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1. Introduction 

 

During the last decade the class of rigid robot systems has been the subject of intensive 
research in the field of systems and control theory, particularly owing to the inherent 
nonlinear nature of rigid robots. For the same reason, these systems have widely been used 
to exemplify general concepts in nonlinear control theory. As a result of this excessive 
research activity a large variety of control methods for rigid robot systems have been 
proposed, such as, proportional-integral-derivative (PID) control (Kelly, 1995), computed 
torque control (Luh et al., 1980), which achieve the trajectory tracking objective by feedback 
linearization of the nonlinear robot dynamics, adaptive control (Ortega & Spong, 1989), 
variable structure control (Slotine & Sastry, 1983), fuzzy control (Chang & Chen, 2000), 
passivity based control (Ryu et al, 2004; Bouakrif et al., 2010) and iterative learning control 
(Bouakrif et al., 2007; Tayebi, 2007). 
Many of these previous controllers require the complete state measurements, that is position 
and velocity, is available for feedback. Unfortunately, in practice this assumption can only 
partially be fulfilled for two reasons. First, although robot systems generally are equipped 
with high precision sensors for position measurements, velocity measurements are often 
contaminated with a considerable amount of noise. This circumstance may reduce the 
dynamic performance of the manipulator, since in practice, the values of the controller gain 
matrices are limited by the noise present in the velocity measurements (Khosla & Kanade, 
1988). Second, in robotic applications today velocity sensors are frequently omitted owing to 
the considerable savings in cost, volume and weight that can be obtained this way. A good 
solution of this problem is the use of the velocity observers to reconstruct the missing 
velocity signal starting from the available position measurements. Due to the nonlinear and 
coupled structure of the robot dynamical model, the problem of designing observers for 
robots is a very complex one. Recently, exploiting the structural properties of the robot 
dynamics, a number of conceptually different methods for both regulation and tracking 
control of robots equipped with only position sensors have been developed (Canudas dewit 
et al., 1992; Paden & Panja, 1988). (Berghuis & Nijmeijer, 1993) presented a controller-
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observer scheme for the global regulation of robots using only position feedback. The PD 
control with high-gain observer was developed (Yu & Li, 2006), the authors propose to 
reconstruct the velocity signal via a high-gain observer, but a quite noisy movement of the 
manipulator, which may be undesirable for greater robots employed for industrial 
applications. 
In this chapter, we want to solve the trajectory tracking problem of rigid robot manipulators 
which are not equipped with the tachometers (velocity sensors) to avoid the disadvantage 
mentioned in the previous paragraph. For this purpose, two velocity observers are 
presented to estimate the missing velocity. Using the first observer, an estimate region of 
attraction is given. It is important to observe that this region can be made arbitrarily large by 
increasing the observer gain. This kind of stability is called semi-global. The second is 
globally asymptotically stable. Thus, there is more freedom to choose the initial states. This 
presents an advantage of the second observer. Thereafter, these observers are integrated 
with a nonlinear controller by replacing the velocity in the control law with its estimation 
yielded by these observers, independently. Furthermore, the semi-global and global 
asymptotic stability conditions are established of the composite controller consisting of 
robot manipulator, nonlinear controller and the first and second velocity observer, 
respectively. This proof is based on Lyapunov theory and using saturation technique for the 
second observer. Finally, simulation results on two-link manipulator are provided to 
illustrate the effectiveness of the global velocity observer based trajectory tracking control. 

 
2. Dynamic equation for robot manipulators 
 

We consider a robot manipulator that is composed of serially connected rigid links. The 
motion of the manipulator with n-links is described by the following dynamic equation: 
 

)(),()(
...

qGqqqCqqM                                                         (1) 
 

where )(tq , )(tq , )(tq nR denote the link position, velocity, and acceleration vectors, 

respectively, nnRtqM ))((  represents the link inertia matrix, nnRtqtqC ))(),((   represents 

centripetal-Coriolis matrix, 1))((  nRtqG represents the gravity effects, and 1)(  nRt  

represents the torque input vector. 
In the sequel, n

ddd Rtqtqtq )(),(),(   denote the desired link position, velocity, and 
acceleration vectors, respectively. 
The dynamic equation (1) has the following properties (Berghuis, 1993; Ortega & Spong, 
1989) that will be used in the controller development and analysis. 
P 1:   The inertia matrix ))(( tqM is symmetric, positive definite and bounded as 
 

Mmn MqMM  )(0                                                          (2) 
 

where nRq  , and 0 mM MM .                          

