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1. Introduction 
 

Head pose estimation from a monocular camera or a simple image is a challenging topic. It 
is the process of inferring the orientation of a human head from digital imagery. Several 
processing steps are performed in order to transform a pixel-based representation of the 
head into a high-level concept of direction. The head pose is important in a lot of domains 
like human-computer interfaces, video conferencing or driver monitoring. 
Head pose estimation is often linked with visual gaze estimation (Lablack et al., 2009) which is 
the ability to characterize the direction and focus of attention of a person looking to a poster 
(Smith et al., 2008) or to another person during meeting scenarios (Voit & Stiefelhagen, 2008) 
for example. The head pose provides a coarse indication of the gaze that can be estimated in 
situations when the eyes of a person are not visible (like low-resolution imagery, or in the 
presence of eye-occluding objects like sunglasses). When the eyes are visible, head pose 
becomes a requirement to accurately predict gaze direction (Valenti et al., 2009). 
The aim of our work is to analyze the behaviour of the people passing in front of a target 
scene (Lablack & Djeraba, 2008) in order to extract the person's location of interest. The 
success of this kind of system highly depends upon a correct estimation of the head pose. In 
this paper, we present a template based approach which considers the head pose estimation 
as an image classification problem. Thus, the Pointing database (Gourier et al., 2004) has 
been used to build and test our head pose model. The feature vectors of different persons 
taken at the same pose will serve to learn a head pose classifier. The texture model is learned 
from feature vectors composed of the properties extracted from the real, imaginary and 
magnitude response of Gabor wavelets (due to the evolution of the head pose in orientation) 
and singular Value decomposition (SVD). The head pose estimation is then applied on the 
testing dataset. Finally, the classification accuracy is compared to the state of the art results 
that used the Pointing database. 
The paper is organized as follows. First, we highlight in Section 2 relevant works in head 
pose estimation. We then describe the method used for the head pose estimation and the 
database associated in Section 3. Sections 4 and 5 provide two representations of feature 
vectors extracted from SVD and the 3 different responses of Gabor wavelets. We apply on 
them two supervised learning SVM and KNN and the Frobenius distance. We discuss the 
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results of the head pose estimation on Section 6. Finally, we conclude and discuss the 
potential future work in Section 7. 

 
2. Related Work 
 

Head pose estimation from monocular camera or a simple image has received a lot of 
attention over the years.  Various techniques have been proposed, and they can be 
categorized in two different classes:  
1. Feature-based approaches: A set of specific facial features such as the eyes, nose, and 

mouth are used to estimate the head pose. They can use: 
 a geometric method that determines the head pose from the relative position of the 

eyes, mouth and nose (Pan et al., 2005). 
 a flexible model that fits a non-rigid model to the facial structure of each individual 

in the image plane. The estimation is the performed from feature-level comparisons 
or from the instantiation of the model parameters. As an example of flexible 
models, the Active Shape Model (ASM) (Cootes et al., 1995) which can be 
augmented with the texture information in order to get an Active Appearance 
Model (AAM) (Xiao et al., 2004). 

2. Appearance based approaches: Instead of concentrating on the specific facial features, 
the appearance of the entire head image is modelled and learned from the training data. 
They can use: 
 a template based method which compares a new image of a head to a set of 

exemplars (each labelled with a discrete pose) in order to find the most similar view 
such as using multi-dimensional Gaussian distributions (Wu & Toyama, 2000). 

 a detector array method which trains a series of head detectors. Each one is 
adjusted to a specific pose and assigned to a discrete pose according to the detector 
that has the greatest support such as using SVM (Huang et al., 1998). 

 a nonlinear regression method that uses nonlinear regression tools to develop a 
functional mapping from the image or feature data to a head pose measurement 
such as using neural networks (Rae & Ritter, 1998). 

 a manifold embedding method which seeks the low-dimensional manifolds that 
model the continuous variation in head pose. New images can be embedded into 
these manifolds and then used for embedded template matching or regression such 
as using Pose-eigenspaces (Srinivasan & Boyer, 2002). 

The above two classes may be combined (Vatahska et al., 2007) in order to overcome the 
limitations inherent in any single approach. The temporal information could be also 
introduced to improve the head pose estimation by using the results of head tracking. It is 
done by recovering the global head pose changes from the observed movement between 
video frames. A reliable and recent survey in head pose estimation can be found in 
(Murphy-Chutorian & Trivedi, 2009). 

 
3. Head Pose Estimation 
 

In the head pose estimation problem, training and testing dataset of m subjects with n poses 
characterized by the tilt and pan angles are pre-processed. The head image pose estimation 
consists of a discriminating metric learning phase, where the objective is to find a D-

 

dimensional feature vector that allows a learning method to achieve the highest 
classification accuracy. The range of a head pose is divided into a limited number of 
exclusive classes and a classifier is trained. The number of the classes defines the accuracy of 
the final head pose estimation that can be achieved. In this section, we present the head pose 
estimation task, discuss the advantages and disadvantages of a template based approach, 
and present the database used for the learning and testing. 

