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1. Introduction      
 

In the development of modern robot manipulators, it is required that the robot controller 
has the capability to overcome unmodeled dynamics, variable payloads, friction torques, 
torque disturbances, parameter variations, measurement noises which can be often 
presented in the practical environment.  
The objective of this chapter is to provide the reader with an overview on advanced 
nonlinear control techniques of a rigid robot manipulator. In nonlinear control field, a 
common strategy is called model based control, which can be derived from the 
mathematical model of the system. However, in case of robot manipulator, it is weakened 
by inaccuracies present in the robot model, where the performance of the control algorithm 
is not guaranteed. As mentioned above, these inaccuracies can be defined as parametric 
uncertainties, unmodeled dynamics, and unknown external disturbances. To overcome the 
uncertainties’ drawback, robust nonlinear control can be a solution. The goal of robust 
control is to maintain performance in terms of stability, tracking error, or other 
specifications despite inaccuracies present in the system. 
In this chapter we present two nonlinear model based control strategies: the feedback 
linearization control and a nonlinear model predictive control for rigid robot manipulator. 
We first consider the dynamic of the robot manipulator driven by the Euler-Lagrange 
equations. Based on this general representation, we are able to derive equations of the 
nonlinear controller for both strategies. Then, a robustness study is carried out through 
compensation of the system inaccuracies. Two methods are used; the first one is based on 
the theory of guaranteed stability of uncertain systems, while the second is figured out 
using the nonlinear control law. 
The computation of the nonlinear model based control assumes that all state variables are 
available. In case of robot manipulators, it implies the presence of additional sensors in each 
joint such as velocity measurements. They are often obtained by means of tachometers, 
which are perturbed by noise, or moreover, velocity measuring equipment is frequently 
omitted due to the savings in cost, volume, and weight. Model-based observers are 
considered very well adapted for state estimation and allow, in most cases, a stability proof 
and a methodology to tune the observer gains, which guarantee a stable closed loop system. 
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In this chapter, nonlinear observer is discussed for state variables estimation. It is a 
powerful tool to handle nonlinear and uncertain systems, which is the case of the robot 
manipulator. 
Finally, the coupling between the nonlinear model based control and the state observer is 
discussed and the global stability of the closed loop system is proven theoretically via 
Lyapunov stability theory. 

 
2. Robot modeling  
 

In this chapter, the nonlinear control laws will be developed for rigid robot manipulators. 
Therefore, the design and control of such robots require mathematical model of the process. 
The dynamic of n-link rigid robot manipulator is driven by the Euler-Lagrange equations as 
 

                                                     uqGqqqCqqD  )(),()(                                                   (1) 
 
where q(t)n is the vector of the angular joint positions, which are the generalized 
coordinates and assumed available by measurement. u(t)n is the vector of the driving 
torques, which are the control inputs. D(q)n×n, D(q) = D(q)T > 0 is the link inertia matrix. 
C(q, q  ) q n is the vector of the Coriolis and centripetal torques. G(q)n is the vector of 
gravitational torques. The outputs to be controlled are the joint angles in the robot. For more 
detail about robot modeling, the reader can refer to (Spong et al., 2006; Kozłowski, 2004). 
The practical implementation of the control law for robot manipulators requires 
consideration of various sources of uncertainties such as modeling errors, unknown loads, 
and computation errors. In order to get the real values of the system elements, the 
uncertainties of the system, error or mismatch represented by Δ(.), are added to the 
computed or nominal values represented by (.)0. Therefore, the matrices are rewritten as 
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Moreover, the frictions Fr(t)n, considered as unmodeled quantities, and the external 
disturbances b(t)n are added to the robot model (1), which becomes 
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Then, after simplification, the model dynamic of the robot is given by  
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η is called uncertainty, which is defined by 
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It includes unmodeled quantities, parametric uncertainties, and external disturbances. 
In a state space form, the nonlinear system of the robot model (4) can be written as 
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where, the state vector TT ][][ 21 qqxxx  , and the vector functions f: n→2n and 
g:n→2n  are vector fields and defined as follows 
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The output vector of angular positions to be controlled is  
 

                                               y = h(x) = C x                                                             (8) 
 
where C = [In×n  0n×n ], and I: identity matrix. The functions f(x), g(x) and h(x): n→n are 
assumed to be continuously differentiable a sufficient number of time.  
First, the development of the control laws will be carried out for the undisturbed system 
where the uncertainties are not included in the analysis. Then, a robust control is studied 
through a compensation of the uncertainties by estimation.  

