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1. Introduction 
 

Object detection in still images and in video sequences has a wide range of applications and 
while it is a very costly task from the computational resources point of view, very high 
demand exists for efficient object detection methods and implementations. One of the 
frequently used techniques of fast object detection is usage of classifiers to scan the image 
and attempt classification of every potential object position or even every potential position 
in the image being searched. The classifiers can be implemented as statistical classifiers 
based on supervised machine learning and can take as their input low-level features 
(sometimes called weak classifiers) extracted from the window being classified. In principle, 
such features can be immediately the image pixels, but by using more complex feature 
extractors, the classifiers can achieve better performance – both in the detection rate and in 
the speed. 
This chapter describes several image feature extractors used in real-time object detection 
and in detail discusses the novel features based on local ranks. The features have been 
designed so that they have equal descriptive and generalization power as their state-of-the-
art alternatives, but at the same time to be efficiently implementable in hardware. These 
features prove to be efficient, not only in the hardware implementations (tested in FPGA 
chips), but also when implemented using the SSE instruction set of the contemporary CPU’s 
and implemented in the graphics processors (GPU’s). 
The classification background and specification of requirements on the low-level image 
feature extractors is given in section 2. Formal definition of the features based on local ranks 
is given in section 3. The performance of the LRP image feature extractors was evaluated 
from the point of view of the classifier construction and the results are also given in section 
3. Section 4 describes efficient implementations of the feature extractor on different 
hardware platforms, namely the SSE instruction set; FPGA (Field-Programmable Gate 
Arrays) defined in the hardware definition language VHDL; and GPU implementations, 
using both the shading language GLSL and the CUDA programming environment. Section 4 
also contains performance evaluation of the different implementations of the low-level 
feature extractors. 
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2. Background 
 

Object detection presented in this chapter is based on supervised machine learning, namely 
statistical classifiers. The basic idea used in this approach is usage of several classifiers 
combined in such way that the output of their combination, which can also be seen as 
classifier, has better results than each of the input classifiers (Windridge & Kittler, 2003). 
Initially, the approach of combining the classifiers was exploited with ad-hoc selection of 
relatively well working classifiers, but later on it was found that the relatively small set of 
well working input classifiers can be replaced with a large set of very simple image features. 
If such a large set of simple image features is well combined (the supervised learning 
process well performed), the resulting classifier, often called a strong classifier, can be even 
better than with the previously known approach with, in fact, less effort as the simple image 
features do not require, from the design point of view, as much effort as the relatively well 
working weak classifiers. 

 
2.1 Object Detection by Boosting 
In 2001 Viola and Jones presented the first real-time frontal face detector which provided a 
precision of detection high enough for practical applications. This performance was 
achieved by combining ideas which together very well minimize the average computation 
time. The individual parts are the Haar-like features used to efficiently extract 
discriminative information from images; the AdaBoost learner which combines simple 
hypotheses into a powerful decision rule; and the attention-cascade structure of the detector 
which greatly reduces the average decision time.  Additionally, bootstrapping was used 
when training the detector to achieve very low false positive rates needed when detecting 
objects in images. The significant success of the Viola and Jones face detector consequently 
encouraged further research in similar approaches and resulted in a great number of 
modifications to this original detector. 
The performance of the detection classifiers largely depends on the type of features they use. 
The ideal features should be computationally inexpensive, and to some degree, invariant to 
geometry and illumination changes, and should provide high discriminative power – all at 
the same time. High discriminative power is needed to achieve high precision of detection 
and it also implies more compact and faster classifiers as lower number of features is needed 
to be computed for the classifier to make a decision. In general, the ideal type of features can 
differ for different types of objects (Šochman & Matas 2007). However, simple image filters 
have been proven to generalize well across various types of objects (Schneiderman, 2004). 
These filters decorelate the neighboring pixel values; utilize knowledge about frequency 
properties of images; and they also provide low tolerance to geometric transformations. 
Most of the filters which are used for object detection do not respond to the zero-frequency 
component, and they can be also normalized to compensate lighting changes. 
W hen using simple filters, it is possible to transform the data in such a way that all the 
information in the original data is represented with the same number of coefficients 
(wavelet transformation). However, it is more efficient to consider all the possible filters and 
choose only the most discriminative for the classifier. This way, the most relevant 
information is extracted in the least amount of time and the classifier can be simpler. For 
example, Viola Jones (2001) used a highly over-complete set of Haar-like features totaling 
180,000 for samples 24×24. 

 

Viola and Jones (Viola & Jones, 2001) used AdaBoost (Freund & Schapire, 1995) algorithm to 
both select informative features and create the classifier. AdaBoost (shown in Fig. 1) is one 
of the boosting algorithms. It combines simple (weak) classifiers into a very accurate 
prediction rule (strong  classifier). If each of the weak classifiers is based on only a single 
feature, the boosting algorithm then effectively performs feature selection. The weak 
classifiers are selected in a greedy fashion and combined to minimize an exponential loss 
function. AdaBoost creates large-margin classifiers in the weak classifier space.  
The AdaBoost algorithm has certain properties which makes it especially useful for real-
time detection. The strong classifier is a linear combination of the weak classifiers which 
makes it very efficient to compute. Also, the algorithm rapidly converges to a good solution 
on training data which minimizes the size of the strong classifier. Finally, the AdaBoost 
algorithm has been proven to reach an arbitrarily low classification error rate on the training 
data as long as the weak classifiers provide at least some useful information. This can be 
generalized in that the AdaBoost algorithm is guaranteed to reach a specific error at any 
operating point. In the Viola & Jones detector, this fact is exploited when creating classifiers 
for the cascade stages, where the reaching of a specified error at a specific operating point is 
used as the stopping criterion. This way, the complexity of the classifier is kept low while 
maintaining the required error rate. 
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Fig. 1. The original version of AdaBoost (Freund & Schapire 1995) with notation modified 
according to (Freund & Schapire 1999). 

 

The ensemble classifier created by AdaBoost can be itself a powerful and efficient classifier 
capable of detecting objects in images. However, such a classifier would have to still be 
composed of hundreds of weak hypotheses. Such a large classifier would certainly not 
provide real-time performance in most of the desired scenarios. To reduce the 
computational complexity of the detector, Viola and Jones exploited the fact that the vast 
majority of samples classified when scanning images for desired objects belong to 
background.  
They created an object-specific focus-of-attention mechanism which they called cascade and 
which is essentially a degenerated decision tree (see Fig. 2), where each of the nodes is a 
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Object detection presented in this chapter is based on supervised machine learning, namely 
statistical classifiers. The basic idea used in this approach is usage of several classifiers 
combined in such way that the output of their combination, which can also be seen as 
classifier, has better results than each of the input classifiers (Windridge & Kittler, 2003). 
Initially, the approach of combining the classifiers was exploited with ad-hoc selection of 
relatively well working classifiers, but later on it was found that the relatively small set of 
well working input classifiers can be replaced with a large set of very simple image features. 
If such a large set of simple image features is well combined (the supervised learning 
process well performed), the resulting classifier, often called a strong classifier, can be even 
better than with the previously known approach with, in fact, less effort as the simple image 
features do not require, from the design point of view, as much effort as the relatively well 
working weak classifiers. 

 
2.1 Object Detection by Boosting 
In 2001 Viola and Jones presented the first real-time frontal face detector which provided a 
precision of detection high enough for practical applications. This performance was 
achieved by combining ideas which together very well minimize the average computation 
time. The individual parts are the Haar-like features used to efficiently extract 
discriminative information from images; the AdaBoost learner which combines simple 
hypotheses into a powerful decision rule; and the attention-cascade structure of the detector 
which greatly reduces the average decision time.  Additionally, bootstrapping was used 
when training the detector to achieve very low false positive rates needed when detecting 
objects in images. The significant success of the Viola and Jones face detector consequently 
encouraged further research in similar approaches and resulted in a great number of 
modifications to this original detector. 
The performance of the detection classifiers largely depends on the type of features they use. 
The ideal features should be computationally inexpensive, and to some degree, invariant to 
geometry and illumination changes, and should provide high discriminative power – all at 
the same time. High discriminative power is needed to achieve high precision of detection 
and it also implies more compact and faster classifiers as lower number of features is needed 
to be computed for the classifier to make a decision. In general, the ideal type of features can 
differ for different types of objects (Šochman & Matas 2007). However, simple image filters 
have been proven to generalize well across various types of objects (Schneiderman, 2004). 
These filters decorelate the neighboring pixel values; utilize knowledge about frequency 
properties of images; and they also provide low tolerance to geometric transformations. 
Most of the filters which are used for object detection do not respond to the zero-frequency 
component, and they can be also normalized to compensate lighting changes. 
W hen using simple filters, it is possible to transform the data in such a way that all the 
information in the original data is represented with the same number of coefficients 
(wavelet transformation). However, it is more efficient to consider all the possible filters and 
choose only the most discriminative for the classifier. This way, the most relevant 
information is extracted in the least amount of time and the classifier can be simpler. For 
example, Viola Jones (2001) used a highly over-complete set of Haar-like features totaling 
180,000 for samples 24×24. 

 

Viola and Jones (Viola & Jones, 2001) used AdaBoost (Freund & Schapire, 1995) algorithm to 
both select informative features and create the classifier. AdaBoost (shown in Fig. 1) is one 
of the boosting algorithms. It combines simple (weak) classifiers into a very accurate 
prediction rule (strong  classifier). If each of the weak classifiers is based on only a single 
feature, the boosting algorithm then effectively performs feature selection. The weak 
classifiers are selected in a greedy fashion and combined to minimize an exponential loss 
function. AdaBoost creates large-margin classifiers in the weak classifier space.  
The AdaBoost algorithm has certain properties which makes it especially useful for real-
time detection. The strong classifier is a linear combination of the weak classifiers which 
makes it very efficient to compute. Also, the algorithm rapidly converges to a good solution 
on training data which minimizes the size of the strong classifier. Finally, the AdaBoost 
algorithm has been proven to reach an arbitrarily low classification error rate on the training 
data as long as the weak classifiers provide at least some useful information. This can be 
generalized in that the AdaBoost algorithm is guaranteed to reach a specific error at any 
operating point. In the Viola & Jones detector, this fact is exploited when creating classifiers 
for the cascade stages, where the reaching of a specified error at a specific operating point is 
used as the stopping criterion. This way, the complexity of the classifier is kept low while 
maintaining the required error rate. 
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Fig. 1. The original version of AdaBoost (Freund & Schapire 1995) with notation modified 
according to (Freund & Schapire 1999). 

 

The ensemble classifier created by AdaBoost can be itself a powerful and efficient classifier 
capable of detecting objects in images. However, such a classifier would have to still be 
composed of hundreds of weak hypotheses. Such a large classifier would certainly not 
provide real-time performance in most of the desired scenarios. To reduce the 
computational complexity of the detector, Viola and Jones exploited the fact that the vast 
majority of samples classified when scanning images for desired objects belong to 
background.  
They created an object-specific focus-of-attention mechanism which they called cascade and 
which is essentially a degenerated decision tree (see Fig. 2), where each of the nodes is a 
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strong classifiers created by AdaBoost. The individual stages of the cascade either reject the 
processed sample as background or they send the sample to the next classifier.  
As the decision task becomes harder for the later stages, the classifiers become longer. The 
cascade is the first mechanism which allows creation of such focus-of-attention mechanisms 
at least partially automatically. 