 
3.1 Definition 
The head pose estimation consists of locating a person's head and estimating its orientation 
in a space using the 3 degrees of freedom (see Figure 1) which are: 

 Tilt (Pitch): Corresponds to a bottom/up head movement, around the x axis. 
 Pan (Yaw): Corresponds to a right/left head movement, around the y axis. 
 Roll (Slant): Corresponds to a profile head movement, around the z axis. 

Using a template based approach our model has the advantage to be suitable in near-field 
and far-field images, and learned from a training set that can be expandable to a larger size 
at any time without requiring any negative examples or facial feature points. However, the 
success of our estimation highly depends upon a correct locating of a person's head, and 
estimates discrete head poses only. 
 

 
Fig. 1. Head degrees of freedom model for head pose estimation. 

 
3.2 Head Pose Database 
We use the Pointing database (Gourier et al., 2004) to build the head pose model and to test 
it. It consists of 93 poses for 15 persons with each pose per person taken twice (see Figure 2). 
We divide them into two sets: 

 The training dataset: It consists of 20 images for each pose representing 11 persons 
(9 persons were taken twice and 2 persons were taken once). 

 The testing dataset: It consists of 10 images for each pose representing 6 persons (4 
persons were taken twice and the second images of the two persons left in the 
training dataset). 
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We select five poses: down-left, down-right, front, up-left and up-right which corresponds, 
respectively, to a pair of pan and tilt angles of {(60, -90), (-60, +90), (0, 0), (+60, -90), (+60, 
+90)}. 
 

 
Fig. 2. The head images of the Person01 in Pointing’ 04 dataset. 
 
We make a pre-processing on these images. We start with locating a tight bounding box 
around the head. Then, we normalize the images in 64x64 size. Finally, we apply a 
histogram equalization which ensures that two faces taken under different lighting 
conditions are transformed into two grayscale images with similar brightness levels. We will 
extract different feature vectors on this transformed database. 
We will extract feature vectors on the pre-processed dataset. This is based on the pose 
similarity assumption that different people at the same pose look more similar than the 
same person at different poses. Specifically two methods were chosen:  

 Singular Value Decomposition: SVD is applied to the whole pose image to obtain 
SVD vector; 

 Gabor wavelets: Gabor wavelet coefficients are sampled from the pose image in 
different scales and orientations; 

The result is the extraction of a feature vector  of n elements for each head image i (with n 
chosen according to the specific technique used for the extraction): 
 

 
 
4. Feature Vector Extraction using SVD 
 

The singular value decomposition (Vaccaro, 1991) of an MxN matrix A is its representation 
of a product of a diagonal matrix and two orthonormal matrices: 

 
Where W is a diagonal matrix of singular values that can be coded as a 1D vector. All the 
singular values are non-negative and sorted in descending order. Applying this 
decomposition to a normalized head image i, it gives us a 1D vector: 

 

 

 
 
Every singular value ill be associated with two vectors   and  with : 
 

 

 
 
Then we calculate the norm of : 
 

 
 
Finally, we create two kind of feature vectors of an image i: 

 The first one is composed of elements obtained by dividing each element of the 
vector W  by its norm : 

 

 
 

 The second one is composed of the P first singular value  divided by the norm 
 with their corresponding  and  

 

 
 
In order to select the appropriate value of P, we perform a reconstruction of the input image 
using the P top components (Figure 3). 
 

 
Fig. 3. Image Reconstruction according to the value of P. 
 
The experiments were done using the two feature vectors according to the value of P and 
using 3 comparison methods. We have used a support vector machine (SVM) (Cristianini & 
Taylor, 2000) with a radial basis function kernel, a K nearest neighbor algorithm (KNN) with 
K=10 and the Frobenius distance. We report in Figures 4 and 5 the results of the 
classification rate of the testing dataset using the whole training dataset for learning the 
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classifiers using SVM, KNN and Frobenius distance by varying the value of P on the two 
feature vectors. 

 
Fig. 4. Classification rate results using the 1st feature vector of SVD. 
 

 
Fig. 5. Classification rate results using the 2nd feature vector of SVD. 