 
3. Nonlinear model based control of robot manipulators 
 

3.1 Feedback linearization control 
Feedback linearization is one of the most important strategies for nonlinear control design. 
There are two general types of linearization: input-state linearization and input-output 
linearization. Necessary and sufficient conditions have been established for each type of 
linearization. For a given nonlinear system, these conditions can be checked to determine if 
the system is linearizable (Corriou, 2004; Nijmeijer & Van der Schaft, 1990; Isidori, 1985; 
Isidori & Ruberti, 1984). 
In this chapter, we will study the feedback linearization, based on input-output 
linearization, of a rigid robot manipulator.  The idea is to differentiate the output y, using 
Lie derivatives, to obtain an expression where the input u appears explicitly. The number of 
times of differentiation is called relative degree.  
Definition 1: The Lie derivative of function hj(x) along a vector field f(x) = ( f1(x)... fn(x)) is 
given by 
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In this chapter, nonlinear observer is discussed for state variables estimation. It is a 
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where C = [In×n  0n×n ], and I: identity matrix. The functions f(x), g(x) and h(x): n→n are 
assumed to be continuously differentiable a sufficient number of time.  
First, the development of the control laws will be carried out for the undisturbed system 
where the uncertainties are not included in the analysis. Then, a robust control is studied 
through a compensation of the uncertainties by estimation.  
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and, along another vector field g(x) = ( g1(x) ... gn(x)),  
 

                                                               )(x f
f i

i

j
jg g

x
hL

hLL
i 


                                                         (11) 

 
Definition 2: The system is said to have a relative degree r if 
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Then, r is the number of differentiation times to appear the input u in the expression of y. 
Differentiating the output, using Lie derivatives and the nominal robot state model (6) 
(without uncertainties), we have 
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where, y = x1 = q, and the relative degree for input u is r = 2.  
The principle of linearization control law is to get a linear system, where the output is 
influenced by an external input v only through a chain of two integrators as  
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Then, the control law is carried out as 
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It is possible to realize a pole-placement by imposing v as 
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where, K1 = diag(k1i),  K2 = diag(k2i),  i = 1, …, n 
Applying the control law (15) with the external input (16), the tracking error ey(t) = y − yr 
satisfies the second linear equation 
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and, hence, the error dynamics are determined by the choice of K2 and K1, so that the 
characteristic equation is Hurwitz. 
 
 
 
 

 

3.2 Nonlinear model based predictive control 
Model based predictive control (MPC) is considered an effective control method handling 
with constraints, nonlinear processes and disturbances. This control strategy requires an 
optimization method to solve for the control trajectory over a future time horizon based on a 
dynamic model of the process (Bordon & Camacho, 1998; Hedjar & Boucher, 2005; Hedjar, 
et al., 2002; Klančar & Škrjanc, 2007; Vivas & Mosquera, 2005).  
The objective of the nonlinear model based predictive controller is to carry out a control law 
u(t) in order to track the desired output trajectory yr at the next time (t+τ) through 
minimization of a general form of the cost function defined as 
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where ey(t+τ) is a predicted error, y(t+τ) is a τ-step ahead prediction of the output (angular 
positions) and  τ > 0 is a prediction horizon . 
In order to minimize the cost function (18), it is needed to define a prediction model for the 
behavior of the output in the moving time frame. As the robot model (6) is known, a 
mathematical tool based on Taylor series expansion can be used to develop the prediction 
model.  
By definition, the Taylor series expansion is carried out using Lie derivatives and given by 
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where ri is the relative degree. 
Based on this expansion, the prediction model for robot model is expressed by 
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Using the output differentiations (13), we have 
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Then, the prediction model (20) is rewritten as 
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and, along another vector field g(x) = ( g1(x) ... gn(x)),  
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A similar analysis can be used to carry out the predicted reference trajectory yr  
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where,  
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It is assumed that the information about the derivatives of the reference yr is available. 
The predicted error is given by 
 
                                  )()()()()()( ttttt rry YYΤyye                                (24) 

 
The optimal control law can be carried out through minimization of a cost function with 
respect to the control input. In this work, two approaches to define the cost function will be 
studied:   

1. A cost function based only on the tracking error. The goals are to show that the use 
of this cost function type allows realizing a pole-placement similar to feedback 
linearization, and designing an uncertainty estimator (section 5. 2) based on the 
control law derived from this specific cost function. 

