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1. Introduction     
 

Automatic Guided Vehicles (AGV) provide automated material movement for a variety of 
industries including the automobile, chemicals/ plastics, hospital, newspaper, commercial 
print, paper, food & beverage, pharmaceutical, warehouse and distribution center, and 
manufacturing industries. And they can reduce labor and material costs while improving 
safety and reducing product and equipment damage. 
An AGV consists of one or more computer controlled wheel based load carriers (normally 
battery powered) that runs on the plant floor (or if outdoors on a paved area) without the 
need for an onboard operator or driver. AGVS have defined paths or areas within which or 
over which they can go. Navigation is achieved by any one of several means, including 
following a path defined by buried inductive wires, surface mounted magnetic or optical 
strips, or alternatively by way of visual guidance. (Crisan D, &Doucet A. 2002).    
This chapter describes a total navigation solution for mobile robots. It enables a mobile robot 
to efficiently localize itself and navigate in a large man-made environment, which can be 
indoor, outdoor or a combination of both. For instance, the inside of a house, an entire 
university campus or even a small city lie in the possibilities. 
Traditionally, other sensors except cameras are used for robot navigation, like GPS and laser 
scanners. Because GPS needs a direct line of sight to the satellites, it cannot be used indoors 
or in narrow city centre streets, i.e. the very conditions we foresee in our application. Time-
of-flight laser scanners are widely applicable, but are expensive and voluminous, even when 
the scanning field is restricted to a horizontal plane. The latter only yields a poor world 
representation, with the risk of not detecting essential obstacles such as table tops. (Belviken 
E, &Acklam PJ. 2001) 
That is why we aim at a vision-only solution to navigation. Vision is, in comparison with 
these other sensors, much more informative. Moreover, cameras are quite compact and 
increasingly cheap. We observe also that many biological species, in particular migratory 
birds, use mainly their visual sensors for navigation. We chose to use an omni-directional 
camera as visual sensor, because of its wide field of view and thus rich content of the images 
acquired with. Besides, we added a few artificial markers to the environment for navigation. 
In  a  word,  we  present  a  novel  visual  navigation  system  for  the  AGV.  With  an  omni‐
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directional camera as sensor and a DSP as processor, this system is able to recover distortion 
of a whole image due to fish-eye lens. It can recognize and track man-made landmarks 
robustly in a complex natural environment,  then localize itself using the landmarks at each 
moment. The localization information is sent to a computer inside the robot and enables fast 
and simple path planning towards a specified goal. We developed a real-time visual servo 
technique to steer the system along the computed path. 
The whole chapter falls into seven sections. Section I introduces various navigation 
strategies widely used in the mobile robot, and discusses the advantages and disadvantages 
of these navigation strategies firstly. Then a vision-only solution to navigation is proposed, 
with an omni-directional camara as visual sensor. This visual navigation strategy can guide 
the mobile robot to move along a planned path in a structured environment.  
Section II illuminates the framework of the whole system, including the targeted application 
of this research, an automated guided vehicle (AGV). The two-color sequence landmarks are 
originated to locate and navigate the AGV. Besides, a visual image processing system based 
on DSP has been developed. The entire related distortion correction, tracking and 
localization algorithm are run in the built-in image processing system. This compact on 
board unit can be easily integrated into a variety of mobile devices and appears low power, 
well modularity and mobility. 
Section III lists all sorts of fish-eye lens distortion models and sets forth a method of 
distortion correction. The involved fish-eye lens satisfies isometric projection, and the 
optical imaging center and a distortion parameter of the visual sensor need to be figured out 
in order to realize distortion correction. Thus the classical calibration for common lens 
paramenters is applied to the fish-eye lens,  and those above parameters are figured out.  
Section IV talks about the novel real-time visual tracking with Particle Filter, which yields an 
efficient localization of the robot, with focus on man-made landmarks. It is the key 
technology that make the whole system work. The original tracking algorithm uses the 
result of object recognition to validate the output of Particle Filter, which improves the 
robustness of tracking algorithm in complex environment.  
Section V puts stress on the localization and navigation algorithm with the coordinates of 
the landmarks provided by particle filter. The location and the orientation of the AGV are 
worked out based on coordinate transformation, in the three-dimensional enviromnent 
rebuilt on the two-color sequence landmarks. Moreover, a PID control strategy is run in the 
built-in computer of the AGV for navigation. 
Section VI presents the actual effect of the mobile robot navigation. The experimental 
environment and the experimental steps are introduced in detail, and six pictures of 
experiment results are shown and discussed. 
Secion VII summarizes the work done about the research. A beacon tracker based on Particle 
Filter is implemented in the built-in image processing system. Real-time distortion 
correction and tracking algorithms are performed in the system, and the AGV is located and 
navigated with the tracking results of hte landmarks from the beacon tracker. 

