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Trajectory tracking control for robot
manipulators with no velocity measurement
using semi-globally and globally
asymptotically stable velocity observers

Farah Bouakrif
LAMEL Laboratory, University of Jijel
Algeria

1. Introduction

During the last decade the class of rigid robot systems has been the subject of intensive
research in the field of systems and control theory, particularly owing to the inherent
nonlinear nature of rigid robots. For the same reason, these systems have widely been used
to exemplify general concepts in nonlinear control theory. As a result of this excessive
research activity a large variety of control methods for rigid robot systems have been
proposed, such as, proportional-integral-derivative (PID) control (Kelly, 1995), computed
torque control (Luh et al., 1980), which achieve the trajectory tracking objective by feedback
linearization of the nonlinear robot dynamics, adaptive control (Ortega & Spong, 1989),
variable structure control (Slotine & Sastry, 1983), fuzzy control (Chang & Chen, 2000),
passivity based control (Ryu et al, 2004; Bouakrif et al., 2010) and iterative learning control
(Bouakrif et al., 2007; Tayebi, 2007).

Many of these previous controllers require the complete state measurements, that is position
and velocity, is available for feedback. Unfortunately, in practice this assumption can only
partially be fulfilled for two reasons. First, although robot systems generally are equipped
with high precision sensors for position measurements, velocity measurements are often
contaminated with a considerable amount of noise. This circumstance may reduce the
dynamic performance of the manipulator, since in practice, the values of the controller gain
matrices are limited by the noise present in the velocity measurements (Khosla & Kanade,
1988). Second, in robotic applications today velocity sensors are frequently omitted owing to
the considerable savings in cost, volume and weight that can be obtained this way. A good
solution of this problem is the use of the velocity observers to reconstruct the missing
velocity signal starting from the available position measurements. Due to the nonlinear and
coupled structure of the robot dynamical model, the problem of designing observers for
robots is a very complex one. Recently, exploiting the structural properties of the robot
dynamics, a number of conceptually different methods for both regulation and tracking
control of robots equipped with only position sensors have been developed (Canudas dewit
et al.,, 1992; Paden & Panja, 1988). (Berghuis & Nijmeijer, 1993) presented a controller-
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18 Robot Manipulators, New Achievements

observer scheme for the global regulation of robots using only position feedback. The PD
control with high-gain observer was developed (Yu & Li, 2006), the authors propose to
reconstruct the velocity signal via a high-gain observer, but a quite noisy movement of the
manipulator, which may be undesirable for greater robots employed for industrial
applications.

In this chapter, we want to solve the trajectory tracking problem of rigid robot manipulators
which are not equipped with the tachometers (velocity sensors) to avoid the disadvantage
mentioned in the previous paragraph. For this purpose, two velocity observers are
presented to estimate the missing velocity. Using the first observer, an estimate region of
attraction is given. It is important to observe that this region can be made arbitrarily large by
increasing the observer gain. This kind of stability is called semi-global. The second is
globally asymptotically stable. Thus, there is more freedom to choose the initial states. This
presents an advantage of the second observer. Thereafter, these observers are integrated
with a nonlinear controller by replacing the velocity in the control law with its estimation
yielded by these observers, independently. Furthermore, the semi-global and global
asymptotic stability conditions are established of the composite controller consisting of
robot manipulator, nonlinear controller and the first and second velocity observer,
respectively. This proof is based on Lyapunov theory and using saturation technique for the
second observer. Finally, simulation results on two-link manipulator are provided to
illustrate the effectiveness of the global velocity observer based trajectory tracking control.

2. Dynamic equation for robot manipulators

We consider a robot manipulator that is composed of serially connected rigid links. The
motion of the manipulator with n-links is described by the following dynamic equation:

r=M(q) ¢+ C(g,9) ¢+G(q) (1)

where ¢(t), q(t), ¢(t) € R" denote the link position, velocity, and acceleration vectors,
respectively, M(q(t)) € R™" represents the link inertia matrix, C(q(¢),q(¢)) € R"" represents

centripetal-Coriolis matrix, G(q(t)) € R" represents the gravity effects, and ¢ (t)e R™

represents the torque input vector.
In the sequel, q,(?),q,(?),q,(t)e R" denote the desired link position, velocity, and

acceleration vectors, respectively.