2. A general form of cost function where the tracking error and the control signal are 
defined over a future horizon.  

 
3.2.1 Cost function based on the tracking error 
The cost function is defined as a quadratic form of the tracking error over a future horizon  
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The control weighting term is not included in the cost function. However, the control effort 
can be achieved by adjusting τr (Chan et al., 1999; Merabet & Gu, 2008). 
Using the prediction model of error (24), the cost function (25) can be simplified as 
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The necessary and sufficient condition for cost function minimization is 
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Using equations (21) and (26), the condition (27) can be rewritten as 
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Therefore, the optimal control is 
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Finally, the control law (29) becomes 
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with,    K1 = (10/(3τr

2))* In×n ,  
            K2 = (5/(2τr))* In×n 
 
From the form of the control law (30) and compared with the linearizing control law (15), it 
can be noticed that they are similar and allow realizing a pole-placement to have a linear 
dynamic of the tracking error of the closed loop system. 

 
3.2.2 General form of the cost function  
The cost function is defined as quadratic forms of the tracking error and weighting control 
over a future horizon 
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A similar analysis can be used to carry out the predicted reference trajectory yr  
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1. A cost function based only on the tracking error. The goals are to show that the use 
of this cost function type allows realizing a pole-placement similar to feedback 
linearization, and designing an uncertainty estimator (section 5. 2) based on the 
control law derived from this specific cost function. 
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defined over a future horizon.  
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The control weighting term is not included in the cost function. However, the control effort 
can be achieved by adjusting τr (Chan et al., 1999; Merabet & Gu, 2008). 
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From the form of the control law (30) and compared with the linearizing control law (15), it 
can be noticed that they are similar and allow realizing a pole-placement to have a linear 
dynamic of the tracking error of the closed loop system. 

 
3.2.2 General form of the cost function  
The cost function is defined as quadratic forms of the tracking error and weighting control 
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where, Qn×n is a positive semi-definite matrix and Rn×n is a positive definite matrix, τr 
and τu are respectively the observation horizon of the tracking error and the control horizon. 
We assume that the control signal is constant over the control horizon (u(t+τ) = u(t)). 
Using the same analysis, as in section 3.2.1, the cost function (31) can be rewritten as 
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where the new matrix Π is defined by 
 

                                     








 

32

21

ΠΠ
ΠΠ

 ΤΤΠ T
T d

r




0

)()( Q  

 
The necessary and sufficient condition (27) becomes 
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Then, the optimal control law is given by 
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4. Robust control based on uncertainties compensation 
 

Robust control is considered among the high qualified methods in motion control. The goal 
of robust control is to maintain performance in terms of stability, tracking error, or other 
specifications despite inaccuracies present in the system. The robust motion control problem 
can be solved by designing an estimator to compensate the system uncertainties such as 
unknown external disturbances, unmodeled quantities and mismatched model (Spong et al., 
2006; Kozłowski, 2004; Corriou, 2004; Feuer & Goodwin, 1989; Chen et al., 2000; Curk & 
Jezernik, 2001; Merabet & Gu, 2008; Curk & Jezernik, 2001). 
The uncertainties compensation analysis will be developed for the linearizing control laws 
(15) and (30).  
Using the Lie derivative analysis in (13) about the uncertainties, it can be verified that the 
relative degree for η is r = 2. Then, the control law becomes 
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Usually the uncertainties η are unknown. Therefore, estimation is required to compute the 
control law and compensate their effects, and the robust control law is given by 
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There are several approaches to treat the robust control problem. In this chapter two 
methods will be discussed to design the uncertainties estimator; the first one is based on the 
theory of guaranteed stability of uncertain systems, while the second one is based on the 
model control law. 