 
2. System framework 
 

Our mobile robot platform is shown in Fig. 1. With our method, the only additional 
hardware required is a fish-eye lens camera and an embedded hardware module. The fish-
eye lens is fixed on the top of the vehicle to get omni-directional vision, and the embedded 

 

system based on DSP takes charge in distortion rectification, target recognition, target 
tracking and localization. 
 

 
Fig. 1. Mobile robot platform 

 
2.1 Mobile robot 
Usually, a mobile robot is composed of the body, battery and charging system, drives, 
steering, precision parking device, motion controllers, communication devices, transfer 
system, and visual navigation subsystem and so on. The body includes the frame and the 
corresponding mechanical structures such as reduction gearbox, motors and wheels, etc, 
and it is a fundamental part of the AGV.  
There are three working ways for an AGV:  
(1) Automatic mode. When the AGV is set in automatic operation mode, the operator 

enters the appropriate command according to the plan path, and the AGV start to work 
in the unmanned mode; 

(2) Semi-automatic mode. The operator can directly assist the AGV to complete its work 
through the buttons on the AGV; 

(3) Manual mode. The operator can also use remote control trolley to move the AGV to the 
desired location manually. 

The mobile robot platform of this chapter is a tracked AGV, and it consists of an embedded 
Industrial Personal Computer (IPC), motion control system, multiple infrared sensors and 
ultrasound sensors, network communication system and so on. The IPC uses industrial-
grade embedded motherboard, including low-power, high-performance Pentium-M 1.8G 
CPU, SATA 160G HDD, DDR400 2G memory, six independent RS232 serial ports, eight 
separate USB2.0 interface. Moreover, four-channel real-time image acquisition card can be 
configured on this motherboard. The specific hardware modules of the mobile robot are 
shown in Fig. 2. 
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Fig. 2. Hardware modules of the mobile robot platform 

 
2.2 Fish-eye lens 
The project research needs high-quality visual image information, so that the camera 
features color, planar array, large-resolution and CCD light-sensitive device. We adopt 
imported Japanese ultra-wide angle fish-eye lens Fujinon FE185C046HA-1 as well as analog 
color CCD camera Watec221S, as shown in Fig. 3.  
 

 
Fig. 3. Fish-eye lens camera 
 
The performance parameters of the fish-eye lens are shown in Table 1. And the CCD size is 
1/2 inches, PAL stardard, and the resolution (horizontal) is 50 lines (Y/C 480 lines). Its 
effective pixel (K) is P440K, minimum illumination is 0.1Lux, and lens mount method is CS 
installation, with operating voltage of DC +12V. 
 
 
 

 

Focus(mm) 1.4 

Aperture Range F1.4-F16 

CCD size 1/2” 

Minimum object distance(m) 0.1 

BFL(mm) 9.70 

Interface C 

Weight(g) 150 
Table 1. The performance parameters of the fish-eye lens 

 
2.3 Embedded hardware platform 
The vast majority of image processing systems used currently by the AGV are based on the 
traditional PC or high-performance IPC. Although the PC-based architecture is simple and 
mature technically, and applied widely, these image processing systems are redundant in 
terms of both resource allocation and volume, besides they have poor flexibility, heavy 
weight and high power consumption, which is not suitable for the mobile vehicle system 
application. 
 