The dynamic equation (1) has the following properties (Berghuis, 1993; Ortega & Spong,
1989) that will be used in the controller development and analysis.

P1: The inertia matrix M (g(¢)) is symmetric, positive definite and bounded as

On < Mm < ||M(q)|| < MM (2)

where geR" ,and M,, > M, >0.
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P 2: Vie {i,...,n}, the i element of the vector C(g,9)q 1is equal to q'TNl- (9)g with N;

symmetric, continuously differentiable, and such that IN ; >0 satisfies
HNi (q)H <N, VqeR". 3)

P 3: Norm of the centripetal-Coriolis is bounded as follows

IC(q.q

sc,lil @

P 4: The matrix M(q,cj) -2 C(q,é) is skew-symmetric, i.e., for all X e'R",

XT(M(q.9)-2C(q.9)) X =0. 5)

P5:Forall x,yeR"
Clg.x)y=C(g,y)x ©)
g, z+ax)y=Clg,2)y+aC(q,x)y . @)

In this paper, the following lemmas are used.
Lemma 1 (Shim et al., 2001): Consider a C' function f(x,y):R” xR? - R which is

continuous and well defined on X x R? where X = i\' € Rp‘ |xl- <pl<i< p} with p; >0.

Then f(o(x),y) is globally well defined and equal to f(x,y) for x € X, and where exists
L(y) such that

|/ (0,0~ f(a(),y)| < L)~ 5], V%% € R”, VyeRE 8)

where o(x) is an element-wise saturation function which is saturated outside X .
Proof

By the Mean Value Theorem, there exists z € R” such that
- ~ of - ~
S(0(%),3) = [(0(x),y) === (2, y)(0(x) ~ o (x)) ©)

which implies

|/ (0,0~ f(a(), )| < L)) - o @) (10)
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20 Robot Manipulators, New Achievements

: : 0 .
where L(y) is the maximum of H&l (z, y)H with respect to z over the compact range of
X

saturation function. Then the claim (8) follows from the fact that ||0'()?) - a(f)” < ||>? -X || )

Lemma 2 “Barbalat’s lemma” (Slotine & Li, 1991): If H is a continuous function, and it is
bounded when ! = ®, and if H is uniformly continuous in time, then H=0

In (2), (3), (4) and in the sequel the norm of a vector X is defined as

|| =y X7 x (11)

and the norm of a matrix 4 as

4] =y A (47 4) (12)

max
with A,,., () denotes the maximum eigenvalue of 4.

The following assumption is imposed.

Assumption: The robot velocity is bounded by a known constant V,, such that
la@||<v,, vieRr. (13)

Remark 1. This assumption is definitively realistic. In fact, it is reasonable to expect that the
joint velocities of a robot will not exceed certain a priori bounds that come from the
mechanic limitations of the robot and/or from the way the robot operates. Moreover, this
assumption is recurrent in the literature on control for robotic manipulators, for example
(Berghuis & Nijmeijer, 1993; Nicosia & Tomei, 1990; Xian et al., 2004).

3. Controller-observers design

In this section we present the main results of this chapter, formulated in a lemma and two
theorems and their proofs. Indeed, we want to solve the trajectory tracking problem of robot
manipulators without using the velocity signal. This signal is reconstructed, firstly by a
semi-globally stable velocity observer and secondly by a globally stable velocity observer.

3.1 Semi-globally asymptotically stable observer
Consider the following velocity observer

:=M"r-C(q,9)q-G(q)|-Lg (14)

qg=z+Lg (15)
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7 L=1,

Where 9 represents the estimated velocity, # is the observer state. >0

, where

nxn
and n €R7" is an identity matrix.