 
Fig. 2. The detection cascade. The cascade is composed of a series of increasingly more 

complex classifiers which either reject the classified sub-window as background or 
pass it to the subsequent stage. The object is detected only if the corresponding sub-
window successfully passes through all of the stages. (Viola & Jones, 2001) 

 

The detection cascade can be created according to the desired false positive rate and false 
negative rate of each stage. In such a case, AdaBoost increases the size of the strong classifier 
until the required rates are reached. However, in (Viola & Jones, 2001b), the authors set the 
lengths of the individual stages manually. Moreover, the cascade is in many aspects sub-
optimal. First, all information between the consecutive stages is lost, even though the 
previous stage already provides a very good solution to the problem of the next stage. 
Second, the operating points of the classifiers and their lengths are set ad-hoc and not 
optimally. These two problems were addressed many times (Brubaker et al., 2006; Šochman 
& Matas, 2004; Xiao et al., 2003), most notably, Šochman and Matas (2005) presented 
WaldBoost algorithm which solves these two problems in a natural way. 
The WaldBoost algorithm is a combination of real AdaBoost (Schapire & Singer, 1999) and 
Wald’s (1945) sequential probability ratio test. In WaldBoost, rejection thresholds are set after 
each iteration of the AdaBoost algorithm. The thresholds are set as Wald proposes in the 
sequential probability ratio test, which he proves is the fastest possible classification strategy 
for a given target error rate. Also, as the resulting classifier is monolithic, no information is 
lost. 

 
2.2 Image Features Based on Haar Wavelets 
The Haar features were introduced by Papageorgiou et al. (1998), who used them as an 
input for support vector machine to create a very accurate classifier. Viola and Jones (2001) 
used the Haar features for rapid object detection in a framework with an AdaBoost classifier 
and thresholding weak hypotheses. The features, in their basic form, are based on the 
difference of adjacent rectangular regions of the input image. They respond strongly on 
edges and line segments of the image. 
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Fig. 3. Shapes of Haar features. Standard shapes on top and extended set on the bottom 
 
The shapes of the wavelets typically used in pattern recognition are displayed in Fig. 3. The 
Haar features are very popular for their extremely low computational cost when evaluated 
on integral image and for providing good amount of information at the same time. The 
extended Haar feature set was introduced by Lienhart and Maydt (2002). The difference 
from the commonly used features is that new features are rotated by 45 degrees.  

 

 
 

 
Fig. 4. Integral images. Standard integral image (top) and integral image required to 

evaluate 45 degree rotated Haar features (bottom). 
 

Efficient evaluation of Haar features is achieved by using integral image (Fig. 4, top). The 
integral image stores in each pixel the sum of all pixels above and to the left of it. As a 
consequence, the sum of pixels of an arbitrary axis-aligned rectangular region in the image 
can be obtained by referencing only the corner pixels. For the extended set, a different type 
of integral image is required (Fig. 4, bottom). 
An important advantage of the features is that the response can be obtained in constant time 
regardless of the size of the feature in the image. A preprocessing stage is required to create 
the integral images, though. Similar to other convolution-based features, the Haar features 
need to be normalized to achieve (at least partial) invariance to lighting conditions, which 
can significantly increase computational demands. The typical choice of the normalization 
value is the standard deviation of local intensity for which another integral image is 
required. 

 
2.3 Local Binary Patterns 
The Local Binary Patterns (LBP) are widely used in texture processing. They were 
introduced by Ojala et al. (2000) and some improvements have been proposed since then. 
LBPs in their basic form capture information about local textural structures by thresholding 
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strong classifiers created by AdaBoost. The individual stages of the cascade either reject the 
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cascade is the first mechanism which allows creation of such focus-of-attention mechanisms 
at least partially automatically. 
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complex classifiers which either reject the classified sub-window as background or 
pass it to the subsequent stage. The object is detected only if the corresponding sub-
window successfully passes through all of the stages. (Viola & Jones, 2001) 

 

The detection cascade can be created according to the desired false positive rate and false 
negative rate of each stage. In such a case, AdaBoost increases the size of the strong classifier 
until the required rates are reached. However, in (Viola & Jones, 2001b), the authors set the 
lengths of the individual stages manually. Moreover, the cascade is in many aspects sub-
optimal. First, all information between the consecutive stages is lost, even though the 
previous stage already provides a very good solution to the problem of the next stage. 
Second, the operating points of the classifiers and their lengths are set ad-hoc and not 
optimally. These two problems were addressed many times (Brubaker et al., 2006; Šochman 
& Matas, 2004; Xiao et al., 2003), most notably, Šochman and Matas (2005) presented 
WaldBoost algorithm which solves these two problems in a natural way. 
The WaldBoost algorithm is a combination of real AdaBoost (Schapire & Singer, 1999) and 
Wald’s (1945) sequential probability ratio test. In WaldBoost, rejection thresholds are set after 
each iteration of the AdaBoost algorithm. The thresholds are set as Wald proposes in the 
sequential probability ratio test, which he proves is the fastest possible classification strategy 
for a given target error rate. Also, as the resulting classifier is monolithic, no information is 
lost. 

 
2.2 Image Features Based on Haar Wavelets 
The Haar features were introduced by Papageorgiou et al. (1998), who used them as an 
input for support vector machine to create a very accurate classifier. Viola and Jones (2001) 
used the Haar features for rapid object detection in a framework with an AdaBoost classifier 
and thresholding weak hypotheses. The features, in their basic form, are based on the 
difference of adjacent rectangular regions of the input image. They respond strongly on 
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The shapes of the wavelets typically used in pattern recognition are displayed in Fig. 3. The 
Haar features are very popular for their extremely low computational cost when evaluated 
on integral image and for providing good amount of information at the same time. The 
extended Haar feature set was introduced by Lienhart and Maydt (2002). The difference 
from the commonly used features is that new features are rotated by 45 degrees.  

 

 
 

 
Fig. 4. Integral images. Standard integral image (top) and integral image required to 

evaluate 45 degree rotated Haar features (bottom). 
 

Efficient evaluation of Haar features is achieved by using integral image (Fig. 4, top). The 
integral image stores in each pixel the sum of all pixels above and to the left of it. As a 
consequence, the sum of pixels of an arbitrary axis-aligned rectangular region in the image 
can be obtained by referencing only the corner pixels. For the extended set, a different type 
of integral image is required (Fig. 4, bottom). 
An important advantage of the features is that the response can be obtained in constant time 
regardless of the size of the feature in the image. A preprocessing stage is required to create 
the integral images, though. Similar to other convolution-based features, the Haar features 
need to be normalized to achieve (at least partial) invariance to lighting conditions, which 
can significantly increase computational demands. The typical choice of the normalization 
value is the standard deviation of local intensity for which another integral image is 
required. 

 
2.3 Local Binary Patterns 
The Local Binary Patterns (LBP) are widely used in texture processing. They were 
introduced by Ojala et al. (2000) and some improvements have been proposed since then. 
LBPs in their basic form capture information about local textural structures by thresholding 
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samples from a local neighborhood by its central value and forming the pattern code (Fig. 
5). The code is calculated as a weighted sum of the thresholded samples. The weights 
correspond to powers of 2, so each sample sets a single bit in the pattern value. 
 

 
Fig. 5. Example of LBP evaluation: sampling of the neighborhood (left), thresholding 

sampled values by the central value (middle) and forming of the LBP code (right). 
 

Typically, the circular neighborhood with 8 samples is used (8 bit pattern), but other 
variants are also possible. LBP are most frequently used in combination with local 
histograms to describe a local image area and segment the image. 
 

   
Fig. 6. Different sizes of Local Binary Patterns. 
 

The LBP is not rotationally invariant, it is dependent on which sample is considered first 
when forming the code. Rotational invariance can be achieved by normalization of the 
pattern by shifting the bits – the lowest value is selected as the LBP result. The LBPs exhibit 
very good performance when used as features in object detection (Zhang et al., 2007). 

 
3. Local Rank Functions 
 

The experience with known features, such as Haar features and Local Binary Patterns, 
suggests that in many cases the classification benefits from the intensity information. On the 
other hand, the intensity information is subject to changes due to brightness and contrast 
adjustments of the images while invariance to these changes is very often wanted. This fact 
causes the applications using features directly based on intensity, such as Haar features, to 
normalize the image window being classified (e.g. through equalization of its histogram to 
have a constant energy and zero mean value or through other comparable techniques). 
However, regardless of the normalization method, the normalization can be very costly 
from the computational point of view especially comparing it to the cost of, for example, the 
computation of Haar features evaluation itself. 
The novel Local Rank Functions (LRF) are based on the idea that the intensity information in 
the image can be well represented by the order of the values (intensities) of the pixels or 
small pixel regions (e.g. summed 2×2 pixel rectangular areas). This idea is backed by the fact 
that calculation of the values of features based on the order of pixels is equivalent to (or 
based on the exact evaluation method at least very close to) normalizing the image through 
histogram equalization (Acharya & Ray, 2005) and then evaluation of the feature value 
based on the pixel or small regions intensities. 

 

The Local Rank Functions – functions based on the order of pixel values rather than the 
values of pixels themselves – have several principal advantages over the functions based on 
the values themselves: 
• Invariance to illumination changes – the Local Rank Functions are invariant to most of 

the functions used to brightness and contrast adjustments/normalization in the 
images. More specifically, Local Rank Functions are invariant to nearly all monotonic 
gray-scale transformations. 

• Strict locality – Local Rank Functions of objects (parts of objects) do not change locally 
when the object’s image is being captured under changing conditions (similar to for 
example SIFT) 

• Reasonable computational complexity – computation and memory accesses can be 
optimized thanks to regular geometric structure.   No explicit normalization is needed, 
which is specifically important in some classification schemes, such as WaldBoost 
(Šochman & Matas, 2005). 

 
3.1 Local Rank Functions’ Formal Definition 
Let us consider a scalar image RZf →2: . On such an image, a sampling function can be 

defined ):,,( 22 RZgZ →∈ux  

( ) ( )( )uxux +∗= gfS g  (1)  

This sampling function is parameterized by the convolution kernel g , which is applied 
before the actual sampling, and by the vector x  which is the origin of the sampling. Next, 
let us introduce a vector of relative coordinates ( Nn∈ ) 

[ ] 2
21 , Zin ∈= uuuuU   (2)  

This vector of two-dimensional coordinates can define an arbitrarily shaped neighborhood 
and it will be used together with the sampling function to obtain a vector of values 
describing the neighborhood of this shape on position x in the image 

( ) ( ) ( )1 2
g g g

nM S S S =  x x xu u u . (3)  

This n-tuple of values will be referred to as the mask in the following text. The term mask is 
reasonable as the vector was created by "masking" global information from the image and 
leaving only specific local information. Note that in general, the sampling function does not 
have to be uniform over the mask  

( ) ( ) ( )1 2
1 2

ng g g
nM S S S =  x x xu u u , (4)  

but the implementations described in this text all use the uniform sampling function.  
For each element k in the mask, its rank can be defined as 
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1
otherwise ,0

 if ,1
 

(5)  

i.e., the rank is the order of the given member of the mask in the sorted progression of all the 
mask members. This way an n-tuple of ranks R is obtained. Note that the ranks are 
independent on the local energy in the image. 
On the n-tuple of ranks R, a variety of functions which extract discriminative information 
can be defined. These Local Rank Functions (LRF), as we call them, have the form 
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samples from a local neighborhood by its central value and forming the pattern code (Fig. 
5). The code is calculated as a weighted sum of the thresholded samples. The weights 
correspond to powers of 2, so each sample sets a single bit in the pattern value. 
 

 
Fig. 5. Example of LBP evaluation: sampling of the neighborhood (left), thresholding 

sampled values by the central value (middle) and forming of the LBP code (right). 
 

Typically, the circular neighborhood with 8 samples is used (8 bit pattern), but other 
variants are also possible. LBP are most frequently used in combination with local 
histograms to describe a local image area and segment the image. 
 

   
Fig. 6. Different sizes of Local Binary Patterns. 
 

The LBP is not rotationally invariant, it is dependent on which sample is considered first 
when forming the code. Rotational invariance can be achieved by normalization of the 
pattern by shifting the bits – the lowest value is selected as the LBP result. The LBPs exhibit 
very good performance when used as features in object detection (Zhang et al., 2007). 