P 2:  nii ,..., , the thi  element of the vector qqqC ),(  is equal to qqNq i
T  )(  with iN  

symmetric, continuously differentiable, and such that 0 iN  satisfies 
 

n
ii RqNqN )( .                                                   (3) 

 
P 3:  Norm of the centripetal-Coriolis is bounded as follows 
 

qCqqC m  ,( .                                                       (4) 
 

P 4: The matrix ),(2),(
...
qqCqqM   is skew-symmetric, i.e., for all nX  , 

 

0)),(2),((
...

 XqqCqqMX T .                                                 (5) 

 
P 5 : For all nRyx ,  

 
xyqCyxqC ),(),(                                                          (6) 

 
yxqCyzqCyxzqC ),(),(),(   .                                                (7) 

 
In this paper, the following lemmas are used. 
Lemma 1 (Shim et al., 2001): Consider a 1C  function RRRyxf qp :),(  which is 

continuous and well defined on qRX   where  pixRxX ii
p  1,   with 0i . 

Then )),(( yxf   is globally well defined and equal to ),( yxf  for Xx , and where exists 
)(yL  such that  

 
qp RyRxxxxyLyxfyxf  ,~,,~)()),~(()),((                       (8) 

 
where )(x  is an element-wise saturation function  which is saturated outside X . 
Proof  
By the Mean Value Theorem, there exists pRz  such that  
 

))~()()(,()),~(()),(( xxyz
x
fyxfyxf  



                                       (9) 

 
which implies 
 

)~()()()),~(()),(( xxyLyxfyxf                                           (10) 
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reconstruct the velocity signal via a high-gain observer, but a quite noisy movement of the 
manipulator, which may be undesirable for greater robots employed for industrial 
applications. 
In this chapter, we want to solve the trajectory tracking problem of rigid robot manipulators 
which are not equipped with the tachometers (velocity sensors) to avoid the disadvantage 
mentioned in the previous paragraph. For this purpose, two velocity observers are 
presented to estimate the missing velocity. Using the first observer, an estimate region of 
attraction is given. It is important to observe that this region can be made arbitrarily large by 
increasing the observer gain. This kind of stability is called semi-global. The second is 
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asymptotic stability conditions are established of the composite controller consisting of 
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illustrate the effectiveness of the global velocity observer based trajectory tracking control. 
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In the sequel, n
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The dynamic equation (1) has the following properties (Berghuis, 1993; Ortega & Spong, 
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Mmn MqMM  )(0                                                          (2) 
 

where nRq  , and 0 mM MM .                          

P 2:  nii ,..., , the thi  element of the vector qqqC ),(  is equal to qqNq i
T  )(  with iN  

symmetric, continuously differentiable, and such that 0 iN  satisfies 
 

n
ii RqNqN )( .                                                   (3) 

 
P 3:  Norm of the centripetal-Coriolis is bounded as follows 
 

qCqqC m  ,( .                                                       (4) 
 

P 4: The matrix ),(2),(
...
qqCqqM   is skew-symmetric, i.e., for all nX  , 

 

0)),(2),((
...

 XqqCqqMX T .                                                 (5) 

 
P 5 : For all nRyx ,  

 
xyqCyxqC ),(),(                                                          (6) 

 
yxqCyzqCyxzqC ),(),(),(   .                                                (7) 

 
In this paper, the following lemmas are used. 
Lemma 1 (Shim et al., 2001): Consider a 1C  function RRRyxf qp :),(  which is 

continuous and well defined on qRX   where  pixRxX ii
p  1,   with 0i . 