Lemma 3
2C,V, . - K3
1f L > then 1M ¢ =0 and the initial error 4(0) belongs to the ball B defined
by: B=1q€R Hq (O)H < C Vi Iv; . Where ZLn denotes the minimum
m M

eigenvalue of Loanad=4-1.

Proof
The time-derivative of (15) gives us

i=M" e =Cla.0)i- Gl L) 16)
From (1), we can write
j=M"[r-Clg,9)§-G(q)] (17)
Subtracting (16) from (17), we have
=M cadi+capil-Li (18)

Using the property 5, we obtain

~

i =207+ Ca.9)G)- 15 (19

Consider the following Lyapunov function

~  lap 9
V(q)—aq M(q)q (20)
Thus
1 -~ ? ~ 1 N
— < < —
i@ sv@anssmyfae] @1)
The time-derivative of (20) gives us
sy AT o lap o o
Va)=q" Mq)g+=5q M) (22)
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22 Robot Manipulators, New Achievements

From (19) and (22), we obtain
s (1o 3 ) ;T( < .b_;T <
Ma)=q"| 7M(9)=C(g.9) g +q " \C(4.9)=Clg. 9 —q " MLg (23)

Using the properties 1, 3, 4 and the assumption (13), we have

i : 2
7z, -l il il @
If
W+
R
thus
L, > 2?/’{":’" (26)
then
V<0, 27)
From (25), it comes
il <« Fee-r. o)

From (21), (24) and (28), it follows that if

< M, L, M,
ol<{ et - Jpe 2

Then, we have a semi-global asymptotic stability.
Remark 2. It is important to observe that the region of attraction can be made arbitrarily

large by increasing the observer gain L As this region can be increased systematically by

the gain L we have semi-global asymptotic stability.
Now, we integrate this observer with a nonlinear controller and the semi-global asymptotic
stability condition of the closed loop system is given in the following theorem.

Theorem 1
Given the robot dynamics (1), and let assumption (13) be satisfied. Under the following
control law

=M(9) 4y +Clq. )iy +G(@) +K, (g, ~ i K, E (30)
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with ¢ is given by (14) and (15). If

(C V +KvM)2

L, >-—" M'+2C,V, M. (31)
2K

vm

Then, the closed-loop system is semi-globally asymptotically stable. Hence
limE(¢) = lim E(¢) = lim§(¢) =0 . (32)
t—© t—© t—0

Moreover a region of attraction is given b

{ ColV + Kot |
B=lye Ry < [Le| Xuln —( mom  MT oy L 33
yeR"||»0)|< s K C . (33)

m

Where K, and K, are symmetric, positive definite matrices. E(?)=gq,(t)—q(1),
E@)=d,0-40) .y = E7 ET§" |, O=diagiM(@)K pM@)}, Gin=in( Q)=minMr.K

9u :ﬂmax(Q):maX{MMﬂKpM}’ K,u :HKpH and K, :HKV

minimum eigenvalue of L , K » and K, , respectively.

. L,, K, and K, denote the

pm

Proof

The analysis of asymptotic stability is in two parts. In the first part, we demonstrate that the
closed-loop system is stable. In the second part, we demonstrate that it is semi-globally
asymptotically stable.

Part 1
Let ézqd—§=§+E.
From (18), we can write
Mg +C(q.4)§~C(g.9)4+MLj =0. (34)
Subtracting (1) from (30), we find

ME+C(q,9)q, —C(¢,9)q+K, g +K ,E=0. (35)

The sum of (34) and (35) gives us
Mg +C(q.9)q +K, G +MLG + K ,E=0. (36)
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24 Robot Manipulators, New Achievements

Thus
ME + (C(q,é,) +KV)E+KPE=—M§—(C(q,5)+KV )éj—ML?, .
From (34), (37) and using the property 5, we obtain
ME + (C(q,(}) +K, )E +K,E=C(q,4)] ~K,q -
Consider the following Lyapunov function
H(E,E,?)z%ETME+%ETKpE+%§TMZ}' .