 
3. Local Rank Functions 
 

The experience with known features, such as Haar features and Local Binary Patterns, 
suggests that in many cases the classification benefits from the intensity information. On the 
other hand, the intensity information is subject to changes due to brightness and contrast 
adjustments of the images while invariance to these changes is very often wanted. This fact 
causes the applications using features directly based on intensity, such as Haar features, to 
normalize the image window being classified (e.g. through equalization of its histogram to 
have a constant energy and zero mean value or through other comparable techniques). 
However, regardless of the normalization method, the normalization can be very costly 
from the computational point of view especially comparing it to the cost of, for example, the 
computation of Haar features evaluation itself. 
The novel Local Rank Functions (LRF) are based on the idea that the intensity information in 
the image can be well represented by the order of the values (intensities) of the pixels or 
small pixel regions (e.g. summed 2×2 pixel rectangular areas). This idea is backed by the fact 
that calculation of the values of features based on the order of pixels is equivalent to (or 
based on the exact evaluation method at least very close to) normalizing the image through 
histogram equalization (Acharya & Ray, 2005) and then evaluation of the feature value 
based on the pixel or small regions intensities. 

 

The Local Rank Functions – functions based on the order of pixel values rather than the 
values of pixels themselves – have several principal advantages over the functions based on 
the values themselves: 
• Invariance to illumination changes – the Local Rank Functions are invariant to most of 

the functions used to brightness and contrast adjustments/normalization in the 
images. More specifically, Local Rank Functions are invariant to nearly all monotonic 
gray-scale transformations. 

• Strict locality – Local Rank Functions of objects (parts of objects) do not change locally 
when the object’s image is being captured under changing conditions (similar to for 
example SIFT) 

• Reasonable computational complexity – computation and memory accesses can be 
optimized thanks to regular geometric structure.   No explicit normalization is needed, 
which is specifically important in some classification schemes, such as WaldBoost 
(Šochman & Matas, 2005). 

 
3.1 Local Rank Functions’ Formal Definition 
Let us consider a scalar image RZf →2: . On such an image, a sampling function can be 

defined ):,,( 22 RZgZ →∈ux  

( ) ( )( )uxux +∗= gfS g  (1)  

This sampling function is parameterized by the convolution kernel g , which is applied 
before the actual sampling, and by the vector x  which is the origin of the sampling. Next, 
let us introduce a vector of relative coordinates ( Nn∈ ) 

[ ] 2
21 , Zin ∈= uuuuU   (2)  

This vector of two-dimensional coordinates can define an arbitrarily shaped neighborhood 
and it will be used together with the sampling function to obtain a vector of values 
describing the neighborhood of this shape on position x in the image 

( ) ( ) ( )1 2
g g g

nM S S S =  x x xu u u . (3)  

This n-tuple of values will be referred to as the mask in the following text. The term mask is 
reasonable as the vector was created by "masking" global information from the image and 
leaving only specific local information. Note that in general, the sampling function does not 
have to be uniform over the mask  

( ) ( ) ( )1 2
1 2

ng g g
nM S S S =  x x xu u u , (4)  

but the implementations described in this text all use the uniform sampling function.  
For each element k in the mask, its rank can be defined as 

∑
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1
otherwise ,0

 if ,1
 

(5)  

i.e., the rank is the order of the given member of the mask in the sorted progression of all the 
mask members. This way an n-tuple of ranks R is obtained. Note that the ranks are 
independent on the local energy in the image. 
On the n-tuple of ranks R, a variety of functions which extract discriminative information 
can be defined. These Local Rank Functions (LRF), as we call them, have the form 
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ZZLRF n →: . (6)  
One of the possible variants of LRF is the Local Rank Pattern image feature (LRP) (Hradiš et 
al., 2008), which selects two specific ranks and encodes their values. The LRP is defined as 

( ) ba RnRbaLRP +⋅=, , { }nba ,,1, ∈ . (7)  
Note that n is the number of samples taken in the neighborhood and therefore the result of 
LRP is unique for each combination of values of the two ranks aR  and bR . This fact 
suggests an alternative definition of the LRP when we allow the results of LRP to be pairs of 
values instead of a single value 

( ) [ ]ba RRbaLRP =, . (8)  
The LRP have some interesting properties which make them promising for image pattern 
recognition. Mainly, LRP are invariant to monotonous gray-scale changes such as changes of 
illumination intensity. This invariance results from using ranks instead of absolute values to 
compute the value of the feature. In fact, using the ranks has the same effect as locally 
equalizing the histogram of the convolved image gf ∗ . 
Further, LRP are strictly local – their results are not influenced by image values outside the 
neighborhood defined by U. This is a clear advantage over wavelet features (e.g. Haar-like 
features) which, in the way they are commonly used, need global information to normalize 
their results. This locality makes the LRP highly independent, for example, on changes of 
background and on changes of intensity of directional light. 
The meaning of the values produced by the LRP can be understood in two ways. First and 
most naturally, the results give information about the image at the locations of the two ranks 

aux +  and bux +  and information about their mutual relation. On the other hand, the 
results also carry information about the rest of the neighborhood, especially if the 
neighborhood is small. In such cases the results of LRP carry good information about the 
local pattern in the image. 
In the previous text, the LRP have been defined for two-dimensional images. However, the 
notation allows very a simple generalization for higher-dimensional images by changing the 
dimensionality of x, u  and of the relative coordinates in U to 3Z  for 3D or kZ  for general 
dimensionality. Furthermore, it is possible to use more than two ranks to compute the 
results of the LRP. For example: 

( ) cba RnRnRcbaLRP +⋅+⋅= 2,,  (9)  

The LRP from their nature produce a large set of possible results, which can in the context of 
recognition/detection cause problems when only small training datasets are available and 
when the memory available on the target computational platform is limited. One way to 
deal with this issue – and to shrink the output set of the image features – are the Local Rank 
Differences (Polok et al., 2008), which can be defined as 

( ) ba RRbaLRD −=, . (10)  
The LRD computes the difference of two ranks which is very similar to the Haar-like 
features (Fig. 3) with added local image contrast normalization. 
The definition of the LRP (and LRD) which was given in the previous text is very general. It 
allows arbitrary sizes and shapes of the neighborhoods and arbitrary convolution kernels. 
However, we can define a set of LRP which is suitable for creating classifiers for detecting 
objects in images – which is both informative and efficient to compute. This particular 
version is used in the reported experiments. 

 

First, let us define a suitable set of neighborhoods. The number of samples taken in the 
neighborhood should be high enough for the features to have good discriminative power. 
However, the number of samples must not be unreasonably high because the computational 
complexity of the LRP grows linearly with the number of samples. A good first choice is 
local rectangular sub-sampling which takes nine samples arranged in a regular 33×  grid. 
Such neighborhoods can be defined by a base neighborhood baseU  which is then scaled to 
generate all the required sizes, e.g.  for  3×3, [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]222120121110020100=baseU . 

In the further text, )(mnU  will refer to a neighborhood which is created from baseU by 
scaling the x-coordinates by m and scaling the y-coordinates by n. 
The type and purpose of the convolution kernel g in the LRP can differ. It could be a 
derivation filter or a wavelet, but the most basic purpose of g is to avoid aliasing when 
scaling the neighborhood. Aliasing could be avoided by using any low-pass filter such as 
the Gaussian filter. For efficiency reasons, we use rectangular averaging convolution 
kernels. In the following text, )(klg  will stand for a rectangular averaging filter of 
dimensions k by l: 

( )


 <≤<≤

=
otherwise ,0

0 and 0 if ,1 21)( lk
g kl

xx
x . 

(11)  

When scaling the neighborhood, it is reasonable to keep the size of the averaging filter the 
same as the distance between the samples. In such a case, m in )(mnU is equal to k in 

)(klg and n is equal to l. In (Polok et al., 2008), a set of LRD with only four neighborhoods 
)11(U , )21(U , )12(U  and )22(U  for samples of dimension 2424×  pixels is used with 

success. 

 
3.3 Detection Performance  
In the context of real-time object detection, the main measurable criterion which should be 
used to compare individual types of features is how much useful information they can 
extract in a certain amount of time. The second criterion is how much are they invariant to 
irrelevant information. Both of these criteria have to be evaluated with respect to a certain 
learning algorithm. The first criterion can be directly evaluated on a training set and the 
second corresponds to generalization on a test set. When using some focus-of-attention 
mechanism, the amount of extracted useful information determines the speed of the 
classifier which can be then related to the precision of detection on a testing set. 
We have used WaldBoost (Šochman & Matas 2005) as the learning algorithm and tested the 
features on two detection tasks – face detection and eye detection. We have compared the 
Haar-like features, LBP, LRD and LRP (all neighborhoods )(mnU which completely fit into 
the samples are used). For each type of the features, classifiers for five different target error 
rates (1%, 2%, 5%, 10% and 20%) were created. The five target error rates resulted in five 
gradually faster classifiers which allowed us to explore the speed/precision tradeoff 
provided by the features on the particular detection task. Ideally, the speed of the classifiers 
should be measured using some efficient implementation of the features. However, such an 
approach distorts the results with a different level of optimality of the individual feature 
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ZZLRF n →: . (6)  
One of the possible variants of LRF is the Local Rank Pattern image feature (LRP) (Hradiš et 
al., 2008), which selects two specific ranks and encodes their values. The LRP is defined as 

( ) ba RnRbaLRP +⋅=, , { }nba ,,1, ∈ . (7)  
Note that n is the number of samples taken in the neighborhood and therefore the result of 
LRP is unique for each combination of values of the two ranks aR  and bR . This fact 
suggests an alternative definition of the LRP when we allow the results of LRP to be pairs of 
values instead of a single value 

( ) [ ]ba RRbaLRP =, . (8)  
The LRP have some interesting properties which make them promising for image pattern 
recognition. Mainly, LRP are invariant to monotonous gray-scale changes such as changes of 
illumination intensity. This invariance results from using ranks instead of absolute values to 
compute the value of the feature. In fact, using the ranks has the same effect as locally 
equalizing the histogram of the convolved image gf ∗ . 
Further, LRP are strictly local – their results are not influenced by image values outside the 
neighborhood defined by U. This is a clear advantage over wavelet features (e.g. Haar-like 
features) which, in the way they are commonly used, need global information to normalize 
their results. This locality makes the LRP highly independent, for example, on changes of 
background and on changes of intensity of directional light. 
The meaning of the values produced by the LRP can be understood in two ways. First and 
most naturally, the results give information about the image at the locations of the two ranks 

aux +  and bux +  and information about their mutual relation. On the other hand, the 
results also carry information about the rest of the neighborhood, especially if the 
neighborhood is small. In such cases the results of LRP carry good information about the 
local pattern in the image. 
In the previous text, the LRP have been defined for two-dimensional images. However, the 
notation allows very a simple generalization for higher-dimensional images by changing the 
dimensionality of x, u  and of the relative coordinates in U to 3Z  for 3D or kZ  for general 
dimensionality. Furthermore, it is possible to use more than two ranks to compute the 
results of the LRP. For example: 

( ) cba RnRnRcbaLRP +⋅+⋅= 2,,  (9)  

The LRP from their nature produce a large set of possible results, which can in the context of 
recognition/detection cause problems when only small training datasets are available and 
when the memory available on the target computational platform is limited. One way to 
deal with this issue – and to shrink the output set of the image features – are the Local Rank 
Differences (Polok et al., 2008), which can be defined as 

( ) ba RRbaLRD −=, . (10)  
The LRD computes the difference of two ranks which is very similar to the Haar-like 
features (Fig. 3) with added local image contrast normalization. 
The definition of the LRP (and LRD) which was given in the previous text is very general. It 
allows arbitrary sizes and shapes of the neighborhoods and arbitrary convolution kernels. 
However, we can define a set of LRP which is suitable for creating classifiers for detecting 
objects in images – which is both informative and efficient to compute. This particular 
version is used in the reported experiments. 