 
4.1 Estimator based on the theory of guaranteed stability of uncertain systems 
In this section we will detail the so-called theory of guaranteed stability of uncertain 
systems, which is based on Lyapunov’s second method (Spong et al., 2006). 
Substituting the control input (36) in the robot model differentiation (13) plus uncertainties 
η, the tracking error dynamic of the closed loop system is given by 
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where, eη(t) = η(t) – ηest(t) 
In terms of tracking error, the state space model of the dynamic system (37) is given by 
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Since {K1, K2}>0, the matrix A1 is Hurwitz. Thus, for any symmetric positive define matrix Q, 
there exists a symmetric positive defined matrix P satisfying the Lyapunov equation 
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Let define the Lyapunov function candidate 
 
                                                             

 eeee  TT PV                                                             (40) 

 
where Γ is a positive definite symmetric matrix. 
Using equations (38) and (39), the time derivative of V is given by 
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where, Qn×n is a positive semi-definite matrix and Rn×n is a positive definite matrix, τr 
and τu are respectively the observation horizon of the tracking error and the control horizon. 
We assume that the control signal is constant over the control horizon (u(t+τ) = u(t)). 
Using the same analysis, as in section 3.2.1, the cost function (31) can be rewritten as 
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The necessary and sufficient condition (27) becomes 
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Then, the optimal control law is given by 
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4. Robust control based on uncertainties compensation 
 

Robust control is considered among the high qualified methods in motion control. The goal 
of robust control is to maintain performance in terms of stability, tracking error, or other 
specifications despite inaccuracies present in the system. The robust motion control problem 
can be solved by designing an estimator to compensate the system uncertainties such as 
unknown external disturbances, unmodeled quantities and mismatched model (Spong et al., 
2006; Kozłowski, 2004; Corriou, 2004; Feuer & Goodwin, 1989; Chen et al., 2000; Curk & 
Jezernik, 2001; Merabet & Gu, 2008; Curk & Jezernik, 2001). 
The uncertainties compensation analysis will be developed for the linearizing control laws 
(15) and (30).  
Using the Lie derivative analysis in (13) about the uncertainties, it can be verified that the 
relative degree for η is r = 2. Then, the control law becomes 
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There are several approaches to treat the robust control problem. In this chapter two 
methods will be discussed to design the uncertainties estimator; the first one is based on the 
theory of guaranteed stability of uncertain systems, while the second one is based on the 
model control law. 

 
4.1 Estimator based on the theory of guaranteed stability of uncertain systems 
In this section we will detail the so-called theory of guaranteed stability of uncertain 
systems, which is based on Lyapunov’s second method (Spong et al., 2006). 
Substituting the control input (36) in the robot model differentiation (13) plus uncertainties 
η, the tracking error dynamic of the closed loop system is given by 
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Since {K1, K2}>0, the matrix A1 is Hurwitz. Thus, for any symmetric positive define matrix Q, 
there exists a symmetric positive defined matrix P satisfying the Lyapunov equation 
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Let define the Lyapunov function candidate 
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where Γ is a positive definite symmetric matrix. 
Using equations (38) and (39), the time derivative of V is given by 
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1                                                       (42) 

 
Since there is no information about uncertainties variations, it can be assumed that  (t) = 0 
(Chan et al., 1999). This assumption does not necessarily mean a constant variable, but that 
the changing rate in every sampling interval should be slow.  
From (42), the dynamics of the uncertainties estimation is given by 
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Using the definition (42), it follows that the Lyapunov function V satisfies 0V  along 
solution trajectories of equation (6) because 
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This guarantees that e (t) and eη(t), and therefore ηest(t), are bounded. 
The uncertainties estimation equation (42) can also be written as 
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4.2 Estimator based on the model control law 
From the model dynamic of the robot (4), an estimator for uncertainties can be defined as 
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where, L = ℓ*I 

n×n n×n is a matrix gain, and ℓ is a positive constant (Chen et al., 2000; Chen 
et al., 1999; Feng et al., 2002). 
From the equation (40) and with the assumption  (t) = 0, the dynamic of the uncertainty 
estimator is given by 
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Since L> 0 and D0>0, it can be easily verified that the tracking error of the estimation 
converge to zero. 
Substituting the control law (30) in the observer equation (46), the dynamic of the 
uncertainties estimation is given by 
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Integrating the equation (48), the uncertainties estimation is defined by 
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The advantage of the uncertainties estimator (49) compared to (45) is that it contains an 
integral action, which allows achieving zero steady state error for constant reference inputs 
and disturbances (Corriou, 2004; Cavallo et al., 1999; Feuer, & Goodwin 1989).  