 
Fig. 4. System diagram of hardware platform 
 
While the embedded system, as a highly-integrated application platform, features great 
practicability, low cost, small size, easy expansion and low power consumption. Therefore, 
we drew on the current successful application of DSP and FPGA chips in the multimedia 
processing, considering the characteristics of the vehicle image processing system such as 
large computation, high real-time requirement and limited resources, proposed a solution to 
build an embedded hardware image processor based on FPGA+DSP. And target recognition, 
tracking and localization are achieved on this hardware platform. The system diagram of 
the hardware platform is shown in Fig. 4. 
We use Altera’s Cyclone series FPGA EP2C20 and TI’s DaVinci DSP TM320DM642 to build 
the embedded hardware image processor. Firstly, the input analog video signal goes 
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through clamp circuit, anti-aliasing filter, A/D conversion and YUV separation circuit to be 
converted to BT.656 video data stream. Secondly, the rich internal hardware resource of the 
FPGA is used to achieve image capture, color space conversion, image enhancement and 
distortion correction and so on. Thirdly, other advanced image processing algorithm such as 
target recognition, tracking and localization, are implemented in the DSP with its high-
speed signal processing capability. Finally, the result of image processing is output to the 
SAA7105, which converts it into NTSC or PAL television signal and displays it on a liquid 
crystal screen. In a word, the entire system fully plays their respective advantages of the 
DSP and FPGA, and combines them closely to form a dedicated embedded hardware image 
processor. 
In addition, we equip the hardware image processor with high-speed, large-capacity data 
memory and program memory, in order to meet the requirements of high-speed image 
processing and transmission. 

 
2.4 Two-color sequential landmarks 
The target recognition algorithm in this project belongs to the template matching method, 
and the invariant features of the target are the research focus of feature extraction. In an 
Omni-directional vision system built on fish-eye lens, because there is a serious distortion 
due to the fish-eye lens itself, it’s difficult to find good invariant features. A large number of 
research and experiments show that color-based features have little change in a fish-eye 
image, but the remaining features such as widely used shape and corners, have obvious 
change due to the fish-eye lens distortion, and are not suitable as the target characteristics. 
 

 
Fig. 5. Two-color sequential landmarks 
 
In theory, considering the large filed of view of the fish-eye lens, using a set of two-color 
landmark can realize the precise position and navigation. But in fact, when the vehicle goes 
far away from the landmarks, the landmarks will be located in the image edge of the fish-
eye lens, where there is a serious distortion. As a result, not only the landmarks become very 
small, but also the isometric projection imaging model is no longer applicable, which make 
the landmarks cannot be used to locate the AGV at this time. Therefore, we arrange 
equidistant two-color landmarks sequentially along the AGV path as Fig. 5 shows, when a 
group of landmarks doesn’t meet the requirement of imaging model, it will automatically 

 

switch to the next group of landmarks in order to achieve continuous landmark recognition 
and tracking for the next localization and navigation of the AGV.  
In a word, this landmark mode has the topological features close to the natural scenery in 
indoor and outdoor environment, is simple and practical, easy to layout and maintain, 
which can effectively improve the efficiency of automatic recognition and tracking in a large 
scene image with distortion of the fish-eye lens. 

 
3. Fish-eye lens distortion model 
 

Ordinary optical imaging system follows the conventional guideline——similarity, that is, 
object point is always similar to image point. Optical design tries to ensure this similarity, so 
does distortion rectification. As a result, come the following imaging formula: (Doucet A, 
&Godsil S, &Andrieu C. 2000) 
When the object is near: yy '

0  

When the object is infinitely far: tan'
0 fy   

Where y is the height of the object, '
0y  is the height of its image,   is lateral magnification, 

f  is the focus of the optical system,   is half-field angle. But when 90tan ，
similarity can not be met. 
In order to cover a wider field angle with a single visual sensor, image compression and 
deformation is introduced, just as the curves in Fig.6 shows. 
 

 
Fig. 6. fish-eye lens distortion 
 
They make the image to achieve deformation to a certain extent, in order to ensure that the 
solid angle covers expected object space. In addition, the distortion of optical system is 
determined by the pathway of primary optical axis, so it just causes image deformation, but 
doesn’t affect image clarity. Despite the obvious distortion, as far as mathematics is 
considered, there is still one-to-one correspondence between the object and its image, which 
ensures the correctness and feasibility of the non-similar imaging model. (Fox D. 2003) 
Our fisheye lens satisfies isometric projection, the imaging formula is as follows: (Thrun S, 
&Fox D, &Burgard W. 2001) 
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Where (X, Y) is the image coordinate, (xc, yc, zc) is the camera coordinate, (u, v) is the pixel 
coordinate, and (u0, v0) is the center of the image. According to the equation (2), if (u0, v0) 
and k are figured out, the conversion relation between the image coordinate and the world 
coordinate will be fixed, and the rectification of the fisheye image will be accomplished. In a 
word, the rectification procedure can be divided into two main steps. (Gilks W R, &Berzuini 
C. 2001) 