 

First, let us define a suitable set of neighborhoods. The number of samples taken in the 
neighborhood should be high enough for the features to have good discriminative power. 
However, the number of samples must not be unreasonably high because the computational 
complexity of the LRP grows linearly with the number of samples. A good first choice is 
local rectangular sub-sampling which takes nine samples arranged in a regular 33×  grid. 
Such neighborhoods can be defined by a base neighborhood baseU  which is then scaled to 
generate all the required sizes, e.g.  for  3×3, [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]222120121110020100=baseU . 

In the further text, )(mnU  will refer to a neighborhood which is created from baseU by 
scaling the x-coordinates by m and scaling the y-coordinates by n. 
The type and purpose of the convolution kernel g in the LRP can differ. It could be a 
derivation filter or a wavelet, but the most basic purpose of g is to avoid aliasing when 
scaling the neighborhood. Aliasing could be avoided by using any low-pass filter such as 
the Gaussian filter. For efficiency reasons, we use rectangular averaging convolution 
kernels. In the following text, )(klg  will stand for a rectangular averaging filter of 
dimensions k by l: 
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When scaling the neighborhood, it is reasonable to keep the size of the averaging filter the 
same as the distance between the samples. In such a case, m in )(mnU is equal to k in 

)(klg and n is equal to l. In (Polok et al., 2008), a set of LRD with only four neighborhoods 
)11(U , )21(U , )12(U  and )22(U  for samples of dimension 2424×  pixels is used with 

success. 

 
3.3 Detection Performance  
In the context of real-time object detection, the main measurable criterion which should be 
used to compare individual types of features is how much useful information they can 
extract in a certain amount of time. The second criterion is how much are they invariant to 
irrelevant information. Both of these criteria have to be evaluated with respect to a certain 
learning algorithm. The first criterion can be directly evaluated on a training set and the 
second corresponds to generalization on a test set. When using some focus-of-attention 
mechanism, the amount of extracted useful information determines the speed of the 
classifier which can be then related to the precision of detection on a testing set. 
We have used WaldBoost (Šochman & Matas 2005) as the learning algorithm and tested the 
features on two detection tasks – face detection and eye detection. We have compared the 
Haar-like features, LBP, LRD and LRP (all neighborhoods )(mnU which completely fit into 
the samples are used). For each type of the features, classifiers for five different target error 
rates (1%, 2%, 5%, 10% and 20%) were created. The five target error rates resulted in five 
gradually faster classifiers which allowed us to explore the speed/precision tradeoff 
provided by the features on the particular detection task. Ideally, the speed of the classifiers 
should be measured using some efficient implementation of the features. However, such an 
approach distorts the results with a different level of optimality of the individual feature 
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implementations. To remove these, we report here the speed in average number of 
evaluated features per classified position. 

 
Fig. 7. Comparison of performance of image features on face detection (top) and eye 

detection (bottom) tasks. The graphs show the area above ROC (integrating miss-rate 
over false positives) as a function of average classifier speed (lower is more precise 
and to the left is faster). The classifiers were created by the WaldBoost algorithm for 
five different target error rates (1%, 2%, 5%, 10% and 20%) for each type of feature-
set. The five target error rates resulted in five gradually faster classifiers – shown as a 
single line. The graphs can be also used to evaluate the precision/speed tradeoff for 
each type of feature-set for the particular task. 

 

 

As can be seen in Fig. 7, Haar-like features, LBP and LRP all perform very similarly on the 
face detection task followed by the LRD. On the other hand, clear differences can be seen on 
the eye detection task where LBP are the best, second are the LRP which are followed by the 
LRD, while the Haar-like features are the worst. These results show that it is not possible to 
select a single best feature set for a variety of detection tasks. The performance of the 
features can be influenced by the number of the training samples, the type of distinguishing 
information and by the amount of intra-class variance. However, the experiments show that 
LRP and LRD provide in general similar detection performance as Haar-like features and 
LBP. Also, LRP should perform better than LRD on most tasks. 

 
4. Fast Implementations of Selected Feature Sets 
 

The image classification and detection tasks, as discussed in section 2, can be used as a base 
for various image processing and computer vision applications. Inevitably, this fact causes a 
situation (and it happens in many applications), where the classification and detection tasks 
become time critical and possibly their performance also becomes an enabling factor of 
various applications. Therefore, fast implementation of the classifiers is very important. 
Obviously, computation of the image features is the most time-consuming part of the 
detectors derived from the Viola & Jones (2001) face detector. While its complexity varies 
with the type of the features, it is at least an order of a magnitude more demanding than the 
actual classifier itself (consisting of merely the sum of the feature responses). Therefore, the 
extraction of features seems to be the most critical part of the detection applications.  

 
4.1 Object Detection Using the SSE Instruction Set 
This section presents a high performance implementation of the LRP feature extraction on 
today’s standard CPU’s. The implementation uses pre-convolved images to obtain values of 
the sampling function and SIMD instruction set (of Intel CPU and compatible) for actual 
response computation.  
The implementation must address two crucial issues: memory accesses performed by the 
algorithm (minimizing the number of memory accesses and ensuring their speed by 
aligning the operands) and the actual computation of the local ranks. Current CPUs provide 
SIMD capabilities that are interesting for efficient LRP evaluation. The SSE instruction set 
(and SSE2 in particular) has extensive support of instructions working with sixteen 8bit 
values in a single 128bit register. 
Compared to naive LRP implementation the described implementation benefits from 
parallel processing when calculating the ranks. Its disadvantage is the limited number of 
convolution kernels )(klg  and neighborhoods )(mnU  (see section 3.1), because for each grid 
size a separate pre-calculated image is required. Minimizing the number of these images 
thus reduces computational cost of the preprocessing stage. In this work we use four sizes – 

)11(U , )21(U , )12(U  and )22(U , so four convolution images need to be calculated during the 
preprocessing stage.  
 
Storing of the Image Convolutions 
To simplify the feature evaluation as much as possible the convolution of the input image 
with a rectangular kernel (corresponding to feature block shape) is pre-computed and 
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implementations. To remove these, we report here the speed in average number of 
evaluated features per classified position. 

 
Fig. 7. Comparison of performance of image features on face detection (top) and eye 

detection (bottom) tasks. The graphs show the area above ROC (integrating miss-rate 
over false positives) as a function of average classifier speed (lower is more precise 
and to the left is faster). The classifiers were created by the WaldBoost algorithm for 
five different target error rates (1%, 2%, 5%, 10% and 20%) for each type of feature-
set. The five target error rates resulted in five gradually faster classifiers – shown as a 
single line. The graphs can be also used to evaluate the precision/speed tradeoff for 
each type of feature-set for the particular task. 

 

 

As can be seen in Fig. 7, Haar-like features, LBP and LRP all perform very similarly on the 
face detection task followed by the LRD. On the other hand, clear differences can be seen on 
the eye detection task where LBP are the best, second are the LRP which are followed by the 
LRD, while the Haar-like features are the worst. These results show that it is not possible to 
select a single best feature set for a variety of detection tasks. The performance of the 
features can be influenced by the number of the training samples, the type of distinguishing 
information and by the amount of intra-class variance. However, the experiments show that 
LRP and LRD provide in general similar detection performance as Haar-like features and 
LBP. Also, LRP should perform better than LRD on most tasks. 

 
4. Fast Implementations of Selected Feature Sets 
 

The image classification and detection tasks, as discussed in section 2, can be used as a base 
for various image processing and computer vision applications. Inevitably, this fact causes a 
situation (and it happens in many applications), where the classification and detection tasks 
become time critical and possibly their performance also becomes an enabling factor of 
various applications. Therefore, fast implementation of the classifiers is very important. 
Obviously, computation of the image features is the most time-consuming part of the 
detectors derived from the Viola & Jones (2001) face detector. While its complexity varies 
with the type of the features, it is at least an order of a magnitude more demanding than the 
actual classifier itself (consisting of merely the sum of the feature responses). Therefore, the 
extraction of features seems to be the most critical part of the detection applications.  

 
4.1 Object Detection Using the SSE Instruction Set 
This section presents a high performance implementation of the LRP feature extraction on 
today’s standard CPU’s. The implementation uses pre-convolved images to obtain values of 
the sampling function and SIMD instruction set (of Intel CPU and compatible) for actual 
response computation.  
The implementation must address two crucial issues: memory accesses performed by the 
algorithm (minimizing the number of memory accesses and ensuring their speed by 
aligning the operands) and the actual computation of the local ranks. Current CPUs provide 
SIMD capabilities that are interesting for efficient LRP evaluation. The SSE instruction set 
(and SSE2 in particular) has extensive support of instructions working with sixteen 8bit 
values in a single 128bit register. 
Compared to naive LRP implementation the described implementation benefits from 
parallel processing when calculating the ranks. Its disadvantage is the limited number of 
convolution kernels )(klg  and neighborhoods )(mnU  (see section 3.1), because for each grid 
size a separate pre-calculated image is required. Minimizing the number of these images 
thus reduces computational cost of the preprocessing stage. In this work we use four sizes – 

)11(U , )21(U , )12(U  and )22(U , so four convolution images need to be calculated during the 
preprocessing stage.  
 
Storing of the Image Convolutions 
To simplify the feature evaluation as much as possible the convolution of the input image 
with a rectangular kernel (corresponding to feature block shape) is pre-computed and 
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stored in the memory so that all the results of the LRP grid can be fetched into CPU registers 
by two 64-bit loads. 
The convolved image is divided into separate blocks which correspond to different modulo 
shifts of the convolution kernel in the image – e.g. for 4×2px convolution kernel eight 
possible shifts exist: 0,0; 0,1; … 0,3; 1,0; … 1,3. This structure of the image is important for 
loading adjacent convolution values with the same modulo shift of the kernel. Fig. 8 shows 
the situation where the 2×2px kernel is used and four blocks are formed in the convolved 
image. 

 
Fig. 8. Example of storage of 2×2px convolution of 8×8px image in the memory. 
 

The convolution image ),( lkI  represents pre-calculated sampling function )(gS  with ),( lkg . 
I is divided into a set of blocks B, where each block corresponds to an image convolved with 
a differently shifted convolution kernel. 

{ }1,10,10,0
),( , −−= lk
lk BBBI  . (12)  

Each block is divided into stripes P representing two rows of pixels and each stripe is 
further divided into 32-bit words corresponding to four adjacent results of the sampling 
function. vuP ,  refers to the v-th word of the u-th stripe (Fig. 9). 

 

 
Fig. 9. Stripes in a convolution image in block ∆B . 
 

The LRP feature is always located in two consecutive stripes and in two consecutive words 
in each of them which allows them to be read by a small number of read operations. 
 
LRP Evaluation 
For evaluation of feature hwyxF ,,,  with position ),( yx  and size of sampling function ),( hw , 

we use convolved image ),( hwI . The feature is then located in block ∆B  corresponding to 
the shift of the feature sampling function in the image: 

)mod,mod( hywx=∆ . (13)  
The first word in which the feature’s values are placed in the block is vuP , . 
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By loading words vuP , , 1, +vuP , vuP ,1+  and 1,1 ++ vuP  we obtain 16 responses of the sampling 
function in a 4×4 grid.  The sub-grid of 3×3 values aligned to M∆  corresponds to the actual 
feature data.  
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Fig. 10. Four masks used for a 4×4 grid. 
 

Note that the previous equations stand only when the width and height of the sampling 
function are powers of 2. In that case, the computations are reduced to simple bit 
manipulations which can be very efficiently optimized. The block and mask indexing can be 
pre-calculated in look-up tables to further reduce the computations in the run-time to simple 
table indexing. 
The code of the evaluation using SIMD instructions (by using Intel’s intrinsic functions in C 
language) is shown in Fig. 11 and the block diagram of the evaluation is in Fig. 12. The LRP 
are parameterized by the feature’s position within the classified image fx,fy, the block size 
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The LRP feature is always located in two consecutive stripes and in two consecutive words 
in each of them which allows them to be read by a small number of read operations. 
 