Then )),(( yxf   is globally well defined and equal to ),( yxf  for Xx , and where exists 
)(yL  such that  

 
qp RyRxxxxyLyxfyxf  ,~,,~)()),~(()),((                       (8) 

 
where )(x  is an element-wise saturation function  which is saturated outside X . 
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where )(yL  is the maximum of ),( yz
x
f

  with respect to z  over the compact range of 

saturation function. Then the claim (8) follows from the fact that xxxx ~)~()(  . 
Lemma 2 “Barbalat’s lemma” (Slotine & Li, 1991): If H  is a continuous function, and it is  

bounded  when t , and if H  is uniformly continuous in time, then  0H . 
In (2), (3), (4) and in the sequel the norm of a vector X  is defined as 
 

XXX T                                                                    (11) 

 
and the norm of a matrix A  as 
 

)(max AAA T                                                               (12) 

 
with (.)max  denotes the maximum eigenvalue of A .  
The following assumption is imposed. 
Assumption: The robot velocity is bounded by a known constant mV  such that 
 

mVtq )(      Rt .                                                            (13) 
 

Remark 1. This assumption is definitively realistic. In fact, it is reasonable to expect that the 
joint velocities of a robot will not exceed certain a priori bounds that come from the 
mechanic limitations of the robot and/or from the way the robot operates. Moreover, this 
assumption is recurrent in the literature on control for robotic manipulators, for example 
(Berghuis & Nijmeijer, 1993; Nicosia & Tomei, 1990; Xian et al., 2004).   

 
3. Controller-observers design  
 

In this section we present the main results of this chapter, formulated in a lemma and two 
theorems and their proofs. Indeed, we want to solve the trajectory tracking problem of robot 
manipulators without using the velocity signal. This signal is reconstructed, firstly by a 
semi-globally stable velocity observer and secondly by a globally stable velocity observer. 

 
3.1 Semi-globally asymptotically stable observer 
Consider the following velocity observer 
 

  qLqGqqqCMz  ˆ)(ˆ)ˆ,(1                                                    (14) 
Lqzq ̂

                                                                   (15) 
 

Where q
̂

 represents the estimated velocity, z  is the observer state. nlIL  , where 0l  

and 
nn

n RI   is an identity matrix. 
 

Lemma 3 

If 
m

mm
m M

VC
L

2
  then 0~lim  qt


, and the initial error )0(~q  belongs to the ball B  defined 

by: 
























M

m
m

m

mmn

M
M

V
C
LM

qRqB )0(~~ 
. Where mL   denotes the minimum 

eigenvalue of L  and qqq  ˆ~  . 
 

Proof 
The time-derivative of (15) gives us 
 

  )ˆ()(ˆ)ˆ,(ˆ 1 qqLqGqqqCMq     .                                            (16) 
 

From (1), we can write 
 

 )(),(1 qGqqqCMq     .                                                     (17) 
 

Subtracting (16) from (17), we have 
                     

  qLqqqCqqqCMq  ~ˆ)ˆ,(),(~ 1  
.                                             (18) 

 
Using the property 5, we obtain 
 

  qLqqqCqqqCMq  ~~)~,(~),(2~ 1  
.                                           (19) 

 
Consider the following Lyapunov function 
 

qqMqqV T  ~)(~
2
1)~(  .                                                          (20) 

Thus 

                                
22

)(~
2
1))(~()(~

2
1 tqMtqVtqM Mm

  .                                            (21) 

 
The time-derivative of (20) gives us 
 

                                        qqMqqqMqqV TT  ~)(~
2
1~)(~)~(  .                                                 (22) 
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where )(yL  is the maximum of ),( yz
x
f

  with respect to z  over the compact range of 

saturation function. Then the claim (8) follows from the fact that xxxx ~)~()(  . 
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2
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2
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  .                                            (21) 

 
The time-derivative of (20) gives us 
 

                                        qqMqqqMqqV TT  ~)(~
2
1~)(~)~(  .                                                 (22) 