 
Fig. 7. coordinate system 
 
Firstly, the conversion relation between the camera coordinate (Xc, Oc, Yc) and the world 
coordinate (Xw, Ow, Yw) should be figured out. As shown in Fig.7, the relation can be 
expressed as:  




















































































z

y

x

w

w

w

w

w

w

c

c

c

t
t
t

z
y
x

RRR
RRR
RRR

T
z
y
x

R
z
y
x

333231

232221

131211

                                or               















































1
10

1
w

w

w

c

c

c

z
y
x

TR
z
y
x

                                        (3) 

 

Where R is the rotation matrix, and T is the translation matrix.  
 

 
Fig. 8. circular points 
 
The world coordinates of those circular points in Fig.8 are known in advance, if we calculate 
the image coordinates of those points by extracting their centers, the R and T can be figured 
out with the equation (3).  
Secondly, the coincidence relation between the camera coordinate (Xc, Oc, Yc) and the 
image coordinate (X, O, Y) should be figured out with the equation (3). (Jung Uk Cho, 
&Seung Hun Jin. 2006) 
Finally, we use 30 circular points to calculate these above equation in the fish-eye distortion 
rectification, and part of the coordinate data is presented in Table 2. With these equations, 
the conversion relation between the world coordinate and the image coordinate is figured 
out, and the center of the image (u0, v0) is (360,288), k = 1.5. Using these parameters and 
equations, we can implement real-time distortion rectification in DSP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. experiment data 

 
4. Improved particle filter 
 

To localize the AGV with landmarks, the coordinate of the beacons in an image should be 
figured out firstly. So an improved particle filter is employed to track these beacons and get 
their coordinates.  

The world coordinate The image coordinate 
X Y Z U V 
2026.189 -7127.78 -562.917 298.21 20.87 
1756.365 -7141.03 -559.438 578.32 21.32 
2174.074 -7118.34 -693.84 143.34 162.08 
1900.543 -7133.42 -686.855 433.87 132.65 
2028.248 -7124.78 -844.925 281.93 324.59 
1759.955 -7138.48 -825.114 601.8 293.74 
1970.002 -7121.13 -773.602 348.47 234.49 
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Where (X, Y) is the image coordinate, (xc, yc, zc) is the camera coordinate, (u, v) is the pixel 
coordinate, and (u0, v0) is the center of the image. According to the equation (2), if (u0, v0) 
and k are figured out, the conversion relation between the image coordinate and the world 
coordinate will be fixed, and the rectification of the fisheye image will be accomplished. In a 
word, the rectification procedure can be divided into two main steps. (Gilks W R, &Berzuini 
C. 2001) 

 
Fig. 7. coordinate system 
 
Firstly, the conversion relation between the camera coordinate (Xc, Oc, Yc) and the world 
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expressed as:  




















































































z

y

x

w

w

w

w

w

w

c

c

c

t
t
t

z
y
x

RRR
RRR
RRR

T
z
y
x

R
z
y
x

333231

232221

131211

                                or               















































1
10

1
w

w

w

c

c

c

z
y
x

TR
z
y
x

                                        (3) 

 

Where R is the rotation matrix, and T is the translation matrix.  
 

 
Fig. 8. circular points 
 
The world coordinates of those circular points in Fig.8 are known in advance, if we calculate 
the image coordinates of those points by extracting their centers, the R and T can be figured 
out with the equation (3).  
Secondly, the coincidence relation between the camera coordinate (Xc, Oc, Yc) and the 
image coordinate (X, O, Y) should be figured out with the equation (3). (Jung Uk Cho, 
&Seung Hun Jin. 2006) 
Finally, we use 30 circular points to calculate these above equation in the fish-eye distortion 
rectification, and part of the coordinate data is presented in Table 2. With these equations, 
the conversion relation between the world coordinate and the image coordinate is figured 
out, and the center of the image (u0, v0) is (360,288), k = 1.5. Using these parameters and 
equations, we can implement real-time distortion rectification in DSP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. experiment data 

 
4. Improved particle filter 
 

To localize the AGV with landmarks, the coordinate of the beacons in an image should be 
figured out firstly. So an improved particle filter is employed to track these beacons and get 
their coordinates.  