 
5. Nonlinear observer based state estimation 
 

The computation of a model control law, such as linearization control and model predictive 
control, requires angular position and velocity measurements. In the practical robotic 
systems all the generalized coordinates can be precisely measured by the encoder for each 
joint, but the velocity measurements obtained through the tachometers are easily perturbed 
by noises. To overcome these physical constraints, a nonlinear observer can be used for state 
estimation (Kozłowski, 2004; Rodriguez-Angeles & Nijmeijer, 2004; Heredia & Yu, 2000).  
The state space model of rigid robot (6), (7) can be reorganized as 
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where, x1 = q; qx 2 , y is the measurable position vector. 
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The nonlinear state observer based on high gain for the system (50) can be designed, to 
estimate angular positions and velocities, as 
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where, ix̂  (i = 1, 2) are the estimated states; est̂ is the estimated uncertainty carried out from 
(49) with estimated states. 
The estimated nonlinear functions f(.) and g(.) are given by: 
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From (50) and (52), the observer error dynamic is given, in matrix form, by 
 

                                                  )()(~)(~ tWtHt  ee                                                      (54)   
where,  
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Since L> 0 and D0>0, it can be easily verified that the tracking error of the estimation 
converge to zero. 
Substituting the control law (30) in the observer equation (46), the dynamic of the 
uncertainties estimation is given by 
 

                                            )()()()( 12 tKtKtLtest yyy eee                                           (48) 

 
Integrating the equation (48), the uncertainties estimation is defined by 
 

                                            dttKtKtLtest  eee yyy  )()()()( 12                                    (49) 

 

The advantage of the uncertainties estimator (49) compared to (45) is that it contains an 
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by noises. To overcome these physical constraints, a nonlinear observer can be used for state 
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The nonlinear state observer based on high gain for the system (50) can be designed, to 
estimate angular positions and velocities, as 
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where, ix̂  (i = 1, 2) are the estimated states; est̂ is the estimated uncertainty carried out from 
(49) with estimated states. 
The estimated nonlinear functions f(.) and g(.) are given by: 
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From (50) and (52), the observer error dynamic is given, in matrix form, by 
 

                                                  )()(~)(~ tWtHt  ee                                                      (54)   
where,  
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            H1 = h1* In×n , H2 = h2* In×n, and h1, h2 are positive constants. 
 

δ(.) is the disturbance term in the state observer. It is given by 
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The observer gain H is chosen to be a Hurwitz matrix in order to guarantee the convergence. 
In the presence of δ, the observer gains are adjusted as 
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where, 0< ε <<1, and γ1, γ2 are positive constants.  
This adjustment allows making the transfer function from δ to the error small so that the 
estimation error is not sensitive to the modeling error (Wang & Gao, 2003; Khalil, 1999; 
Heredia & Yu, 2000).   

 
6. Global stability of the closed loop system  
 

This section aims to discuss the global convergence of the tracking error for the closed loop 
system. The theory of stability, based on Lyapunov method, is used to prove the global 
stability of the robot system controlled by the robust estimated nonlinear control law. 
The propriety of boundedness of the model elements of the robot are given from (Spong et 
al., 2006).  
 Since D0(q) > 0, it can be assumed that DqDD  1

0 )( , where D D, are positive constants. 

 The matrix ),(0 qqC   is linear on )(tq  and bounded on q(t). Therefore, 
 110 ;),(   qqqC  . 

 The vector G0(q) satisfies║G0(q)║≤ α2; α2 +. 
 All variations Δ(.) are bounded. 
 The signals rrr qqq  ,, are bounded, such as

210 )(and)()( rtrt,rt  rrr qqq  . 

 The disturbance term δ(.) is smaller than the state observer error. Thus, )(~)( tt e  . 