 
5. Feature Vector Extraction using Gabor wavelets 
 

We apply Gabor filters to discriminate different poses due to the evolution of the pose 
estimation in orientation. There is an evaluation of the pose similarity ratio at a fixed pose 

 

with varying Gabor filter orientation in (Sherrah et al., 2001).  A Gabor wavelet  is 
defined as (Zhou & Wei, 2006): 
 

   (1) 

 
where z=(x, y) is the point with the horizontal coordinate x and the vertical coordinate y. The 
parameters o and s define the orientation and scale of the Gabor kernel,  denotes the 
norm operator, and  is related to the standard derivation of the Gaussian window in the 
kernel and determines the ratio of the Gaussian window width to the wavelength. The wave 
vector  is defined as follows: 
 

 
 
where   and .  is the maximum frequency,  is the spatial frequency 
between kernels in the frequency domain, and S is the number of the orientations chosen. 
 
For the creation of a feature vector, we use generally eight orientations {0, 

} at five different scales {0, 1, 2, 3, 4} of Gabor wavelets with , 
, and . 

 
The Gabor wavelet representation of an image is the convolution of the image with a family 
of Gabor kernels as defined in Equation (1) (see Figure 6). 
 

 
Fig. 6. A real response of Gabor wavelets using the 8 orientations. 
 
The convolution of an image I and a Gabor kernel  is defined as follows: 
 

 
 
The response  to each Gabor kernel is a complex function with a real part 

  and an imaginary part  defined as: 
 

 
 
The magnitude response  is expressed as: 
 

 
For each image, the outputs are O*S images which record the real, the imaginary or the 
magnitude of the responses to the Gabor filters. As a feature vector using a specific 
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response, we calculate for each image at a specific scale s and orientation o the mean and the 
deviation of its pixels intensities. 
 
We finally concatenate the mean and deviation of each image at the O orientations and S 
scales in a vector. We obtain a feature vector composed of 2*O*S elements for each head 
image i: 
  

 
 
We obtain 3 variations of the feature vectors using Gabor wavelets depending on the 
responses to the Gabor filters chosen (real, imaginary or magnitude). 
 
In order to test the influence of the scale on the Gabor feature vectors, we conduct the 
experiments using 3 variations of the feature vectors using Gabor wavelets (real, imaginary 
and magnitude). We report respectively in Figures 7, 8 and 9 the classification rate of the 
testing dataset using the whole training dataset for learning the classifiers using KNN, SVM 
and Frobenius distance by varying the number of the selected scale s for the construction of 
the feature vector  from 1 to 5 and using the 8 following orientations: {0, 

}. 

 
Fig. 7. Classification rate results according to the number of selected scales using KNN. 
 

 

 
Fig. 8. Classification rate results according to the number of selected scales using SVM. 
 

 
Fig. 9. Classification rate results according to the number of selected scales using Frobenius 
distance. 
 
Since it appears from the last experiment that is more suitable to select five scales for the 
extraction of the feature vectors, we select five scales for the construction of the feature 
vector. We conduct another experiment by varying the selected number of orientations from 
1 to 8. We report respectively in Figures 10 and 11 the classification rate of the testing 
dataset using the whole training dataset for learning the classifiers using KNN, SVM. We 
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avoid reporting the results using the Frobenius distance since the classification results were 
weak. 

 
Fig. 10. Classification rate results according to the 8 selected orientations using KNN. 

 
Fig. 11. Classification rate results according to 8 selected orientations using SVM. 

 
6. Discussions 
 

We have used a support vector machine (SVM) with a radial basis function kernel, a K 
nearest neighbor algorithm (KNN) with K=10 and the Frobenius distance for the 
experiments. In (Lablack & al., 2008), they note that the head pose recognition accuracies 
increase with the number of the training samples which is consistent with the typical 

 

supervised learning. Thus, we use the whole learning dataset for learning the classifiers in 
all experiments. 
From the figures 4 and 5, it’s clear that the information contained in the diagonal matrix of 
singular values is not sufficent alone. The addition of the information conatined on U and V 
improves the results. Since the values are ordered, the information contained in the first 
components is enough to perform the head pose estimation.  
From the figures present in the section 5, we notice in general from the three different Gabor 
wavelet features that the imaginary component features are better than the magnitude and 
real features. This is probably due to the fact that the majority of the information is typically 
contained in the phase component. 
We notice from the section 5 and 6 that the Gabor wavelet features perform better than the 
SVD features. A part of the reason is that the Gabor wavelet features are capable of handling 
different orientations and scales while the SVD features are not. Even if the 2nd feature 
vector of SVD get the best result of the experiments using KNN. 

 
7. Conclusions 
 

In this paper, we have presented a comparison of 3 learning methods (SVM , KNN, and 
Frobenius distance) applied to feature vectors extracted from head images. These vectors 
were extracted from the real, imaginary, and magnitude responses of Gabor wavelets, and 
from SVD of the image in order to make a head pose estimation. We choose different values 
for the parameters used for the creation of these feature vectors in order to select the most 
suitable. Our future work will focus on the combination of different feature vectors using 
the whole Pointing’04 database. 
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