The world coordinate The image coordinate 
X Y Z U V 
2026.189 -7127.78 -562.917 298.21 20.87 
1756.365 -7141.03 -559.438 578.32 21.32 
2174.074 -7118.34 -693.84 143.34 162.08 
1900.543 -7133.42 -686.855 433.87 132.65 
2028.248 -7124.78 -844.925 281.93 324.59 
1759.955 -7138.48 -825.114 601.8 293.74 
1970.002 -7121.13 -773.602 348.47 234.49 
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As an algorithm framework, a particle filter can be used to track multiple objects in the case 
of nonlinear and non-Gaussian problem. And the object is quite flexible, like man-made or 
natural landmarks. Particle filter is a Monte Carlo sampling approach to Bayesian filtering. 
The main idea of the particle filter is that the posterior density is approximated by a set of 
discrete samples with associated weights. These discrete samples are called particles which 
describe possible instantiations of the state of the system. As a consequence, the distribution 
over the location of the tracking object is represented by the multiple discrete particles. 
(Kwok C, &Fox D, &Meil M. 2004) 
In the Bayes filtering, the posterior distribution is iteratively updated over the current state 
Xt, given all observations Zt = {Z1,..,Zt} up to and including time t, as follows: 
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Where p(Zt|Xt) expresses the observation model which specifies the likelihood of an object 
being in a specific state and p(Xt|Xt-1) is the transition model which specifies how objects 
move between frames. In a particle filter, prior distribution p(Xt-1|Zt-1) is approximated 
recursively as a set of N weighted samples , which is the weight for particle . Based on the 
Monte Carlo approximation of the integral, we can get: 
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Particle filter provides robust tracking of moving objects in a cluttered environment. 
However, these objects have to be specified manually, and then the particle filter can track 
them, which is unacceptable for autonomous navigation. Thus, we combine an object 
recognition algorithm with particle filter, and use the object recognition algorithm to specify 
landmarks automatically. And once particle filter fails to track the landmarks occasionally, 
the object recognition algorithm will function to relocate the landmarks. In order to facilitate 
object recognition, the landmarks are painted certain colors. Based on color histogram, we 
can find out these landmarks easily. 
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Fig. 9. flow chart of improved Particle Filter 

 

The flow chat of improved PF is shown in Fig.9. When started, a frame is acquired and if it’s 
the first frame, the initialization will be operated. Firstly, the target is recognized by 
searching in the whole image area based on color histogram, and its location is figured out 
for next step. Then, the initial particles come out randomly around the above location, and 
the target color histogram is calculated and saved. Thus, the initialization is finished.  
At the next frame, a classical particle filter is carried out. The principal steps in the particle 
filter algorithm include: 

1) Initialization 

Draw a set of particles for the prior  0Xp  to obtain     Niii wX 100 ,  . 
2) Propagation and Weight calculation 
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1| , where  g  is the Dirac delta function. 

4) Resample 
Resample particles  i

kX  with probability  i
tw  to obtain N independent and identically 

distributed random particles  j
kX , approximately distributed according to  kk ZXP | . 

5) K=k+1, go to step2. 
Meanwhile, object recognition is executed and its result is compared with the particle filter. 
If the recognition result is not accordant with the particle filter, which means that the 
particle filter fails, the PF will be reinitialized based on the recognition result. According to 
the combination of object recognition and particle filter, the improved particle filter can keep 
tracking the target even though the target is blocked or disappeared for a while. 

 
5. Localization and navigation 
 

5.1 Localization 
With the coordinates of the landmarks provided by particle filter, we can locate and 
navigate the AGV automatically.  
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5) K=k+1, go to step2. 
Meanwhile, object recognition is executed and its result is compared with the particle filter. 
If the recognition result is not accordant with the particle filter, which means that the 
particle filter fails, the PF will be reinitialized based on the recognition result. According to 
the combination of object recognition and particle filter, the improved particle filter can keep 
tracking the target even though the target is blocked or disappeared for a while. 