 

www.intechopen.com



Robot Manipulators, New Achievements22

From (19) and (22), we obtain 
 

  qMLqqqqCqqCqqqqCqMqqV TTT  ~~~),()~,(~~),()(
2
1~)~( 






  .                          (23) 

 
Using the properties 1, 3, 4 and the assumption (13), we have 
 

   2~~ qqVCLMV mmmm
  .                                              (24) 

If                   
 

m

mm
m M

qVC
L

~
                                                                 (25) 

thus           

                             
m

mm
m M

VC
L

2
                                                                    (26) 

 
then 

0V .                                                                           (27) 
 

From (25), it comes 

                                                  m
m

mm V
C
LM

q ~
.                                                                (28) 

 
From (21), (24) and (28), it follows that if 
 

                                             
M

m
m

m

mm

M
M

V
C
LM

q 









)0(~

.                                                    (29)  

 
Then, we have a semi-global asymptotic stability. 
Remark 2. It is important to observe that the region of attraction can be made arbitrarily 
large by increasing the observer gain L . As this region can be increased systematically by 
the gain L , we have semi-global asymptotic stability.    
Now, we integrate this observer with a nonlinear controller and the semi-global asymptotic 
stability condition of the closed loop system is given in the following theorem. 
 
Theorem 1 
Given the robot dynamics (1), and let assumption (13) be satisfied. Under the following 
control law 
 

  EKqqKqGqqqCqqM pdvdd   ˆ)()ˆ,()(
..

                                  (30) 

with q̂  is given by (14) and (15). If 
 

 
11

2

2
2
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

 mmmm
vm

vMmm
m MVCM

K

KVC
L .                                        (31) 

 
Then, the closed-loop system is semi-globally asymptotically stable. Hence 
 

0)(~lim)(lim)(lim 


tqtEtE
ttt

 .                                           (32) 

 
Moreover a region of attraction is given b 
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



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





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













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mvm

vMmm

m
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M
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CK
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C
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q
q

yRyB
2

)0(
2

3 .                  (33) 

 
Where vK  and pK  are symmetric, positive definite matrices. )()()( tqtqtE d  , 

)()()( tqtqtE d   . 



 TTTT qEEy  ~ ,  )(,),( qMKqMdiagQ p ,  pmmm KMQq ,min)(min  , 

 pMMM KMQq ,max)(max   , ppM KK   and vvM KK  . mL , pmK  and vmK  denote the 

minimum eigenvalue of L , pK  and vK , respectively. 
 

Proof 
The analysis of asymptotic stability is in two parts. In the first part, we demonstrate that the 
closed-loop system is stable. In the second part, we demonstrate that it is semi-globally 
asymptotically stable. 
 

Part 1 
Let Eqqqq d

  ~ˆ . 
From (18), we can write 
 

                                           0~ˆ)ˆ,(),(~  qMLqqqCqqqCqM  .                                               (34) 
 

Subtracting (1) from (30), we find 
 

                                    0),()ˆ,(  EKqKqqqCqqqCEM pvd
 .                                        (35) 

 
The sum of (34) and (35) gives us 

                                      0~)ˆ,(  EKqMLqKqqqCqM pv
 .                                            (36) 
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From (19) and (22), we obtain 
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Using the properties 1, 3, 4 and the assumption (13), we have 
 

   2~~ qqVCLMV mmmm
  .                                              (24) 

If                   
 

m

mm
m M

qVC
L

~
                                                                 (25) 

thus           

                             
m

mm
m M

VC
L

2
                                                                    (26) 

 
then 

0V .                                                                           (27) 
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Then, we have a semi-global asymptotic stability. 
Remark 2. It is important to observe that the region of attraction can be made arbitrarily 
large by increasing the observer gain L . As this region can be increased systematically by 
the gain L , we have semi-global asymptotic stability.    
Now, we integrate this observer with a nonlinear controller and the semi-global asymptotic 
stability condition of the closed loop system is given in the following theorem. 
 
Theorem 1 
Given the robot dynamics (1), and let assumption (13) be satisfied. Under the following 
control law 
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Then, the closed-loop system is semi-globally asymptotically stable. Hence 
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Where vK  and pK  are symmetric, positive definite matrices. )()()( tqtqtE d  , 

)()()( tqtqtE d   . 