Hence
. - 1
H(E,E,q)= Ey(t)T 0 ()
It follows that

S <HOGO=Zau ol

The time derivative of (39) evaluated along (34), (38) and using the properties 4 and 5,is

H=-E"K,E-E"K,§+E"C(q,9)7 -4 "MLG -3 " C(q,¢)q + 37 C(q,9)q -

Using the properties 1, 3 and the assumption (13), we find

<K i s,z il + b i) Jil + 7 cwi- 275,
Thus

rs-Ko i Mto-Colrofil) )i 70505
We note that
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Fewai-s 2 [ S

1

L 1
CoV + Koas 2 ’ MmLm—Cm(VmeH‘ﬂ) I
e e | el
2 Cbu+ Ko ) 2 | p MmLm—Cm(Vm+ 3”)
G e |
From (44) and (45), we have
. (Cme+KVM)2
= oy Mo Lu=CulV: +HqH HEH (M L= C’"(VmJ”Hq H)) (46)
K., 1IN (46) is chosen as follows
Ko (Cme+KVM)2 . -
2 ML ~Coltm+{a]))
Since the assumption (13) is verified, we have
. (Cm?;KVM)zM;,wzcmeM;J. (48)
vm
Thus
HS—%(M,,,LM “2CV ) H&Hz . (49)

If we choose Ly>2CnVuMy' (it is verified by (48)), then H isa negative semi-definite

function, this result is not sufficient to demonstrate the asymptotic stability, and we can
conclude only the stability of the system. Nevertheless, it is straightforward to verify that

the equilibrium (£, E, qN ) =(0,0,0) is the largest invariant set within the set H =0 Hence,

using La Salle’s invariance principle the asymptotic stability of the equilibrium can be
proved. Therefore, one must insure that
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26 Robot Manipulators, New Achievements

if §=0 then E=0 and E=0. (50)

Part 2
When H =0 , it is necessary that a =0, in addition a =0, therefore (38) will be

ME + (C(q,(}) +K, )E +K,E=0. (51)
Choosing the following Lyapunov function candidate

W(E,E)z%ETME+%ETKpE . (52)

Using the property 4, the time-derivative of (52) is
W=-ETK,E . (53)

Hence

. 12
W<—Kom EH . (54)

/4

is a negative semi-definite function, this result is not sufficient to demonstrate that

E =0 Therefore, the Barbalat's lemma is required to complete the proof of asymptotic
stability.

We note that, it is sufficient to show that W is bounded to conclude that /¥ is uniformly
continuous. Indeed, the time-derivative of (53) is

W=-2ETK,E . (55)

From (48) and (49), we demonstrated the stability of the system ( £ and E are bounded). In
addition, from (51), we can conclude that E is bounded. Then W and W are bounded.
This result implies that W s uniformly continuous. Therefore, the Barbalat's lemma

permits us to conclude that W =0 , then E=0 , E=0 , and from (51) we find that £ =0.
Finally, we demonstrated that (50) is verified. Hence, the La Salle’s invariance principle is

applied, consequently, the equilibrium (E,E,q)=(0,0,0) is the largest invariant set within

the set 7 =0 And the asymptotic stability of the equilibrium is proved.
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since [ > [, (47) holds it
(Cme +K,, )Z
\bﬂ<ﬂ4“l” V. (56)
Cm 2Kvam

From (41), (46) and (56), it follows that if

/_ ML, (CmeJrKvM)Z

0)[<. 4
I >H<V S ey e

Vi |- (57)

Then, the closed-loop system is semi-globally asymptotically stable. This completes the
proof.

3.2 Globally asymptotically stable observer based controller

Now, a second observer is presented to reconstruct the velocity signal in the control law.
Hence, the global asymptotic stability of the whole control system (robot plus controller plus
observer) is guaranteed. This proof is based on Lyapunov theory and using saturation
technique. This result is given in theorem 2.