 
5. Localization and navigation 
 

5.1 Localization 
With the coordinates of the landmarks provided by particle filter, we can locate and 
navigate the AGV automatically.  
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Fig. 10. coordinate conversion 
 
As Fig.10 shows, the world coordinates of the two beacons are (x1, y1) and (x2, y2), and their 
relative camera coordinates are (x’1, y’1) and (x’2, y’2). In order to steer the AGV, we need to 
figure out the position of the AGV, (x0, y0) and the angle between the world coordinate and 
the camera coordinate, θ. According to the coordinate conversion principle, the following 
equations exist:  
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Apparently, we can get (x0, y0) and θ with the above equations and realize real-time 
location in DSP. Then the position and angle information of the AGV is sent to the built-in 
computer for navigation.  

 

 

5.2 Navigation 
An incremental PID algorithm is employed as navigation algorithm, which can be expressed 
as the following equation: 
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Suppose ddpdip KCKKBKKKA  ),2(),( , we can get 
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Equation (8) shows that we can get each speed increment with e(k),e(k-1),e(k-2) in the 
calculation of u(k), as shown in equation (9). 
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Where SpeedL and SpeedR are the initial velocities of the left and right wheels respectively, 
the velocity is 0.6m/s. And K1 and K2 are the weight of angle deviation and position 
deviation respectively. We can use equation (9) to figure out the velocities of both wheels, 
and realize the AGV navigation finally. 

 
6. Navigation experiments 
 

6.1 Experimental conditions 
 

 
Fig. 11. experiment environment 
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Apparently, we can get (x0, y0) and θ with the above equations and realize real-time 
location in DSP. Then the position and angle information of the AGV is sent to the built-in 
computer for navigation.  
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An incremental PID algorithm is employed as navigation algorithm, which can be expressed 
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Where SpeedL and SpeedR are the initial velocities of the left and right wheels respectively, 
the velocity is 0.6m/s. And K1 and K2 are the weight of angle deviation and position 
deviation respectively. We can use equation (9) to figure out the velocities of both wheels, 
and realize the AGV navigation finally. 

 
6. Navigation experiments 
 

6.1 Experimental conditions 
 

 
Fig. 11. experiment environment 
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The experimental environment of the Omni-directional vision sensor for AGV navigation is 
shown in Fig. 11. The tracked robot is placed in the corridor of a teaching building in this 
experiment, and the landmarks are fixed on the top of the corridor. Apparently, there are 
windows, radiator, fire hydrants and other various interferences around the AGV path, so 
that we can test the robustness of the Omni-directional vision sensor for AGV navigation.  
 

 
Fig. 12. fish-eye lens camera and embedded image processor 
 
As Fig.12 shows, the fish-eye lens camera is fixed on top of the AGV with a steel frame to 
ensure that the lens be placed vertically upward. The fish-eye lens is 0.88m above the 
ground, and it will acquire Omni-directional image of the entire hemisphere domain above 
the AGV. While the embedded image processor is mounted in a black box, and the box is 
fixed to the roof of the AGV. Moreover, the black box sets aside hatches for a variety of 
processor interfaces, and facilitates thermal dispersal of the circuit board with the grid 
structure on the top of the box. 

 
6.2 Experimental principle 
Firstly, the Omni-directional vision sensor based on fish-eye lens outputs standard analog 
video signal in PAL format, with image resolution of 720 x 576 and frame rate of 25 fps. 
Secondly, the captured image signal is transmitted to the embedded image processor 
through a standard video interface, and the DSP on board runs composite particle filter 
tracking algorithm to achieve real-time recognition and tracking of the two-color sequential 
landmarks. Thirdly, we use the result of landmark tracking to calculate the position 
deviation and angle deviation of the AGV path relative to the target path, according to the 
localization algorithm based on two-color landmarks. Finally, the localization result is sent 
to the built-in IPC of the AGV as the input of PID control strategy with serial port, and we 
can change both wheels’ speed of the AGV to achieve steering control, and realize the 
autonomous navigation of the AGV ultimately.  