 The vector function f(x1, x2) is Lipschitz with respect to x2. Thus, there exists 0  such 
that 

nn

refrefff





),(

;),(),(

21

22121

xx

eqxqxxx    

 
Integrating the state observer in the control loop, the control law is carried out with the state 
estimation (Rodriguez-Angeles & Nijmeijer, 2004). Based on state observer (52), the model 
control law (36) becomes 
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where, ry yye  ˆˆ  
The disturbance estimator (49) is carried out with the state estimation, which is expressed by 
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Substituting the control law (57) in the equation (13) with estimated states from (52), we 
have the dynamic of the tracking error as 
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Using the state space form, the tracking error system (59) can be written as 
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Using the estimated states of the robot model (52), the uncertainty estimator (46) can be re-
designed as   
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where, est̂ is the uncertainty estimation based on estimated states. 
So, the new error dynamic of the uncertainty estimator, based on estimation state model 
(52), is given by  
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where, 

est ˆˆ e is uncertainty error 

From (62), it can be noticed that the convergence of the uncertainty estimator is related to 
the convergence of the state observer.    
Under the state space form, the tracking error of the global system (robot + state observer + 
controller) can be carried out using error models (54) and (60)  
 

                                                              )()()( ttt BAee                                                     (63) 
where,  
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where, 0< ε <<1, and γ1, γ2 are positive constants.  
This adjustment allows making the transfer function from δ to the error small so that the 
estimation error is not sensitive to the modeling error (Wang & Gao, 2003; Khalil, 1999; 
Heredia & Yu, 2000).   
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This section aims to discuss the global convergence of the tracking error for the closed loop 
system. The theory of stability, based on Lyapunov method, is used to prove the global 
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Integrating the state observer in the control loop, the control law is carried out with the state 
estimation (Rodriguez-Angeles & Nijmeijer, 2004). Based on state observer (52), the model 
control law (36) becomes 
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Substituting the control law (57) in the equation (13) with estimated states from (52), we 
have the dynamic of the tracking error as 
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Using the estimated states of the robot model (52), the uncertainty estimator (46) can be re-
designed as   
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where, est̂ is the uncertainty estimation based on estimated states. 
So, the new error dynamic of the uncertainty estimator, based on estimation state model 
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where, 
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From (62), it can be noticed that the convergence of the uncertainty estimator is related to 
the convergence of the state observer.    
Under the state space form, the tracking error of the global system (robot + state observer + 
controller) can be carried out using error models (54) and (60)  
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By an appropriate choice of control parameters Ki (i=1,…,n) and state observer gain H, it can 
be ensured that the matrix A is Hurwitz. Therefore, for any symmetric positive define 
matrix Q, there exists a symmetric positive defined matrix P satisfying the Lyapunov 
equation 

                                                        QPAPA T                                                          (64) 
  
Let define the Lyapunov function candidate 
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Its derivative is given by 
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where min(Q), max(Q) denote the minimum and the maximum eigenvalues, respectively, of 
the matrix Q. 
We have 
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Using the last propriety of boundedness, we have 
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The condition, V is definite negative, is held when
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  . Therefore, by LaSalle’s 

invariance theorem, the origin is asymptotically stable. The global asymptotic stability of the 
estimated closed loop system with uncertainties is guaranteed. 

  
7. Simulation results and discussion 
 

We consider the two-link rigid robot manipulator to illustrate the performances of the 
nonlinear model predictive controller (36) with uncertainties compensation expressed by the 
observers (45) and (49) respectively (Merabet & Gu, 2008). The structure of the robot system 
driven by nonlinear model based control law is shown in figure 1.  
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Nonlinear model based control for two link rigid robot manipulator 
 
The elements of the two-link robot model are given by  
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For i = 1, 2, qi denotes the joint angle; mi denotes the mass of link i; li denotes the length of 
link i; lci denotes the distance from the previous joint to the center of mass of link i; and Ii 
denotes the moment of inertia of link i (Spong et al., 2006). 
The nominal values of robot parameters are:  
 
Link 1: m1 = 10 kg, l1 = 1 m, lc1 = 0.5 m, I1 = 10/12 kg-m2. 
Link 2: m2 = 5 kg, l2 = 1 m, lc2 = 0.5 m, I2 = 5/12 kg-m2. 
 
The model is simulated with a sample time of 10-4s and the initial values of angular 
positions and velocities are x̂  = [0.1 rad  0 rad/s]T for the state observer, and for the robot 
model x (0) = [0 rad  0 rad/s]T. The parameters of the controller, uncertainties observers and 
state observer are chosen by trial and error in order to achieve accurate performances. 
First, the tracking performance of robot system, driven by the nonlinear model predictive 
control law (36), is tested without the uncertainties observer. The robot system is affected by 
external disturbance b, which has the value 10 in the time interval [0.5s 4s]. The disturbance 
term is included in the robot model and the information about it is not taken into account 
when carrying out the control law. The value of prediction time is τr = 10-3s. The state 
observer gain is taken as H1=H2= [104 0; 0 108]. Figure 2 shows the result for angular 
positions and tracking errors. It can be seen that small tracking errors, for both joints, are 
successfully achieved. However, steady errors occur in the system responses. The present 
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By an appropriate choice of control parameters Ki (i=1,…,n) and state observer gain H, it can 
be ensured that the matrix A is Hurwitz. Therefore, for any symmetric positive define 
matrix Q, there exists a symmetric positive defined matrix P satisfying the Lyapunov 
equation 
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Let define the Lyapunov function candidate 
 

