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1. Introduction 
 

Although advances in computer, network and mechanical technologies promise practical 
applications of intelligent robots, there are still issues to be realizing available intelligence 
like a human. For example, global perspective recognition, long-term prediction, and 
experience-based intuition, which are typical human abilities, are difficult to implement in 
artificial systems using current technologies yet.  
To overcome this problem, there are roughly two approaches. One is studies on artificial 
intelligence to make robots more intelligent like human beings. The other is to utilize human 
ability by human–machine cooperation. This paper focuses on the later. 
A lot of studies on human-machine systems have been proposed. Teleoperation systems are 
typical application expected to improve the performance utilizing human abilities. For 
instance, master-slave systems provide realistic information mainly through force feedback 
to the operator (Horiguchi & Sawaragi, 1999) (Forsyth & Maclean, 2006). (Katsura & Ohnishi, 
2007). The systems can give initiative of machine motion to human operator. However, due 
to constraints on machine workspace, their applications are limited to apply them to tasks 
fully utilizing human abilities, e.g., a situation in which unexpected disturbances or 
environmental changes are occurred. 
Zheng et al. proposed robot teleoperation system with a mobile in disaster sites (Zheng et al., 
2004). The operator’s role is especially finding victims through robot vision and they 
focused on assisting the recognition of the victims. For mobile robot operation, teleoperation 
systems to assist by autonomous behaviour of the robot in response to command input are 
proposed (Wang & Liu, 2004) (Cheng et al., 1997). Most of these assists are based on 
designer’s subjectivity such as giving repulsive force from obstacles, attraction from an 
optimum trajectory and so on. These assists were effective in a specific task.  
However, such assists with external input force include two problems, namely; (i) human 
abilities could not be utilize, and (ii) hindering human learning ability. In description (i), the 
assumption that the robot knows its optimum motion could reduce the need for human 
involvement. Therefore, users must keep the initiative to utilize the human abilities. 
Furthermore, about description (ii), due to robot behaviour without operators’ intention, 
such assists make operators not only confuse, but also hinder human learning abilities. 
Human learning ability is demonstrated by modifying his/her internal model of the 
machine motion so that the internal model closes to operated machine dynamics 
unconsciously (Yamada & Yamaguchi, 2004).  
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Proposed technique attempts to improve above two problems. In order to give an operators 
initiative, assist with external force by autonomous behaviour is discarded. Therefore, the 
machine dynamics is modified to close to operator’s internal model. To estimate difference 
between the internal model and the machine dynamics, target tracking task, e.g. line trace, is 
carried out as a calibration. We expect if the internal model closed to the machine dynamics 
enough, the tracking error could be reduced. After the calibration, the machine has 
dynamics similar to the internal model and the operator could operate the machine at will. 
To not hinder the human learning ability, the machine dynamics is modified without human 
awareness, namely “subliminal”. According to cognitive science knowledge, how change of 
stimulus is required to notice it is quantified by “Just Noticeable Difference: JND”. By 
considering JND, the calibration can be carried out subliminally. 
Furthermore, the subliminal calibration can provide enhancement of human learning 
process because human learning is also to modify the internal model approaching to the 
operated machine dynamics (Flanagan et al., 1999). The calibration, therefore, gives high 
operability with short time. The subliminal calibration is implemented to vehicle operation 
constructed in 3D computer graphics and is verified the validity by some experiments. 
This chapter is organized as follows; in the next section, a basic concept of the subliminal 
calibration including definition of the best operability is described. In section 3, JND by 
cognitive science knowledge is discussed. Next, mathematical theory of the subliminal 
calibration is stated in section 4. Then, in section 5, experiments and their results are 
presented, and finally, this article is concluded in section 6. 