Theorem 2
Given the robot dynamics (1), and let assumption (13) be satisfied. Under the following
control law

7 =M (q) q, +C(g.5at(q))sat(q) + G(q) + K, (qd —é% K,E (58)
with
G=z+Lg (59)
£=i,~Lg+M 'K E. (60)
If
4l//2 .
1 Lp>——+ 2(1<vMM,; )
Mvam
o L,22-2

Then, the closed-loop system is globally asymptotically stable. Hence

lim E(¢) = lim E(t) = lim §(t) = 0. (61)
[—>0 [—>0

t—©
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Where sat(V) represents the saturation for a vector V, this function is to be defined.

Ko =[5,

. Lm and Kvm denote the minimum eigenvalue of L and K, respectively. ¥ is

. n e
positive scalar constant such that Sy V(g9 R XV With

0 N
‘a—q(C(q,q)q){

V= {q eR"| |g;|<V; i=1,...,n}_

Proof
Since assumption (13) holds, in the rest of the proof regard

r=M(q) q + C(g,sat(¢))sat(q) +G(q) (62)

as the given dynamic equation instead of (1).

Where the saturation for a vector V = ["1 , e ,vn]l e R" is defined as
Sat(V) = [sat(v,), ... ,sat(v, )]l (63)
with
V; ifv; [<v;
sat(v; ) =4v, ifv; >v,  forief{l .. n} (64)
—-V; if v <-v;

and V,, =

[Sat(v1 ), ... ,sat(v, )]TH .
From (58), (59) and (60) we can eliminate the state z and write
§= M| - Clg,satsart) - Gla) - K, G - K E|+ 17 (65)
From (62), we can write
§=M"[r - Clg.sar(@)sar(g) - G(g)]. (66)
Subtracting (65) from (66), we obtain

My = ~C(q,sat(§))sat(§) + C(q,sat(q))sat(q) + K, (E +§) - ML. (67)

Subtracting (62) from (58), we have
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ME - C(q,sat(§))sat(q) + C(g,5a1())sat(q) + K, (§ + E) + K ,E = 0. (68)

Consider the Lyapunov function

H(E,E,c?)=%ETME+%ETKPE+%§TM§. (69)

The time-derivative of (69), evaluated along (67) and (68), is

1 = B (C(g,sat(@)sar(@) - C(g,sat(§ysar(@))
~§TMLg + 57 (Cq.sat(@sat(§) - Cg.sar(@)sar(@) (70)
~ETK E+§"K,q.

To simplify the notation, let
D(q,9) =C (9,9)q - (71)

Using (P2), it follows that 3% >0 such that

H?(D(q,q')ﬁ <y V(g.4)eR"xV (72)
q
with
] q' N, (9)
—(D@.9)=2 (73)
K §"N,(q)
and
I7={()eR” ld;| <V; i=1,...,n}. (74)
Then, using Lemma 1, we have
1t <= [ =00~ o] ] ] 75
Hence
=l o Mt o Yoy | G vl B o
We note that
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w8 )= 2elvle]
_ 1 1
2\ M, L, B 2
=i
M ";Lm K, 77)
i M, L, [
iy ||
_ M,,éLm k.,
Therefore, we have
: 4y’ a2 (ML, g2 (ML, 2
s K= o — | [E] =5 =5k | o] | 2w | il
m=m vM
(78)
Choosing Kim and Lm as follows
L, > 2ML (79)
m
and Wz
K,, >4 . (80)
ML, —2K ,,
Hence
Y k)
>_
L, > K +2lKk,,, M, ). (81)
Then, we have
- 4y 2 1(M,L 2
H<-K,, - T |£] _5{ o _Kij [ @

If we choose Lm > 2(KVM M r;tl), (it is verified by (81)), then 7 is a negative semi-definite
function, this result is not sufficient to demonstrate the asymptotic stability, and we can
conclude only the stability of the system. Therefore, the lemma 2 is required to complete the
proof of asymptotic stability.

In our case, 7 and 7 are given by (69) and (70) respectively. To conclude that H g

H

uniformly continuous, it is sufficient to show that is bounded.