                                                       PeeTV                                                                (65) 
Its derivative is given by 
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invariance theorem, the origin is asymptotically stable. The global asymptotic stability of the 
estimated closed loop system with uncertainties is guaranteed. 

  
7. Simulation results and discussion 
 

We consider the two-link rigid robot manipulator to illustrate the performances of the 
nonlinear model predictive controller (36) with uncertainties compensation expressed by the 
observers (45) and (49) respectively (Merabet & Gu, 2008). The structure of the robot system 
driven by nonlinear model based control law is shown in figure 1.  
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Nonlinear model based control for two link rigid robot manipulator 
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For i = 1, 2, qi denotes the joint angle; mi denotes the mass of link i; li denotes the length of 
link i; lci denotes the distance from the previous joint to the center of mass of link i; and Ii 
denotes the moment of inertia of link i (Spong et al., 2006). 
The nominal values of robot parameters are:  
 
Link 1: m1 = 10 kg, l1 = 1 m, lc1 = 0.5 m, I1 = 10/12 kg-m2. 
Link 2: m2 = 5 kg, l2 = 1 m, lc2 = 0.5 m, I2 = 5/12 kg-m2. 
 
The model is simulated with a sample time of 10-4s and the initial values of angular 
positions and velocities are x̂  = [0.1 rad  0 rad/s]T for the state observer, and for the robot 
model x (0) = [0 rad  0 rad/s]T. The parameters of the controller, uncertainties observers and 
state observer are chosen by trial and error in order to achieve accurate performances. 
First, the tracking performance of robot system, driven by the nonlinear model predictive 
control law (36), is tested without the uncertainties observer. The robot system is affected by 
external disturbance b, which has the value 10 in the time interval [0.5s 4s]. The disturbance 
term is included in the robot model and the information about it is not taken into account 
when carrying out the control law. The value of prediction time is τr = 10-3s. The state 
observer gain is taken as H1=H2= [104 0; 0 108]. Figure 2 shows the result for angular 
positions and tracking errors. It can be seen that small tracking errors, for both joints, are 
successfully achieved. However, steady errors occur in the system responses. The present 
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situation can be explained by the fact that the control law has no information about the 
external disturbances in order to compensate their effects. Figure 3 illustrates the induced 
control torque applied to robot manipulator. Note that the control torque lie inside the 
saturation limits. From figure 4, we can observe that the estimation errors are good although 
the presence of steady errors in the responses. As shown in the equation of state observer 
(52), the information about uncertainties is needed to have an accurate performance. 
 

 
Fig. 2. Angular positions and tracking errors of distributed system without uncertainties 
compensator.  ……. reference,              estimate 
 

 
Fig. 3. Induced torque control produced from the nonlinear model predictive controller 

 

 
Fig. 4. Error estimation of the nonlinear state observer (controller without compensation) 
 
Then, the uncertainties observers (45) and (49) are applied to the control law (36) 
respectively. The matrix P has the value [106 0; 0 106] and Γ= In×n for the observer (45), and 
L=[102 0; 0 102] for the observer (49). Figure 5 illustrates the angular positions and tracking 
errors of the system with uncertainties compensators. The steady error is vanished 
completely with the compensator (49), which means that the disturbance is well rejected. 
However, with the compensator (45), the steady error is only reduced compared with the 
results in figure (2).The elimination of steady errors by the compensator (49) can be 
explained by the presence of the integral action. It is known in control theory that an 
integral action achieves zero steady state error for constant reference inputs and 
disturbances. The same observation can be noticed in the result of state estimation errors 
shown in figure 6, where the uncertainties, carried out by the compensator (49), are included 
in state observer. 