LRP Evaluation 
For evaluation of feature hwyxF ,,,  with position ),( yx  and size of sampling function ),( hw , 

we use convolved image ),( hwI . The feature is then located in block ∆B  corresponding to 
the shift of the feature sampling function in the image: 
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Note that the previous equations stand only when the width and height of the sampling 
function are powers of 2. In that case, the computations are reduced to simple bit 
manipulations which can be very efficiently optimized. The block and mask indexing can be 
pre-calculated in look-up tables to further reduce the computations in the run-time to simple 
table indexing. 
The code of the evaluation using SIMD instructions (by using Intel’s intrinsic functions in C 
language) is shown in Fig. 11 and the block diagram of the evaluation is in Fig. 12. The LRP 
are parameterized by the feature’s position within the classified image fx,fy, the block size 
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fw,fh which determines the convolution image to use, and indexes of the rank pixels idxA 
and idxB.  
 

                   
Fig. 11. LRP feature evaluation code 
 

The basic step of the evaluation is to compare all data to the values in the rank positions. 
The comparison of two registers results in -1 (0xFF) when the condition is satisfied. The 
masking discards values that are not in the feature mask and also converts 0xFF values to 
0x01 so the sum of all items of the register corresponds to the number of positive 
comparisons. The results are summed together by an instruction which calculates the sum of 
absolute differences (SAD) of two registers. The instruction operates over the higher and 
lower 64 bits separately, so the results need to be summed together to obtain the actual sum. 

// Inputs: 
//   fx,fy,fw,fh,idxA,idxB – feature parameters 
//   conv – two dimensional array of four convolution images 
//   mask – array with masks stored linearly 
//////////// PREPARATORY PHASE //////////////// 
// Pointers to image convolved with kernel corresponding to the size of 
feature blocks 
Convolution & c = conv[fx][fy]; 
signed char * base = c.block[fx % fw][fy % fh]; // Ptr to block data 
// get ptr to proper stripe and word in it 
signed char * data0 = base + c.row_step * (fy / (2 * fh)) + 4 * (fx / (2 * 
fw)); 
signed char * data1 = data0 + c.row_step; 
// Position dependent mask 
int mask_shift_x = (fx / fw) % 2; 
int mask_shift_y = (fy / fh) % 2; 
// Get values of rank pixels 
char valA = (idxA < 8) ? data0[idxA] : data1[idxA-8]; 
char valB = (idxB < 8) ? data0[idxB] : data1[idxB-8]; 
//////////// LRP EVALUATION ///////////////// 
// Load the LRP grid to register 
__m128i data = _mm_set_epi64(*(__m64*)(data0), *(__m64*)(data1)); 
// Zero register 
__m128i zero = _mm_setzero_si128(); 
// Expansion of values of rank pixels 
__m128i A = _mm_set1_epi8(valA); 
__m128i B = _mm_set1_epi8(valB); 
// Count values greater or equal to A 
union { 
  __m128i q; 
  signed short ss[8]; 
} P1 = { _mm_sad_epu8( // Sum the results 
           _mm_and_si128( // Mask the comparison result 
             _mm_cmpgt_epi8(A, data), // compare the data to value A 
             masks[mask_shift_x][mask_shift_y]), 
           zero) 
}; 
// Count values greater or equal to B 
union { 
  __m128i q; 
  signed short ss[8]; 
} P2 = { _mm_sad_epu8( // Sum the results 
           _mm_and_si128( // Mask the comparison result 
             _mm_cmpgt_epi8(B, data), // compare the data to value B 
             masks[mask_shift_x][mask_shift_y]), 
           zero) 
}; 
// calc the LRP results as sum of top and bottom part of SAD result. 
int pattern1 = P1.ss[0] + P1.ss[4]; 
int pattern2 = P2.ss[0] + P2.ss[4]; 
// LRD is then pattern1 – pattern2 

 

The sums for A and B rank values are then subtracted to obtain the LRD response or used as 
a 2D vector – LRP. 
 

 
Fig. 12. Block scheme of the code from the previous figure (evaluation part only). 
 

The LRD evaluation is described in Fig. 12. First, the data are compared to A and B vectors 
and masked (temporary results cmpA, cmpB). The sums of absolute differences of cmpA and 
cmpB are subtracted and the results for high and low parts are summed together producing 
the LRD value. 
The evaluation is much more efficient compared to CPU code without SSE since all the 
values are processed in parallel. The slowest step of the evaluation is the expansion of an 8-
bit value to a full 128-bit SSE register. Since the instruction set lacks a single instruction to do 
this, the expansion must be done by a sequence of shift-left and or instructions. 

 
4.2 Object Detection Using GP-GPU (CUDA) 
Today’s GPUs provide a large amount of brute-force computational power and can be used 
for General Purpose usage of GPU (GP-GPU), among others for image processing and 
pattern recognition. CUDA is an architecture which allows one to easily use the GPU for 
GP-GPU algorithms with high parallelization capabilities. The programming is done in a 
language that strongly resembles the C language and is therefore easily understandable. The 
CUDA code is closely coupled with the host computer C/C++ code and their mutual 
communication is straightforward. 
Various image-processing tasks execute large numbers of identical operations on different 
pieces of data that makes the highly parallel CUDA suitable for them. In the context of 
object detection by statistical classifiers, different positions of the sliding window are the 
mutually parallel tasks which perform an identical operation: the statistical classifier. In 
cases of the classification cascade or WaldBoost (mentioned above), the evaluation of the 
classifier at various locations is identical, but can be interrupted by the focus-of-attention 
mechanism used.  
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and masked (temporary results cmpA, cmpB). The sums of absolute differences of cmpA and 
cmpB are subtracted and the results for high and low parts are summed together producing 
the LRD value. 
The evaluation is much more efficient compared to CPU code without SSE since all the 
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bit value to a full 128-bit SSE register. Since the instruction set lacks a single instruction to do 
this, the expansion must be done by a sequence of shift-left and or instructions. 

 
4.2 Object Detection Using GP-GPU (CUDA) 
Today’s GPUs provide a large amount of brute-force computational power and can be used 
for General Purpose usage of GPU (GP-GPU), among others for image processing and 
pattern recognition. CUDA is an architecture which allows one to easily use the GPU for 
GP-GPU algorithms with high parallelization capabilities. The programming is done in a 
language that strongly resembles the C language and is therefore easily understandable. The 
CUDA code is closely coupled with the host computer C/C++ code and their mutual 
communication is straightforward. 
Various image-processing tasks execute large numbers of identical operations on different 
pieces of data that makes the highly parallel CUDA suitable for them. In the context of 
object detection by statistical classifiers, different positions of the sliding window are the 
mutually parallel tasks which perform an identical operation: the statistical classifier. In 
cases of the classification cascade or WaldBoost (mentioned above), the evaluation of the 
classifier at various locations is identical, but can be interrupted by the focus-of-attention 
mechanism used.  
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The CUDA implementation is structured to several separate operational blocks: 
• First, the constant data is prepared which is mainly the data of the classifiers for object 

detection. Two possibilities exist for their location: the texture memory or the constant 
memory. The texture memory is very fast, but as a resource is shared with other parts 
of the algorithm, so the constant memory (cached in CUDA) was finally preferred.  

• To detect in multiple scales, an image pyramid is constructed from the input image 
(see Fig. 13). The pyramid is constructed using OpenGL and uses the hardware-
accelerated texturing available in today’s graphics hardware. Thus constructed 
OpenGL frame-buffer is converted into a CUDA texture. 

• The CUDA part of the program is executed in kernels, which are divided into blocks and 
further into threads, which are organized into warps. To use the execution environment 
most efficiently, the implementation is structured to totally use the shared memory 
(memory shared among threads within a block) and hardware registers. Each scanning 
window position is evaluated independently of the others; the positions, therefore, can 
be evaluated in different threads. To use the resources efficiently, at least 128 threads 
should be used. Our solution executes one thread for one scan-line within a 
rectangular part of the input image; the length of the scan-line is limited by the size of 
the shared memory. This arrangement is the result of a set of experiments – it 
organizes the threads into a sufficient number of blocks (to use all multiprocessors on 
contemporary GPU’s), the number of threads is suitable, the shared memory is 
maximally used. See Fig. 13 for illustrations of arrangement into blocks and threads. 
Because of the nature of the WaldBoost evaluation which terminates the evaluation of 
weak classifiers at different stages of the classifier, a significant fraction of threads 
(grouped into warps in CUDA platform) can be idle at various times of the execution. 
The tasks assigned to the threads are rearranged repeatedly – the strategy of 
rearrangement of threads exceeds the scope of this text. 

 

     
 a b c d 
Fig. 13. Image pyramid (b); assignment to blocks (c) and threads (d) for an input image (a) 
 

• The output data is stored in the global memory and is retrieved by device-to-host 
memory copying. Memory mapped pointers could be used instead which would 
provide the advantages of automatic asynchronous copy between the device and the 
host memory, thread/stream synchronize would have to be performed in that case. 

 

 
Fig. 14. Overall CUDA implementation structure 

 
4.3 Object Detection Using GPU (GLSL) 
This section presents our experiments with an OpenGL implementation of the LRD detector, 
consisting of the convolution precalc module and a feature extractor. It can work on most of 
today's common GPU's which support OpenGL 2.0. To achieve better compatibility and 
portability, our implementation prefers the frame-buffer objects (FBO) above platform-
dependent P-buffers and GLSL shading language above the Cg language. 
The implementation takes a raster image in the system memory as input, then it needs to 
upload it to an OpenGL texture in the GPU memory, feature evaluation shaders get 
executed and a raster with detector responses is downloaded back to the system memory. 
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consisting of the convolution precalc module and a feature extractor. It can work on most of 
today's common GPU's which support OpenGL 2.0. To achieve better compatibility and 
portability, our implementation prefers the frame-buffer objects (FBO) above platform-
dependent P-buffers and GLSL shading language above the Cg language. 
The implementation takes a raster image in the system memory as input, then it needs to 
upload it to an OpenGL texture in the GPU memory, feature evaluation shaders get 
executed and a raster with detector responses is downloaded back to the system memory. 
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There was no attempt for asynchronous data transfers to hide transport delay, but earlier 
work proved that such transfers are possible on GPU. 
One implementation is already described in (Polok et al. 2008) which relies on complex, 
optimized image data storage. The implementation measured here is more straightforward 
because it is limited to sampling function dimensions 1x1, 1x2, 2x1 and 2x2. Such a 
limitation does not notably harm the information content extracted by the features, but 
significantly improves the performance. The bilinear filter (implemented in the texturing 
hardware of GPU) samples four pixels and assigns them weights, based on fractional texture 
coordinates. It is possible to simulate 1x1, 1x2, 2x1 and 2x2 pixel sums just by a texture 
coordinate offset: 
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where s, t are texture coordinates (in pixel scale, not OpenGL normalized coordinates), sf 
and tf are fractional texture coordinates and finally wi,j is the weight for texel with offset (i, j). 
It is now possible to illustrate the creation of some simple convolution kernels. In case that 
the texture coordinates are integers, fractional coordinates are zero and all weights are zero, 
except w0,0 which is one, a 1x1 kernel is created. Adding offset ½ to s yields sf = ½ and 
therefore w0,0 and w1,0 are ½ while w0,1 and w1,1 remain zero, acting as a 1×2 convolution 
kernel. Other kernels can be achieved analogously, as illustrated in Fig. 15. 
 
 
 
 
 
Fig. 15. Simple equal-weights convolution kernels using bilinear filtering 
 

This introduces some interesting consequences. There is no need for a pre-calculation phase; 
also, we just need a single texture to evaluate all weak classifiers in the WaldBoost classifier, 
which is important for two reasons: 
First – there is no need for branching in the classifier to select the proper convolution texture 
for a particular weak classifier and, therefore, there is no need to split the classifier 
evaluation into multiple rendering passes as in (Polok et al. 2008). 
And second – all textures required to evaluate the WaldBoost classifier can be bound 
simultaneously to available texturing units. This issue could be actually solved using 3D 
textures to contain more convolution images, which can be indexed by a texture coordinate; 
that however severely limits the maximal image resolution (to 512×512 on nVidia cards). 
Another similar approach could be using custom-generated mipmap levels, where the third 
texture coordinate would be the texture LOD bias, which somewhat decreases the precision 
but could be used in practical implementations. Finally, the proper solution is using a 
texture array object, which contains multiple convolution images, occupies a single 
texturing unit and can be indexed from within the shader; but this increases the hardware 
requirements as this extension is not implemented in all common graphic cards today.  