 TTTT qEEy  ~ ,  )(,),( qMKqMdiagQ p ,  pmmm KMQq ,min)(min  , 

 pMMM KMQq ,max)(max   , ppM KK   and vvM KK  . mL , pmK  and vmK  denote the 

minimum eigenvalue of L , pK  and vK , respectively. 
 

Proof 
The analysis of asymptotic stability is in two parts. In the first part, we demonstrate that the 
closed-loop system is stable. In the second part, we demonstrate that it is semi-globally 
asymptotically stable. 
 

Part 1 
Let Eqqqq d

  ~ˆ . 
From (18), we can write 
 

                                           0~ˆ)ˆ,(),(~  qMLqqqCqqqCqM  .                                               (34) 
 

Subtracting (1) from (30), we find 
 

                                    0),()ˆ,(  EKqKqqqCqqqCEM pvd
 .                                        (35) 

 
The sum of (34) and (35) gives us 

                                      0~)ˆ,(  EKqMLqKqqqCqM pv
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Thus 
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From (34), (37) and using the property 5, we obtain 
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Consider the following Lyapunov function  
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The time derivative of (39) evaluated along (34), (38) and using the properties 4 and 5,is 
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From (44) and (45), we have 
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vmK  in (46) is chosen as follows 
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Since the assumption (13) is verified, we have  
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Thus 
 

  2~22
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  .                                                  (49) 

 
If we choose 12  mmmm MVCL  (it is verified by (48)), then H  is a negative semi-definite 
function, this result is not sufficient to demonstrate the asymptotic stability, and we can 
conclude only the stability of the system. Nevertheless, it is straightforward to verify that 

the equilibrium )0,0,0()~,,( qEE   is the largest invariant set within the set 0H . Hence, 
using La Salle’s invariance principle the asymptotic stability of the equilibrium can be 
proved. Therefore, one must insure that 
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Thus 
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Since the assumption (13) is verified, we have  
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If we choose 12  mmmm MVCL  (it is verified by (48)), then H  is a negative semi-definite 
function, this result is not sufficient to demonstrate the asymptotic stability, and we can 
conclude only the stability of the system. Nevertheless, it is straightforward to verify that 

the equilibrium )0,0,0()~,,( qEE   is the largest invariant set within the set 0H . Hence, 
using La Salle’s invariance principle the asymptotic stability of the equilibrium can be 
proved. Therefore, one must insure that 
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if     0~q      then  0E  and 0E .                                          (50) 
 
Part 2                                            
When 0H , it is necessary that 0~ q , in addition 0~ q , therefore (38) will be 
 

  0)ˆ,(  EKEKqqCEM pv
 .                                                   (51) 

 
Choosing the following Lyapunov function candidate  
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1),(   .                                                        (52) 

 
Using the property 4, the time-derivative of (52) is 
 

EKEW vT   .                                                                  (53) 

 
Hence 
 

2
EKW vm   .                                                                   (54) 

 
W  is a negative semi-definite function, this result is not sufficient to demonstrate that 

0E . Therefore, the Barbalat’s lemma is required to complete the proof of asymptotic 
stability.  
We note that, it is sufficient to show that  W  is bounded to conclude that W  is uniformly 
continuous. Indeed, the time-derivative of (53) is 
 

EKEW vT  2 .                                                                 (55) 

 
From (48) and (49), we demonstrated the stability of the system ( E and E  are bounded). In 
addition, from (51), we can conclude that E  is bounded. Then W and  W  are bounded. 
This result implies that W  is uniformly continuous. Therefore, the Barbalat’s lemma 
permits us to conclude that 0W , then 0E , 0E , and from (51) we find that 0E . 
Finally, we demonstrated that (50) is verified. Hence, the La Salle’s invariance principle is 

applied, consequently, the equilibrium )0,0,0()~,,( qEE   is the largest invariant set within 

the set 0H . And the asymptotic stability of the equilibrium is proved.  