 
6.3 Experimental result 
In accordance with the above experimental principle, we obtained two AGV navigation 
paths as shown in Fig.13. The blue curve is the target path pre-generated with the two-color 
sequential landmarks, and the red curve is the AGV navigation path employing angle 

 

deviation as PID control input, while the yellow curve is the AGV navigation path 
employing both angle deviation and position deviation as PID control input. 
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Fig. 13. experimental result (units: cm) 

 
7. Analysis and Conclusion 
 

The autonomous navigation of the AGV can be realized under the control of both angel 
deviation and position deviation. Experiment shows that the Omni-directional vision sensor 
can achieve the autonomous navigation of the AGV at a speed of 0.6m/s, and the absolute 
tracking accuracy is about 10 cm. 
In conclusion, Dynamic localization employs a beacon tracker to follow the landmarks in 
real time during the arbitrary movement of the vehicle. The coordinate transformation is 
devised for path programming based on time sequence images analysis. The beacon 
recognition and tracking a key procedure for an omni-vision guided mobile unit. The 
conventional image processing such as shape decomposition, description, matching, and 
other usually employed techniques are not directly applicable in omni-vision. PF has been 
shown to be successful for several nonlinear estimation problems. A beacon tracker based 
on Particle Filter which offers a probabilistic framework for dynamic state estimation in 
visual tracking has been developed. In a word, the Omni-directional vision sensor 
implements the autonomous navigation of the AGV in the structured indoor and outdoor 
environment. 
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that we can test the robustness of the Omni-directional vision sensor for AGV navigation.  
 

 
Fig. 12. fish-eye lens camera and embedded image processor 
 
As Fig.12 shows, the fish-eye lens camera is fixed on top of the AGV with a steel frame to 
ensure that the lens be placed vertically upward. The fish-eye lens is 0.88m above the 
ground, and it will acquire Omni-directional image of the entire hemisphere domain above 
the AGV. While the embedded image processor is mounted in a black box, and the box is 
fixed to the roof of the AGV. Moreover, the black box sets aside hatches for a variety of 
processor interfaces, and facilitates thermal dispersal of the circuit board with the grid 
structure on the top of the box. 

 
6.2 Experimental principle 
Firstly, the Omni-directional vision sensor based on fish-eye lens outputs standard analog 
video signal in PAL format, with image resolution of 720 x 576 and frame rate of 25 fps. 
Secondly, the captured image signal is transmitted to the embedded image processor 
through a standard video interface, and the DSP on board runs composite particle filter 
tracking algorithm to achieve real-time recognition and tracking of the two-color sequential 
landmarks. Thirdly, we use the result of landmark tracking to calculate the position 
deviation and angle deviation of the AGV path relative to the target path, according to the 
localization algorithm based on two-color landmarks. Finally, the localization result is sent 
to the built-in IPC of the AGV as the input of PID control strategy with serial port, and we 
can change both wheels’ speed of the AGV to achieve steering control, and realize the 
autonomous navigation of the AGV ultimately.  

 
6.3 Experimental result 
In accordance with the above experimental principle, we obtained two AGV navigation 
paths as shown in Fig.13. The blue curve is the target path pre-generated with the two-color 
sequential landmarks, and the red curve is the AGV navigation path employing angle 

 

deviation as PID control input, while the yellow curve is the AGV navigation path 
employing both angle deviation and position deviation as PID control input. 
 

0
120
240
360
480
600
720
840
960
1080
1200
1320
1440

0 120 240 360 480 600 720 840 960 1080 1200 1320
 

Fig. 13. experimental result (units: cm) 

 
7. Analysis and Conclusion 
 

The autonomous navigation of the AGV can be realized under the control of both angel 
deviation and position deviation. Experiment shows that the Omni-directional vision sensor 
can achieve the autonomous navigation of the AGV at a speed of 0.6m/s, and the absolute 
tracking accuracy is about 10 cm. 
In conclusion, Dynamic localization employs a beacon tracker to follow the landmarks in 
real time during the arbitrary movement of the vehicle. The coordinate transformation is 
devised for path programming based on time sequence images analysis. The beacon 
recognition and tracking a key procedure for an omni-vision guided mobile unit. The 
conventional image processing such as shape decomposition, description, matching, and 
other usually employed techniques are not directly applicable in omni-vision. PF has been 
shown to be successful for several nonlinear estimation problems. A beacon tracker based 
on Particle Filter which offers a probabilistic framework for dynamic state estimation in 
visual tracking has been developed. In a word, the Omni-directional vision sensor 
implements the autonomous navigation of the AGV in the structured indoor and outdoor 
environment. 
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