(sf, tf) = (0, 0) (sf, tf) = (½, 0) (sf, tf) = (0, ½) (sf, tf) = (½,½) 

 

As we can now evaluate all the weak classifiers in a loop in a single pass, we need a way to 
store the classifier properties. These are the sampling function parameters – the origin of the 
sampling x and convolution kernel g (represented by fractional texture coordinate offset - 
which is added to x and stored with it, and the kernel dimensions). Next, there are positions 
of blocks a and b, and finally, WaldBoost thresholds (negative and positive). These values 
can be fit into two RGBA pixels in a floating-point texture, as illustrated in Fig. 16. 
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Fig. 16. Weak classifier properties, stored in two pixels of a RGBA texture 
 

We chose to store the classifier alphas in one texture and the rest of the classifier properties 
in another. This separation of otherwise related data is justified by their different formats 
and different access patterns into these textures. While the alpha texture needs a single 
channel (LUMINANCE) and is sampled rather randomly, the classifier properties need four 
channels (RGBA) and they all are read in a sequential manner.  
Once the textures described above are generated, it is possible to evaluate the features in the 
fragment shader. The shader requires the data textures and the image texture as its input. 
For each weak classifier, the properties texture is read first so the mask can be read from the 
source image texture. Then it is necessary to get values of blocks a and b from the mask. In 
the fragment shader it is not possible to use an array referencing operator to select values 
from the matrix, so these need to be masked-out using dot products. Once the values of 
blocks a and b are known it is straightforward to evaluate their ranks Ra and Rb. All that 
remains is to read the alpha texture, accumulate the classifier response and compare it with 
the WaldBoost thresholds. The complete shader code is in Fig. 17. 
 
#extension ARB_texture_rectangle : enable 
 
uniform sampler2DRect n_alphas, n_cl_data, n_src_image; 
// texture samplers: alphas, classifier properties and source image 
 
uniform float f_final_thresh; 
// final threshold 
 
void main() 
{ 
    float f_accum = 0.0; 
    // classifier response accumulator 
 
    for(int i = 0; i < classifier_count; ++ i) { 
        vec4 v_data_a = texture2DRect(n_cl_data, vec2(i, 0.0)); // off.x, off.y, step.x, step.y 
        vec3 v_data_b = texture2DRect(n_cl_data, vec2(i, 1.0)).xyz; // a, b, negThreshold 
        // get classifier properties (as described in Fig. 16, positive threshold not implemented) 
 
        vec3 lrd0, lrd1, lrd2; 
        { 
            vec4 v_tc01 = gl_TexCoord[0].xyxy + v_data_a.xyxy; 
            v_tc01.z += v_data_a.z; 
            vec2 v_tc2 = v_tc01.zw; 
            v_tc2.x += v_data_a.z; 
            // get texcoords for first three pixels of LRD grid 
 
            lrd0.x = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.x = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.x = texture2DRect(n_src_image, v_tc2).x; 
 
            v_tc01.yw += v_data_a.ww; 
            v_tc2.y += v_data_a.w; 
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where s, t are texture coordinates (in pixel scale, not OpenGL normalized coordinates), sf 
and tf are fractional texture coordinates and finally wi,j is the weight for texel with offset (i, j). 
It is now possible to illustrate the creation of some simple convolution kernels. In case that 
the texture coordinates are integers, fractional coordinates are zero and all weights are zero, 
except w0,0 which is one, a 1x1 kernel is created. Adding offset ½ to s yields sf = ½ and 
therefore w0,0 and w1,0 are ½ while w0,1 and w1,1 remain zero, acting as a 1×2 convolution 
kernel. Other kernels can be achieved analogously, as illustrated in Fig. 15. 
 
 
 
 
 
Fig. 15. Simple equal-weights convolution kernels using bilinear filtering 
 

This introduces some interesting consequences. There is no need for a pre-calculation phase; 
also, we just need a single texture to evaluate all weak classifiers in the WaldBoost classifier, 
which is important for two reasons: 
First – there is no need for branching in the classifier to select the proper convolution texture 
for a particular weak classifier and, therefore, there is no need to split the classifier 
evaluation into multiple rendering passes as in (Polok et al. 2008). 
And second – all textures required to evaluate the WaldBoost classifier can be bound 
simultaneously to available texturing units. This issue could be actually solved using 3D 
textures to contain more convolution images, which can be indexed by a texture coordinate; 
that however severely limits the maximal image resolution (to 512×512 on nVidia cards). 
Another similar approach could be using custom-generated mipmap levels, where the third 
texture coordinate would be the texture LOD bias, which somewhat decreases the precision 
but could be used in practical implementations. Finally, the proper solution is using a 
texture array object, which contains multiple convolution images, occupies a single 
texturing unit and can be indexed from within the shader; but this increases the hardware 
requirements as this extension is not implemented in all common graphic cards today.  
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As we can now evaluate all the weak classifiers in a loop in a single pass, we need a way to 
store the classifier properties. These are the sampling function parameters – the origin of the 
sampling x and convolution kernel g (represented by fractional texture coordinate offset - 
which is added to x and stored with it, and the kernel dimensions). Next, there are positions 
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Fig. 16. Weak classifier properties, stored in two pixels of a RGBA texture 
 

We chose to store the classifier alphas in one texture and the rest of the classifier properties 
in another. This separation of otherwise related data is justified by their different formats 
and different access patterns into these textures. While the alpha texture needs a single 
channel (LUMINANCE) and is sampled rather randomly, the classifier properties need four 
channels (RGBA) and they all are read in a sequential manner.  
Once the textures described above are generated, it is possible to evaluate the features in the 
fragment shader. The shader requires the data textures and the image texture as its input. 
For each weak classifier, the properties texture is read first so the mask can be read from the 
source image texture. Then it is necessary to get values of blocks a and b from the mask. In 
the fragment shader it is not possible to use an array referencing operator to select values 
from the matrix, so these need to be masked-out using dot products. Once the values of 
blocks a and b are known it is straightforward to evaluate their ranks Ra and Rb. All that 
remains is to read the alpha texture, accumulate the classifier response and compare it with 
the WaldBoost thresholds. The complete shader code is in Fig. 17. 
 
#extension ARB_texture_rectangle : enable 
 
uniform sampler2DRect n_alphas, n_cl_data, n_src_image; 
// texture samplers: alphas, classifier properties and source image 
 
uniform float f_final_thresh; 
// final threshold 
 
void main() 
{ 
    float f_accum = 0.0; 
    // classifier response accumulator 
 
    for(int i = 0; i < classifier_count; ++ i) { 
        vec4 v_data_a = texture2DRect(n_cl_data, vec2(i, 0.0)); // off.x, off.y, step.x, step.y 
        vec3 v_data_b = texture2DRect(n_cl_data, vec2(i, 1.0)).xyz; // a, b, negThreshold 
        // get classifier properties (as described in Fig. 16, positive threshold not implemented) 
 
        vec3 lrd0, lrd1, lrd2; 
        { 
            vec4 v_tc01 = gl_TexCoord[0].xyxy + v_data_a.xyxy; 
            v_tc01.z += v_data_a.z; 
            vec2 v_tc2 = v_tc01.zw; 
            v_tc2.x += v_data_a.z; 
            // get texcoords for first three pixels of LRD grid 
 
            lrd0.x = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.x = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.x = texture2DRect(n_src_image, v_tc2).x; 
 
            v_tc01.yw += v_data_a.ww; 
            v_tc2.y += v_data_a.w; 
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            // shift texcoords to the next pixels of LRD grid 
 
            lrd0.y = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.y = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.y = texture2DRect(n_src_image, v_tc2).x; 
 
            v_tc01.yw += v_data_a.ww; 
            v_tc2.y += v_data_a.w; 
            // shift texcoords to the next pixels of LRD grid 
 
            lrd0.z = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.z = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.z = texture2DRect(n_src_image, v_tc2).x; 
        } 
        // read LRD grid 3x3 pixels (convolutions hidden inside texture sampling units) 
 
        float a, b; 
        { 
            vec4 ax_ay_bx_by; 
            ax_ay_bx_by.xz = mod(v_data_b.xy, 3.0); // get x-coords of a, b 
            ax_ay_bx_by.yw = v_data_b.xy / 3.0; // get y-coords of a, b 
 
            vec4 v_first_col = vec4(lessThan(ax_ay_bx_by, vec4(1.0))); 
            vec4 v_third_col = vec4(greaterThanEqual(ax_ay_bx_by, vec4(2.0))); 
            vec4 v_second_col = vec4(1.0) - v_first_col - v_third_col; 
            // compare coords to < 1, >= 1 && < 2, >= 2 
            // (index to x-y conversion and multiplexing, using fp arithmetic) 
 
            vec3 v_a_row = vec3(v_first_col.y, v_second_col.y, v_third_col.y); 
            vec3 v_b_row = vec3(v_first_col.w, v_second_col.w, v_third_col.w); 
            a = dot(lrd0 * v_first_col.x + lrd1 * v_second_col.x + lrd2 * v_third_col.x, v_a_row); 
            b = dot(lrd0 * v_first_col.z + lrd1 * v_second_col.z + lrd2 * v_third_col.z, v_b_row); 
            // mask-out values of blocks a and b 
        } 
        // demultiplex values of a and b blocks 
 
        vec3 lrd_vec = vec3(greaterThan(vec3(a), lrd0)); 
        lrd_vec += vec3(greaterThan(vec3(a), lrd1)); 
        lrd_vec += vec3(greaterThan(vec3(a), lrd2)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd0)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd1)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd2)); // three comparisons in parallel 
        float lrd = dot(vec3(1.0), lrd_vec); // sum-up lrd vector components 
        // calculate rank difference 
 
        f_accum += texture2DRect(n_alphas, vec2(8.0 + lrd, i)).x; 
        // fetch response from alpha texture, accumulate 
 
        if(f_accum < v_data_b.z) // compare with WaldBoost negative threshold 
            discard; // framebuffer is pre-filled with zeros (using glClear()) 
        // early cutoff, as simple as that 
    } 
    // loop trough all classifiers 
 
    gl_FragColor.xyz = vec3(f_accum > f_final_thresh); 
    // perform threshold here, write result 
} 

Fig. 17. LRD detector shader in GLSL 
 

Note that the shader actually evaluates the LRD. An axtension to LRP is rather simple, rank 
differences for a and b are calculated separately and are then combined to be used as an 
index to the alphas texture. The other approach could be using a 3D texture for alphas and 
using both rank differences as texture coordinates, the third coordinate being the classifier 
index. 
There is one more issue to mention: loops in the fragment shaders are limited to 255 
iterations (at least in nVidia implementations), after that they are interrupted (as if a break 
instruction was called). WaldBoost classifiers used in the performance evaluation were 
about 1,000 weak classifiers long, so the shader needs to contain four identical loops of 250 

 

iterations each. The only modification then is using the classifier index instead of the loop 
counter to address the classifier properties texture and the alphas texture. 
Even though branching on GPU is not very efficient because the program-flow control is 
shared between multiple processor cores, this implementation is faster than the previous 
attempts to control the shader execution using occlusion queries and tile-based rendering. 
The implementation is now, thanks to bilinear filter convolutions, very simple and can be 
executed without modifications on as old hardware as GeForce 6600. 