Since qy ~ , (47) holds if 
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From (41), (46) and (56), it follows that if 
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Then, the closed-loop system is semi-globally asymptotically stable. This completes the 
proof.    
 
3.2 Globally asymptotically stable observer based controller  
Now, a second observer is presented to reconstruct the velocity signal in the control law. 
Hence, the global asymptotic stability of the whole control system (robot plus controller plus 
observer) is guaranteed. This proof is based on Lyapunov theory and using saturation 
technique. This result is given in theorem 2.  
 
Theorem 2 
Given the robot dynamics (1), and let assumption (13) be satisfied. Under the following 
control law 
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Then, the closed-loop system is globally asymptotically stable. Hence 
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if     0~q      then  0E  and 0E .                                          (50) 
 
Part 2                                            
When 0H , it is necessary that 0~ q , in addition 0~ q , therefore (38) will be 
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Finally, we demonstrated that (50) is verified. Hence, the La Salle’s invariance principle is 

applied, consequently, the equilibrium )0,0,0()~,,( qEE   is the largest invariant set within 

the set 0H . And the asymptotic stability of the equilibrium is proved.  
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Then, the closed-loop system is semi-globally asymptotically stable. This completes the 
proof.    
 
3.2 Globally asymptotically stable observer based controller  
Now, a second observer is presented to reconstruct the velocity signal in the control law. 
Hence, the global asymptotic stability of the whole control system (robot plus controller plus 
observer) is guaranteed. This proof is based on Lyapunov theory and using saturation 
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Where sat(V) represents the saturation for a vector V, this function is to be defined. 

vvM KK  . mL  and vmK  denote the minimum eigenvalue of L  and vK respectively.   is 
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We note that 
 

www.intechopen.com



Trajectory tracking control for robot manipulators with no velocity measurement  
using semi-globally and globally asymptotically stable velocity observers 29
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Choosing vmK  and mL  as follows 
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If we choose  12  mvMm MKL , (it is verified by (81)), then H is a negative semi-definite 
function, this result is not sufficient to demonstrate the asymptotic stability, and we can 
conclude only the stability of the system. Therefore, the lemma 2 is required to complete the 
proof of asymptotic stability.  

In our case, H  and H  are given by (69) and (70) respectively. To conclude that H  is 

uniformly continuous, it is sufficient to show that  H  is bounded.  
The time-derivative of (70) is 
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From (79), (80), (81) and (82), we demonstrated the stability of the system ( E , E  and q
~

 are 
bounded). Therefore, from (69) H  is bounded. In addition, from (67) and (68) we can 

conclude that E  and q
~

 are bounded, then H  is bounded. This result implies that H  is 

uniformly continuous. Hence, the Barbalat’s lemma permits us to conclude that 0H . 

Thus, from (82), we have 0~,0  qE  , and necessary 0~,0  qE  . Finally from (67) and (68) 
we find that 0E . 
Then, the closed-loop system is globally asymptotically stable. This completes the proof. 

 
4. Simulation results 
 

In order to illustrate by simulation the efficiency of our design, we apply in this section the 
observer-controller laws (55-60) on two-link robot manipulator. The objective of our 
simulation work is to show that the tracking objective is achieved when an estimated 
velocity vector is used in the tracking control law.  

Consider a two-link manipulator with masses 1m , 2m , lengths 1l , 2l , and angles 1q , 2q  ; 
then the model equations can be written as (1). )(qM , ),( qqC   and )(qG  are given by 
(Bouakrif et al., 2008): 

2
1212212

2
2211 )()cos(2 lmmqllmlmm  , )cos( 2212

2
222112 qllmlmmm  , 2

2222 lmm  . 

2221211 )sin( qqllmC  , 2221212 )sin( qqllmC  , 1221221 )sin( qqllmC  , 022 C . 

)cos()()cos( 112121221 qglmmqqglmG  , )cos( 21222 qqglmG  . 
The desired trajectories are chosen as: 

)3/2(sin)3/4(cos2)(1 tttq d   (rad), with 0  t  5. 