 
Fig. 5. Angular positions and tracking errors of distributed system with uncertainties 
compensator.   ….. reference,             estimate with compensator (45) ,           estimate with 
compensator (49) ….. tracking error with compensator (45),            tracking error with 
compensator (49) 
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Fig. 6. Error estimation of the nonlinear state observer (controller with compensation) 
 
In case of mismatched model, an unknown load carried by the robot is regarded as part of 
the second link, then the parameters m2, lc2, I2 will change, m2+Δm2, lc2+Δlc2, I2+ΔI2, 
respectively. The variations values are Δm2 = 1.5, Δlc2 = 0.125, ΔI2 = 1/12. Also, the friction 
(Coulomb and viscous friction) given by Fr(x2)=Fc sign(x2)+Fvx2, with values Fc=Fv =diag(5, 5), 
are added to the robot model. The same parameters values of the controller, disturbance 
observer (45) and state observer are used as declared above. However, the gain of 
compensator (49) is decreased L = [70  0; 0  70]. As shown in figure 7, in case of the 
compensator (49), the errors occur in transient response, for this raison the gain is decreased, 
then reach zero. In case of the compensator (45), the errors in transient response are smaller 
than in the first case, but they do not reach zero like the other observer.  
 

 
Fig. 7. Angular positions and tracking errors of mismatched model with uncertainties 
compensator. ….. reference,                estimate with compensator (45) ,            estimate with 
compensator (49). ….. tracking error with compensator (45),            tracking error with 
compensator (49) 

 

The results show that the tracking performance is successfully achieved and the effect of 
external disturbance is well rejected with the compensator (49). Concerning the unmodeled 
quantities and parametric uncertainties, the nonlinear model predictive controller, 
combined with uncertainties observer, deals well with their variations. It can be mentioned 
also that the state estimation, given by the nonlinear observer, is accurate for the tracking 
performance. The accuracy of the estimated nonlinear model predictive control combined 
with the compensator (49) is justified by the presence of the integral action, which eliminates 
steady state error. 

 
8. Conclusions and future work 
 

This chapter has presented some methods of advanced nonlinear control for robot systems. 
However, to cover all issues related to nonlinear control in detail will demand more than a 
chapter. The study has focused on model based control where a model dynamic of the 
process is needed to carry out the control law. 
Two nonlinear control approaches have been detailed in this work. A feedback linearization 
control based on input-output linearization has been developed using differential-geometric 
methods for nonlinear systems. Then, a model based predictive control has been discussed 
for a nonlinear control design to robot manipulators. The predictive control law minimizes a 
cost function for the control trajectory over a future time horizon. The control solution has 
been analytically derived, with no need of an online optimization, which enables fast real-
time implementation.  
Because of the uncertainties present in the system, a robustness strategy has been studied to 
enhance the tracking response of the system. Two methods have been investigated to deal 
with system uncertainties. One method is based on the theory of guaranteed stability of 
uncertain systems, which results to an observer taking information from the system tracking 
errors. The other one is an observer derived from the nonlinear model control law. It 
contains an integral action on system tracking errors. This type of control strategy is robust 
with respect to modeling errors, very effective in disturbance rejection, and gives no steady 
error caused by either parameters uncertainties or external disturbances.  
The development of these control strategies is related to the dynamic model of the process. 
In case of missing information about the system states, a version of control law based on 
state has been carried out with the quantities, angular positions and velocities, issued from a 
nonlinear state estimator. It has been shown that the tracking performance is achieved 
successfully when the uncertainties are well compensated. 
The issue of global stability of the closed loop system has been proved analytically via 
Lyapunov stability theory.  
The nonlinear control laws developed in this chapter are based on a dynamic model of the 
process. However, it is well known that mathematical representation of a dynamic model 
does not refer accurately to the reality. This is why it is very important to add to the control 
strategy a robustness analysis in order to compensate the uncertainties present in the 
dynamic model. As an alternative of this approach, intelligent control based on the process 
behavior can be considered as a solution for tracking motion of robot manipulators. 
Intelligent control achieves automation via the emulation of behavioral intelligence such as 
biological intelligence (e.g., the use of neural networks and genetics for control); the use of 
human’s knowledge to design a smart control methodology (fuzzy control). This research 
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area is very wide and the issues of modeling, mathematical stability, convergence and 
robustness analysis for learning systems must be investigated to design an accurate 
controller. 
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