 
4.4 Object Detection Using FPGA 
The primary criteria of the FPGA design considered were high speed and using also a small 
consumption of resources. An additional design criterion was an adaptability to various 
modifications of the detectors based on AdaBoost. As a result, the proposed architecture is 
similar to a specialized processor. The program of the processor is composed of a feature 
description calculation field and a feature result processing field to enable implementation 
of the feature evaluation and feature result processing part of the AdaBoost classifier. Note 
that the number of the evaluated weak classifiers is especially in the case of early 
termination modifications of AdaBoost (e.g. WaldBoost in Šochman, Matas, 2005), very 
small (typically below 20) and variable as the early termination is based on the intermediate 
result of the first weak classifiers. 
The maximum classification window size of 31×31 pixels was chosen while the size of the 
scanned image is not explicitly limited. The actual processing is performed in 128×31 image 
stripes that should be selected from the image of interest. 

 
Fig. 18. The overall structure of the FPGA classifier 
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            // shift texcoords to the next pixels of LRD grid 
 
            lrd0.y = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.y = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.y = texture2DRect(n_src_image, v_tc2).x; 
 
            v_tc01.yw += v_data_a.ww; 
            v_tc2.y += v_data_a.w; 
            // shift texcoords to the next pixels of LRD grid 
 
            lrd0.z = texture2DRect(n_src_image, v_tc01.xy).x; 
            lrd1.z = texture2DRect(n_src_image, v_tc01.zw).x; 
            lrd2.z = texture2DRect(n_src_image, v_tc2).x; 
        } 
        // read LRD grid 3x3 pixels (convolutions hidden inside texture sampling units) 
 
        float a, b; 
        { 
            vec4 ax_ay_bx_by; 
            ax_ay_bx_by.xz = mod(v_data_b.xy, 3.0); // get x-coords of a, b 
            ax_ay_bx_by.yw = v_data_b.xy / 3.0; // get y-coords of a, b 
 
            vec4 v_first_col = vec4(lessThan(ax_ay_bx_by, vec4(1.0))); 
            vec4 v_third_col = vec4(greaterThanEqual(ax_ay_bx_by, vec4(2.0))); 
            vec4 v_second_col = vec4(1.0) - v_first_col - v_third_col; 
            // compare coords to < 1, >= 1 && < 2, >= 2 
            // (index to x-y conversion and multiplexing, using fp arithmetic) 
 
            vec3 v_a_row = vec3(v_first_col.y, v_second_col.y, v_third_col.y); 
            vec3 v_b_row = vec3(v_first_col.w, v_second_col.w, v_third_col.w); 
            a = dot(lrd0 * v_first_col.x + lrd1 * v_second_col.x + lrd2 * v_third_col.x, v_a_row); 
            b = dot(lrd0 * v_first_col.z + lrd1 * v_second_col.z + lrd2 * v_third_col.z, v_b_row); 
            // mask-out values of blocks a and b 
        } 
        // demultiplex values of a and b blocks 
 
        vec3 lrd_vec = vec3(greaterThan(vec3(a), lrd0)); 
        lrd_vec += vec3(greaterThan(vec3(a), lrd1)); 
        lrd_vec += vec3(greaterThan(vec3(a), lrd2)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd0)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd1)); 
        lrd_vec -= vec3(greaterThan(vec3(b), lrd2)); // three comparisons in parallel 
        float lrd = dot(vec3(1.0), lrd_vec); // sum-up lrd vector components 
        // calculate rank difference 
 
        f_accum += texture2DRect(n_alphas, vec2(8.0 + lrd, i)).x; 
        // fetch response from alpha texture, accumulate 
 
        if(f_accum < v_data_b.z) // compare with WaldBoost negative threshold 
            discard; // framebuffer is pre-filled with zeros (using glClear()) 
        // early cutoff, as simple as that 
    } 
    // loop trough all classifiers 
 
    gl_FragColor.xyz = vec3(f_accum > f_final_thresh); 
    // perform threshold here, write result 
} 

Fig. 17. LRD detector shader in GLSL 
 

Note that the shader actually evaluates the LRD. An axtension to LRP is rather simple, rank 
differences for a and b are calculated separately and are then combined to be used as an 
index to the alphas texture. The other approach could be using a 3D texture for alphas and 
using both rank differences as texture coordinates, the third coordinate being the classifier 
index. 
There is one more issue to mention: loops in the fragment shaders are limited to 255 
iterations (at least in nVidia implementations), after that they are interrupted (as if a break 
instruction was called). WaldBoost classifiers used in the performance evaluation were 
about 1,000 weak classifiers long, so the shader needs to contain four identical loops of 250 

 

iterations each. The only modification then is using the classifier index instead of the loop 
counter to address the classifier properties texture and the alphas texture. 
Even though branching on GPU is not very efficient because the program-flow control is 
shared between multiple processor cores, this implementation is faster than the previous 
attempts to control the shader execution using occlusion queries and tile-based rendering. 
The implementation is now, thanks to bilinear filter convolutions, very simple and can be 
executed without modifications on as old hardware as GeForce 6600. 

 
4.4 Object Detection Using FPGA 
The primary criteria of the FPGA design considered were high speed and using also a small 
consumption of resources. An additional design criterion was an adaptability to various 
modifications of the detectors based on AdaBoost. As a result, the proposed architecture is 
similar to a specialized processor. The program of the processor is composed of a feature 
description calculation field and a feature result processing field to enable implementation 
of the feature evaluation and feature result processing part of the AdaBoost classifier. Note 
that the number of the evaluated weak classifiers is especially in the case of early 
termination modifications of AdaBoost (e.g. WaldBoost in Šochman, Matas, 2005), very 
small (typically below 20) and variable as the early termination is based on the intermediate 
result of the first weak classifiers. 
The maximum classification window size of 31×31 pixels was chosen while the size of the 
scanned image is not explicitly limited. The actual processing is performed in 128×31 image 
stripes that should be selected from the image of interest. 

 
Fig. 18. The overall structure of the FPGA classifier 
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Fig. 19. The block diagram of the implementation of the LRD/LRP features 

implementation. 

 
Fig. 20. Organization of the data in the BlockRAM. 
 

It is efficient to use the pipeline in such a manner that several virtual instances of the 
classifier (for several locations of the window within the image stripe) are allocated. An 
attempt to speculatively calculate future terms in the sum is much less efficient, because if 
early termination is performed in this case, all the pipeline content is rendered useless and 
must be flushed – having an adverse effect on performance. Efficiency of the 
implementation can also be improved by building more instances of the engine around the 
memory that stores the convolved picture elements while the memory can sufficiently 
supply more engines with data. This approach increases the efficiency of exploitation of the 
hardware resources (in the case of, for example, Xilinx Virtex FPGA series it is efficient to 
use two ports of the BlockRAMs to supply the two engines with data). 
The engine (see block structure in Fig. 18) is designed to process stream of incoming data 
using a FIFO-like interface. While the input part keeps filling the memory of Stripe Manager 
by the data, the processing part performs the classification using valid data in the Stripe 
Manager. If the classification is successful (the result is evaluated to 1 - current position 
contains the object of interest) then the position is returned as a result. If the evaluation is -1, 
no output is performed. Pixels of the original image are pre-processed by the convolution 

 

unit (Convolver). The concept of the processing pipeline is based on an efficient hardware 
resource utilization by several virtual instances of the AdaBoost classifier (time 
multithreading). The total number of virtual instances is equal to the number of stages in the 
processing pipeline. In our case, five virtual instances circulate through the pipeline to 
overlap the execution time of the features (i.e., there is always one virtual instance in every 
stage of the pipeline). The engine exploits the parallelism at the level of the sliding windows 
used for object detection; each instance corresponds to one position of the sliding window in 
the image stripe. It means that in the beginning the instance acquires its sliding window and 
then evaluates all the features till program termination. Finally, it again acquires a new 
sliding window position if available in the stripe. Additional parallelism is gained using a 
memory technology which allows connecting two independent processing pipelines to one 
dual-port memory. The pipeline starts in Program Manager which stores the program 
common to all virtual instances. The program consists of 64-bit instructions, each defining 
one weak classifier. The most important fields of the instruction are: convolution index, X 
and Y position of the 3x3 grid in the window, and threshold. The instruction is sent to the 
Stripe Manager, which stores the valid stripe of the image in four individually addressable 
banks/BlockRAMs. Each bank has two reading ports, each one allocated for one of the 
pipelines. 
The evaluator block shown in Fig. 19 is designed to compute the feature in a parallel 
manner. Note that the mask is applied on the results of the comparators using logic ANDs, 
thus invalid picture elements are not included in the ranking, although they are compared. 
The result of LRD is transformed with an arbitrary normalization function (based on LUT) 
into an index to the memory containing the desired coefficients based on machine learning. 
The Threshold module that calculates the sums of such coefficients holds a separate sum for 
each virtual instance, which is compared with a threshold (stored in the instruction). The 
result of the comparison determines how the evaluation of the classifier should continue. It 
can either continue with the next feature or end the evaluation of current position with a 
result (detected, not detected). The result is sent to the Program Manager and the pipeline is 
closed. 
The engine was synthesized in a small FPGA Virtex-II 250 which is placed on the PCI board 
together with a DSP. The DSP uses DMA transfers to move data in and out of FPGA using 
the EMIF. Face detection was chosen for performance evaluation as it is considered to be a 
hard and widely known detection problem in machine vision community. A dataset 
containing 5,396 faces and 70,820 non-faces with resolution of 26x26 pixels was used to train 
and evaluate the classifier. The engine is able to evaluate two classifiers in one clock cycle 
(10ns) due to two processing pipelines. The AdaBoost with twenty weak classifiers was 
chosen for its acceptable error rate and still low computational demands. The performance 
comparison is done using the number of evaluated windows per second or frames per 
second. In our case, eight million evaluated windows per second have been achieved. The 
design is written in VHDL and synthesized for Xilinx Virtex-II technology. It takes about 
1,490 Slices and 14 BlockRAMs. 

 
4.5 Performance evaluation 
Comparing the performance of these diverse implementations is not trivial. The most 
significant performance metric is probably the detector throughput in frames per second for 
a sufficiently long video. The processing time for one frame does not reflect the case where 
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Fig. 19. The block diagram of the implementation of the LRD/LRP features 

implementation. 

 
Fig. 20. Organization of the data in the BlockRAM. 
 

It is efficient to use the pipeline in such a manner that several virtual instances of the 
classifier (for several locations of the window within the image stripe) are allocated. An 
attempt to speculatively calculate future terms in the sum is much less efficient, because if 
early termination is performed in this case, all the pipeline content is rendered useless and 
must be flushed – having an adverse effect on performance. Efficiency of the 
implementation can also be improved by building more instances of the engine around the 
memory that stores the convolved picture elements while the memory can sufficiently 
supply more engines with data. This approach increases the efficiency of exploitation of the 
hardware resources (in the case of, for example, Xilinx Virtex FPGA series it is efficient to 
use two ports of the BlockRAMs to supply the two engines with data). 
The engine (see block structure in Fig. 18) is designed to process stream of incoming data 
using a FIFO-like interface. While the input part keeps filling the memory of Stripe Manager 
by the data, the processing part performs the classification using valid data in the Stripe 
Manager. If the classification is successful (the result is evaluated to 1 - current position 
contains the object of interest) then the position is returned as a result. If the evaluation is -1, 
no output is performed. Pixels of the original image are pre-processed by the convolution 