)3/2(sin)3/4(cos21)(2 tttqd   (rad),  with  0  t  5. 
Simulation parameters: 

     550,550,15,15,5000,5000  LKK vp , 
][5.1],[1],[7.0],[5.0 2121 mlmlkgmkgm  . 

Therefore, we find that  ]/[10 sradVm  ,  ][1 2kgmM m  .  
The simulation results of the proposed scheme on two-link robot manipulator along a 
trajectory are shown below.  Figure 1 show the observer result, where we can see the 
convergence of the observed velocity to real velocity, of each joint, in a minimum time. 
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Consider a two-link manipulator with masses 1m , 2m , lengths 1l , 2l , and angles 1q , 2q  ; 
then the model equations can be written as (1). )(qM , ),( qqC   and )(qG  are given by 
(Bouakrif et al., 2008): 

2
1212212

2
2211 )()cos(2 lmmqllmlmm  , )cos( 2212

2
222112 qllmlmmm  , 2

2222 lmm  . 

2221211 )sin( qqllmC  , 2221212 )sin( qqllmC  , 1221221 )sin( qqllmC  , 022 C . 

)cos()()cos( 112121221 qglmmqqglmG  , )cos( 21222 qqglmG  . 
The desired trajectories are chosen as: 

)3/2(sin)3/4(cos2)(1 tttq d   (rad), with 0  t  5. 

)3/2(sin)3/4(cos21)(2 tttqd   (rad),  with  0  t  5. 
Simulation parameters: 

     550,550,15,15,5000,5000  LKK vp , 
][5.1],[1],[7.0],[5.0 2121 mlmlkgmkgm  . 

Therefore, we find that  ]/[10 sradVm  ,  ][1 2kgmM m  .  
The simulation results of the proposed scheme on two-link robot manipulator along a 
trajectory are shown below.  Figure 1 show the observer result, where we can see the 
convergence of the observed velocity to real velocity, of each joint, in a minimum time. 
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Figure 2 show the simulation results for real and desired position trajectories, of each joint, 
when the velocity given by the observer (59) and (60) is used in the control law (58). We can 
see that the real trajectory follows the desired trajectory without error through time axis. 
Therefore, it is clear that the control algorithm works well.   
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Fig.1. Real and observed velocities of two-link manipulator. 
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Fig.2. Real and desired position trajectories of two-link manipulator. 

 
5. Conclusion 
 

This chapter has presented two motion control schemes to solve the trajectory tracking 
problem of rigid-link robot manipulators, when the manipulator’s joint velocities cannot be 
measured by the control system. The necessity of velocity measurements in the controllers 
can be removed by replacing the actual velocity signal by an estimate obtained from two 
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Real velocity 1 
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velocity2 

Real velocity 2 

observer systems. The whole control system consisting of robot manipulator, controller and 
the first observer is semi-globally asymptotically stable and a region of attraction is also 
given. Using the second observer, the global asymptotic stability of the closed loop system is 
guaranteed. Hence, there is more freedom to choose the initial states. These proofs are based 
on Lyapunov theory. Finally, simulation results on two-link manipulator are provided to 
illustrate the effectiveness of the global velocity observer based trajectory tracking control. 
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Figure 2 show the simulation results for real and desired position trajectories, of each joint, 
when the velocity given by the observer (59) and (60) is used in the control law (58). We can 
see that the real trajectory follows the desired trajectory without error through time axis. 
Therefore, it is clear that the control algorithm works well.   
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Fig.1. Real and observed velocities of two-link manipulator. 
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Fig.2. Real and desired position trajectories of two-link manipulator. 
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This chapter has presented two motion control schemes to solve the trajectory tracking 
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the first observer is semi-globally asymptotically stable and a region of attraction is also 
given. Using the second observer, the global asymptotic stability of the closed loop system is 
guaranteed. Hence, there is more freedom to choose the initial states. These proofs are based 
on Lyapunov theory. Finally, simulation results on two-link manipulator are provided to 
illustrate the effectiveness of the global velocity observer based trajectory tracking control. 
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