The time-derivative of (70) is
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i = E7(C(g,sat(@)sat(@) - Clg,sar(@sar(@))
_0GTMLG + 5T (c(q,saz(c}))sat(c}) - C(g,sat(q))sat (q'))

(67 +57 {%(C(q,sat(q»sar(q» - %((J(q,sat(q*))saz(q*»)
—2ETK E+23"K q.

From (79), (80), (81) and (82), we demonstrated the stability of the system (E , £ and 4 are
bounded). Therefore, from (69)  is bounded. In addition, from (67) and (68) we can

conclude that £ and q are bounded, then H s bounded. This result implies that H g

uniformly continuous. Hence, the Barbalat’s lemma permits us to conclude that H=0

Thus, from (82), we have E=0,4=0 , and necessary E=0,4=0 Finally from (67) and (68)

we find that £=0
Then, the closed-loop system is globally asymptotically stable. This completes the proof.

4. Simulation results

In order to illustrate by simulation the efficiency of our design, we apply in this section the
observer-controller laws (55-60) on two-link robot manipulator. The objective of our
simulation work is to show that the tracking objective is achieved when an estimated
velocity vector is used in the tracking control law.

)

Consider a two-link manipulator with masses "1, ™2, lengths ll , ‘2, and angles %1, 92 ;

then the model equations can be written as (1). M(4), C(¢-9) and G(@) are given by
(Bouakrif et al., 2008):

my, = m2122 +2myl, 1, cos(q,)+(my +m, )112 JMyy =My = m2122 +myli 1, c08(q,), my, = mzlzz.
G, =m,l,gcos(q, +q,)+(m; +m,)l, gcos(q, ), G, =m,l,gcos(q, +q,).

The desired trajectories are chosen as:

q ;(t)=2cos (4rt/3)+sin(27t/3) (rad), with 0 <t <5.

q4,(t)=1-2 cos (4xt/3)—sin(2xt/3) (rad), with 0 <t<5.
Simulation parameters:

K, =15000,5000}, K, = {1515}, L = {550,550}
m, =0.5[kgl, m, =0.7kgl, I, =1m], 1, =1.5[m]

Therefore, we find that Vip =10[rad / s] i M, = l[kng] .

The simulation results of the proposed scheme on two-link robot manipulator along a
trajectory are shown below. Figure 1 show the observer result, where we can see the
convergence of the observed velocity to real velocity, of each joint, in a minimum time.
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Figure 2 show the simulation results for real and desired position trajectories, of each joint,
when the velocity given by the observer (59) and (60) is used in the control law (58). We can
see that the real trajectory follows the desired trajectory without error through time axis.
Therefore, it is clear that the control algorithm works well.

position(rad)

2 ,,,,,,,,,,,,,,,,,,,,,,,,,
| | | | | | | | |
| | | | | | |

— | | | | | | |
Lo - 1 1 [ L1
9 | | |
; I | L
= |
8o ---Observed
[ | | | .
> \J o velocityl
. : : : : Real velacitv 1
0O 05 1 15 2 25 3 3 4 45 5
timels)
6 T
P U ---Observed
@ ‘ ‘ velocity?2
13/27 Real velacitv ?
>

o

velocit

O V)
—

—-Desired position 1
__Joint position 1

---Desired position 2
__Joint position2 |

1 15 2 25 3
time(s)

Fig.2. Real and desired position trajectories of two-link manipulator.

5. Conclusion

This chapter has presented two motion control schemes to solve the trajectory tracking
problem of rigid-link robot manipulators, when the manipulator’s joint velocities cannot be
measured by the control system. The necessity of velocity measurements in the controllers
can be removed by replacing the actual velocity signal by an estimate obtained from two
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observer systems. The whole control system consisting of robot manipulator, controller and
the first observer is semi-globally asymptotically stable and a region of attraction is also
given. Using the second observer, the global asymptotic stability of the closed loop system is
guaranteed. Hence, there is more freedom to choose the initial states. These proofs are based
on Lyapunov theory. Finally, simulation results on two-link manipulator are provided to
illustrate the effectiveness of the global velocity observer based trajectory tracking control.
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