 

unit (Convolver). The concept of the processing pipeline is based on an efficient hardware 
resource utilization by several virtual instances of the AdaBoost classifier (time 
multithreading). The total number of virtual instances is equal to the number of stages in the 
processing pipeline. In our case, five virtual instances circulate through the pipeline to 
overlap the execution time of the features (i.e., there is always one virtual instance in every 
stage of the pipeline). The engine exploits the parallelism at the level of the sliding windows 
used for object detection; each instance corresponds to one position of the sliding window in 
the image stripe. It means that in the beginning the instance acquires its sliding window and 
then evaluates all the features till program termination. Finally, it again acquires a new 
sliding window position if available in the stripe. Additional parallelism is gained using a 
memory technology which allows connecting two independent processing pipelines to one 
dual-port memory. The pipeline starts in Program Manager which stores the program 
common to all virtual instances. The program consists of 64-bit instructions, each defining 
one weak classifier. The most important fields of the instruction are: convolution index, X 
and Y position of the 3x3 grid in the window, and threshold. The instruction is sent to the 
Stripe Manager, which stores the valid stripe of the image in four individually addressable 
banks/BlockRAMs. Each bank has two reading ports, each one allocated for one of the 
pipelines. 
The evaluator block shown in Fig. 19 is designed to compute the feature in a parallel 
manner. Note that the mask is applied on the results of the comparators using logic ANDs, 
thus invalid picture elements are not included in the ranking, although they are compared. 
The result of LRD is transformed with an arbitrary normalization function (based on LUT) 
into an index to the memory containing the desired coefficients based on machine learning. 
The Threshold module that calculates the sums of such coefficients holds a separate sum for 
each virtual instance, which is compared with a threshold (stored in the instruction). The 
result of the comparison determines how the evaluation of the classifier should continue. It 
can either continue with the next feature or end the evaluation of current position with a 
result (detected, not detected). The result is sent to the Program Manager and the pipeline is 
closed. 
The engine was synthesized in a small FPGA Virtex-II 250 which is placed on the PCI board 
together with a DSP. The DSP uses DMA transfers to move data in and out of FPGA using 
the EMIF. Face detection was chosen for performance evaluation as it is considered to be a 
hard and widely known detection problem in machine vision community. A dataset 
containing 5,396 faces and 70,820 non-faces with resolution of 26x26 pixels was used to train 
and evaluate the classifier. The engine is able to evaluate two classifiers in one clock cycle 
(10ns) due to two processing pipelines. The AdaBoost with twenty weak classifiers was 
chosen for its acceptable error rate and still low computational demands. The performance 
comparison is done using the number of evaluated windows per second or frames per 
second. In our case, eight million evaluated windows per second have been achieved. The 
design is written in VHDL and synthesized for Xilinx Virtex-II technology. It takes about 
1,490 Slices and 14 BlockRAMs. 

 
4.5 Performance evaluation 
Comparing the performance of these diverse implementations is not trivial. The most 
significant performance metric is probably the detector throughput in frames per second for 
a sufficiently long video. The processing time for one frame does not reflect the case where 
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more frames are processed in parallel or pipelined. This is the case of FPGA 
implementation, for example. There, processing is divided into two pipeline stages - transfer 
to/from the card and detection. Also with four detection engines on the Uni1p card, up to 
eight frames can be processed in one moment; this situation also occurs on the GPU 
implementation. On the other hand, the time for one frame is an important metric in 
situations where separate frames are processed. 
The processing time can be split into several phases. The crudest division is on 
preprocessing and scanning. The preprocessing can be further divided into contruction of 
the image pyramid and calculation of the convolutions. In some implementations, some of 
these phases do not exist at all or are interleaved. In that case, the time is measured for all 
interleaved phases together, since separate measurement would seriously affect the 
performance. 
The tests were performed on a computer with CPU Intel Core2 Duo E8200 at 2.66 GHz, 3 GB 
DDR3 RAM and ASUS NVidia ENGTX280/HTDP graphics card. The table shows all three 
partial times for one frame, together with the total frame processing time. These times are in 
milliseconds. The times for missing or interleaved phases are left blank, meaning the time is 
equal to zero. The last column shows the theoretical throughput in frames per second (only 
the detection phases were measured, no video reading/decoding, waiting for the camera or 
image displaying were counted in). 
A recording of television news was used as the test data. Three experiments with differently 
sized video were executed: low resolution video (640×350px, Table 1), broadcasting quality 
video (720×576px, Table 2) and high resolution HD video (1920×1080px, Table 3). Simple 
refers to straightforward implementation of LRD evaluation with no special optimizations, 
Haar is the same case as Simple but Haar-like features are used in the classifiers. The SSE, 
CUDA and GPU correspond to the implementations described in section 4. Note that the 
percentage of participation of the preprocessing and scanning phases do not have to sum up 
to 100 %; the rest small amount of time is overhead spent in the auxiliary parts of the 
program. 
 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 3.2 1.6 191.2 98.0 195.0 5.2 
SSE 0.5 1.4 31.3 96.8 32.3 31.1 
CUDA 0.2 1.1 12.1 94.5 12.8 78.7 
GPU 0.1 1.0 10.0 87.3 11.5 86.9 
Haar 7.6 3.9 187.7 95.8 195.9 5.1 

Table 1. Results for low resolution video (640×350px) 
 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 8.5 1.8 448.0 97.8 458.0 2.2 
SSE 1.4 1.7 78.4 96.5 81.2 12.3 
CUDA 0.5 2.8 17.2 89.7 19.2 52.1 
GPU 0.3 1.4 20.4 85.0 24.0 41.6 
Haar 20.4 3.5 551.8 96.2 573.8 1.7 

Table 2. Results for broadcasting quality video (720×576px) 
 

 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 20.2 2.5 764.3 97.0 787.9 1.3 
SSE 3.2 2.0 153.1 96.0 159.6 6.3 
CUDA 1.1 3.4 28.2 86.2 32.7 30.6 
GPU 0.5 1.4 25.4 77.3 32.8 30.4 
Haar 48.2 4.3 1059.9 95.3 1111.4 0. 9 

Table 3. Results for full HD video (1920×1080px) 
 

The FPGA implementation was measured separately, because it significantly differs from 
the other implementations. Most importantly, it does not support classifiers longer than 256 
stages, because of limited on chip memory. Therefore, direct comparison would be 
misleading. 
Each of the four DX64 modules on the Uni1p board is able to process 21 frames 320×240 px 
or 6 frames 640×480 per second. In both cases, the image pyramid has 15 levels. Because of 
the FPGA size, only one evaluator and one convolving unit was employed and a part of the 
data-filling functionality is done by the DSP instead of the FPGA. 

 
5. Conclusions 
 

This contribution presents the Local Rank Differences/Patterns low-level image feature 
extractor and its efficient implementations on several hardware architectures. This image 
feature set was not only developed to provide equal classification performance as its state-
of-the-art alternatives, but to be executed much more efficiently in hardware 
implementations – either programmable hardware (FPGA) or custom specialized chips 
(ASIC). However, the feature set performs well also on more conventional platforms based 
on processors. 
The measurements given in section 4 show that the speed achieved by using Local Rank 
Functions – namely Local Rank Differences (the special case) – is interesting. The baseline 
implementation outperformed the state-of-the-art Haar wavelets (especially in case of 
higher resolutions), and the hardware-accelerated implementations speeded-up the baseline 
LRD implementations more than by order of magnitude. Measurements show that the 
performance on the GPU’s is equal for CUDA and GLSL programming. Considering that 
CUDA is much more intuitive and compatible to standard C language programming, the 
conclusion can be drawn that CUDA (or possibly OpenCL in near future) is a good selection 
for exploiting graphics hardware for non-rendering tasks, such as object detection. 
Future work should include exploiting more general Local Rank Functions and conducting 
further investigation of the combinations of the features with more traditional ones. 
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more frames are processed in parallel or pipelined. This is the case of FPGA 
implementation, for example. There, processing is divided into two pipeline stages - transfer 
to/from the card and detection. Also with four detection engines on the Uni1p card, up to 
eight frames can be processed in one moment; this situation also occurs on the GPU 
implementation. On the other hand, the time for one frame is an important metric in 
situations where separate frames are processed. 
The processing time can be split into several phases. The crudest division is on 
preprocessing and scanning. The preprocessing can be further divided into contruction of 
the image pyramid and calculation of the convolutions. In some implementations, some of 
these phases do not exist at all or are interleaved. In that case, the time is measured for all 
interleaved phases together, since separate measurement would seriously affect the 
performance. 
The tests were performed on a computer with CPU Intel Core2 Duo E8200 at 2.66 GHz, 3 GB 
DDR3 RAM and ASUS NVidia ENGTX280/HTDP graphics card. The table shows all three 
partial times for one frame, together with the total frame processing time. These times are in 
milliseconds. The times for missing or interleaved phases are left blank, meaning the time is 
equal to zero. The last column shows the theoretical throughput in frames per second (only 
the detection phases were measured, no video reading/decoding, waiting for the camera or 
image displaying were counted in). 
A recording of television news was used as the test data. Three experiments with differently 
sized video were executed: low resolution video (640×350px, Table 1), broadcasting quality 
video (720×576px, Table 2) and high resolution HD video (1920×1080px, Table 3). Simple 
refers to straightforward implementation of LRD evaluation with no special optimizations, 
Haar is the same case as Simple but Haar-like features are used in the classifiers. The SSE, 
CUDA and GPU correspond to the implementations described in section 4. Note that the 
percentage of participation of the preprocessing and scanning phases do not have to sum up 
to 100 %; the rest small amount of time is overhead spent in the auxiliary parts of the 
program. 
 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 3.2 1.6 191.2 98.0 195.0 5.2 
SSE 0.5 1.4 31.3 96.8 32.3 31.1 
CUDA 0.2 1.1 12.1 94.5 12.8 78.7 
GPU 0.1 1.0 10.0 87.3 11.5 86.9 
Haar 7.6 3.9 187.7 95.8 195.9 5.1 

Table 1. Results for low resolution video (640×350px) 
 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 8.5 1.8 448.0 97.8 458.0 2.2 
SSE 1.4 1.7 78.4 96.5 81.2 12.3 
CUDA 0.5 2.8 17.2 89.7 19.2 52.1 
GPU 0.3 1.4 20.4 85.0 24.0 41.6 
Haar 20.4 3.5 551.8 96.2 573.8 1.7 

Table 2. Results for broadcasting quality video (720×576px) 
 

 

 Preprocessing Scanning Total Throughput 
 [ms] % [ms] % [ms] [fps] 
Simple 20.2 2.5 764.3 97.0 787.9 1.3 
SSE 3.2 2.0 153.1 96.0 159.6 6.3 
CUDA 1.1 3.4 28.2 86.2 32.7 30.6 
GPU 0.5 1.4 25.4 77.3 32.8 30.4 
Haar 48.2 4.3 1059.9 95.3 1111.4 0. 9 

Table 3. Results for full HD video (1920×1080px) 
 

The FPGA implementation was measured separately, because it significantly differs from 
the other implementations. Most importantly, it does not support classifiers longer than 256 
stages, because of limited on chip memory. Therefore, direct comparison would be 
misleading. 
Each of the four DX64 modules on the Uni1p board is able to process 21 frames 320×240 px 
or 6 frames 640×480 per second. In both cases, the image pyramid has 15 levels. Because of 
the FPGA size, only one evaluator and one convolving unit was employed and a part of the 
data-filling functionality is done by the DSP instead of the FPGA. 

 
5. Conclusions 
 

This contribution presents the Local Rank Differences/Patterns low-level image feature 
extractor and its efficient implementations on several hardware architectures. This image 
feature set was not only developed to provide equal classification performance as its state-
of-the-art alternatives, but to be executed much more efficiently in hardware 
implementations – either programmable hardware (FPGA) or custom specialized chips 
(ASIC). However, the feature set performs well also on more conventional platforms based 
on processors. 
The measurements given in section 4 show that the speed achieved by using Local Rank 
Functions – namely Local Rank Differences (the special case) – is interesting. The baseline 
implementation outperformed the state-of-the-art Haar wavelets (especially in case of 
higher resolutions), and the hardware-accelerated implementations speeded-up the baseline 
LRD implementations more than by order of magnitude. Measurements show that the 
performance on the GPU’s is equal for CUDA and GLSL programming. Considering that 
CUDA is much more intuitive and compatible to standard C language programming, the 
conclusion can be drawn that CUDA (or possibly OpenCL in near future) is a good selection 
for exploiting graphics hardware for non-rendering tasks, such as object detection. 
Future work should include exploiting more general Local Rank Functions and conducting 
further investigation of the combinations of the features with more traditional ones. 
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