separates 
the target class from the outlier class shown in Fig.1 (b). Co-inspired by this idea,  but 
instead of trying to find a sphere that provides a description of one class, for classification 
purposes, we would like to find a more compact and flexible hyper-ellipsoid that encloses 
all samples from one class (target class) but excludes all samples from the other class (outlier 
class). That is to say, we would like to find a hyper-ellipsoid ( , )R c  that encloses all the 
target class samples and excludes all outlier class samples (see Fig.1 (c)). For the depicted 
example, we can see that our proposed MMEE method is tighter. Thus this can 
commendably reduce the risk of false alarms.  
 
So as to guarantee the generalization performance, we also assume that hyper-ellipsoid 
centered at origin ( ,0)R separates the two classes with margin 2d , i.e. it satisfies the 
following constraints 
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where d is the shortest distance from the hyper-ellipsoid to the closest target and outlier 

class samples, 1: T
M
z z z Σ  for any vector z . Note that the distance is now under 

Mahalanobis distance metric and d  act s just as the margin of the SVM. 
 

d
d

R R d

R d

R
R d

R d

 
Fig. 1.  Geometric illustrations of separation between two classes via different algorithms. (a) 
SVM. (b) Sphere shell separation  (c) Ellipsoidal shell separation. 
 
Obviously, there are many such hyper-ellipsoids which satisfy (63). An ideal criterion is to 

maximize the separation ratio 
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. But this objective is nonlinear and cannot be dealt 

with directly. Yet, it is easy to show that maximization of the separation ratio is equivalent 

to minimization of 
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Now, the primal of Ellipsoidal shell separation in original space can be written as 
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where   is a constant, which controls the ratio of the radius to the separation margin. 

 

4.2 The Linear Programming Classification Machine 
Introducing the kernel trick, the primal form can be rewritten as follows: 
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The robust kernelized primal version is 
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So as to allow misclassified samples, we introduce slack variables 0i  . Thus (66) can be 
modified as 
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And the robust kernel version is 
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where   is a constant, which controls the ratio of the radius to the separation margin. 
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In order to obtain the obtain the dual form, the for the primal form (69) will be as follows:  
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According to the KKT conditions, we will get following equalities: 
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Using (72)-(74), the Lagrange function for the primal form (69) is simplified into following 
form: 
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We can see that (75) is in a linear programming form. Therefore, we can easily solve it using 
any mature and stable LP solvers. And it is expected to be easily extended to large scale 
datasets. 
Accordingly, we can also conclude the dual form for (70) as follows: 
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5. Applications 
 

5.1 Mahalanobis One Class SVMs 
We investigate the initial performances of our proposed Mahalanobis Ellipsoidal Learning 
Machine (MELM) using three real-world datasets (ionosphere, heart and sonar) from the 
UCI machine learning repository. To see how well the MELM algorithm performs with 
respect to other learning algorithms, we compared the OCSVM, SVDD and MOCSVM 

algorithm using Gaussian kernels 
2( , ) exp( )k x y x y   .As for the MOCSVM, we 

only use one single RBF kernel for performance comparison.  
We treat each class as the “normal” data in separate experiments. We randomly choose 80% 
of points as training data and the rest 20% as testing data. We determined the optimal 
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values of   and C  for RBF kernels by 5-fold cross validation. For the regularization 
constant, we set it as 0.01. 
The datasets used and the results obtained by the four algorithms are summarized in Table 
1. We can notice that the performance of our proposed Mahalanobis Ellipsoidal Learning 
Machine is competitive with or even better than the other approaches for the three datasets 
studied. 
 

Table 1. Performance results of different algorithms for single class problems. Correctness 
ratio (%) is reported.  
 
From Table 1, we also see that, on all 3 datasets, the results obtained by the Mahalanobis 
distance based learning algorithm are slightly better than the corresponding results of the 
other two Euclidean distance based methods.  

 
5.2 Mahalanobis Classification Machine 
We tested the new algorithm and compared it to standard SVMs using several real-world 
datasets from the UCI machine learning repository. The results of MMEE and other three 
algorithms SVM, SSPC and MEME depend on the values of the kernel parameter  and the 
regularization parameter C . In addition, the performance of MMEE, SSPC and MMEE also 

depend on the constant that balances the volume and the margin. For simplicity, we set C  
to infinity for all four algorithms. Thus, we only considered hard margin MMEE, SSPC, 
MEME and SVM algorithms.  
For all the datasets, we used the 5-fold cross-validation method to estimate the 
generalization error of the classifiers. In the 5-fold cross-validation process, we ensured that 
each training set and each testing set were the same for all algorithms, and the same 

Gaussian kernel 
2( , ) exp( )k x y x y    was used. On each dataset, the value of the 

kernel parameter   for SVM was optimized to provide the best error rate using 5-fold 
cross-validation. As for MMEE, We investigate the robust version MMEE. And the 
regularization constant r was set as 0.03. For SSPC, MEME and MMEE, the kernel 
parameter   and the constant that balances the volume and the margin were optimized 
using grid based 5-fold CV method.  
The datasets used and the results obtained by all four algorithms are summarized in Table 1. 
As we can see, SSPC and MEME achieve the same or slightly better results than SVMs on all 
5 datasets. But our proposed MMEE method shows promising performances. The accuracy 
is commendably higher than the other three methods in the datasets studied in this paper. 

Dataset SVDD OCSVM MOCSVM MELM 
ionosphe

re 
+1 66.02 65.26 66.05 68.98 
-1 69.13 68.96 70.99 75.82 

heart 
+1 70.13 70.01 69.96 71.19 
-1 71.11 70.23 71.78 75.37 

sonar 
+1 92.98 92.10 93.29 96.49 
-1 89.73 89.38 90.49 94.32 

 

Table 2. Performance results of different algorithms. Error rate (%) is reported.  

 
6. Conclusions 
 

In this paper, we extended the support vector data description one class support vector 
machines via utilizing the sample covariance matrix information and using the Mahalanobis 
distance metric instead of Euclidean distance metric. The proposed Mahalanobis Ellipsoidal 
Learning Machine can be easily addressed as a robust optimization problem by introducing 
an uncertainty model into the estimation of sample covariance matrix. We propose a LP 
representable Mahalanobis Data Description Machine for one class classification. We also 
address a robust optimization problem by introducing an uncertainty model into the 
estimation of sample covariance matrix. The results of applications to the three UCI real 
world datasets show promising performances. 
We also proposed a LP based Minimum Mahalanobis Enclosing Ellipsoid (MMEE) pattern 
classification algorithm for generally two class dataset classification. The MMEE method can 
be solved in kernel form of LP. We also address a robust optimization problem by 
introducing an uncertainty model into the estimation of sample covariance matrix. Initial 
applications to several UCI real world datasets show promising performances. The initial 
results show that the proposed methods own both good description and discrimination 
character for supervised learning problems. Moreover, the data description with non-
hyperplane bounding decision boundary owns better discrimination performance than 
hyperplane counterpart in the context of supervising learning.  
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The purpose of this book is to provide an up-to-date and systematical introduction to the principles and

algorithms of machine learning. The definition of learning is broad enough to include most tasks that we

commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass

computers that improve from experience in quite straightforward ways. The book will be of interest to industrial

engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for

both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences,

engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.

The wide scope of the book provides a good introduction to many approaches of machine learning, and it is

also the source of useful bibliographical information.
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