 
2. Basic Concept of Subliminal Calibration 
 

2.1 Human initiative in human-machine systems 
One of advantages in a human-machine system is that human abilities are utilized in the 
system behaviour. The abilities include global perspective environmental recognition, 
experience-based prediction, long-term planning, and so on. Therefore, a suitable human-
machine system should give an operator initiative to utilize the abilities.  
In order to improve the operation performance in human-machine systems, in conventional 
researches, most of assists involves addition of external forces to human command input 
based on the autonomous behaviour of the system. Such external force relies on the system 
designer’s subjectivity, e.g. repulsive force from an obstacle. This may useful for safety in a 
particular task, but the assists cannot have versatility, that is, it works depending on 
designer’s assumption. Furthermore, the assist may deprive the operator initiative by 
operator’s unexpected motion of the system.  
Further, such assist cannot consider human learning dynamics. In special, human skill can 
be improved through practices. A new system adapts to operator’s skill, called “Human 
Adaptive Mechatronics: HAM” was proposed (Furuta, K., 2003)(Suzuki, S., 2005). In the 
HAM studies, evaluation and quantification of human skills are especially focused on. We 
proposed a technique that improves machine operability by taking into account human 
learning dynamics without adding external force to command input.  
 
 

 

 
Fig. 1. Definitions of the best operability 

 
2.2 Discussion about the best operability 
Here, the best operability on machine operation systems is discussed. We defined the best 
operability is what a human operates the system at will. According to neural science 
knowledge, a human constructs in his/her brain a dynamics model of operated machine, 
called an internal model. As getting skill, the operator brushes up the internal model closing 
to the machine dynamics.  
As shown in Fig. 1, if the internal model and the machine dynamics represented as machine 
impedance were closed to each enough, the system could give an operator the best 
operability. The idea of a new assist is the machine impedances modify to approaching the 
internal model. This is as if the machine learns the internal model like human beings. 
Although the internal model should be obtained to give the assist technique during the 
operation, it seems to be impossible. Therefore, we implement the technique as a calibration 
in target tracking tasks, e.g. line trace by operated vehicle. We assume difference between 
the internal model and operated machine dynamics correlate with following error in the 
tracking task. After finishing the calibration, the machine would change the dynamics 
similar to the internal model, and then, the operator could operate it with high operability. 

 
2.3 Basic concept of subliminal calibration 
In our previous work, the calibration was experimented in mobile vehicle operation (H. 
Igarashi, 2006). The calibration, however, could not work well for the operability. One of the 
reasons is confusion to changing the machine behaviour according to subject’s opinions.  

command input u
via interface

Human-predicted machine dynamics
( internal model )

If                           then, gives operator best operability
Mh = Mp
Bh = Bp

u = Mh x + Bh x
.. .

Operated machine dynamics
Mp x + Bp x = u

.. .
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Fig. 2. Concept of proposed calibration considering human learning dynamics 
 
This phenomenon is explained by human learning characteristics as mentioned above. That is, 
in spite that the operator tried to modify the internal model as shown in Fig. 2 (a), the reference 
model, which is represented by the machine impedances, was changed. In that case, the 
calibration performance was worse rather than without calibration as shown in Fig. 2 (a). 
Thus, the failure gave us a new suggestion that if an operator were not aware the change of 
machine impedances, that is “subliminal”, the learning time to get the best operability could 
be shorten as shown in Fig. 2 (c). About human perception characteristics, Just Noticeable 

(a) Machine operation learning process without calibration: required long time.
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Difference: JND is investigated in cognitive science field (Teghtsoonian, 1971). In the 
following section, the JND to give the calibration subliminally is discussed. 

 
3. JND for subliminal calibration 
 

3.1 General mathematical model of operated Machine 
First, for JND discussion, a simple model of operated machine in a tracking task is assumed. 
A motion equation of the machine with its position x and input u, is as follows; 
 

])[][][(][][ 1 kukxkBkMkx    , (1) 
 
where, M[k] and B[k] denote inertia and viscous of operated machine in time step k, 
respectively. These machien impedances could be variable and the calibration modifies  
these to approach to the human internal model. For simplicity, these are also represented as 
a vector;  
 

 ][][][ kBkMk σ T. (2) 
 
A following error ][ke  in the following task as line tracing by vehicle driving in 
experiments is with a target position xr  as follows; 
 

][][][ kxkxke r  . (3) 
 
We assume if the human internal model were enough close to operated machine impedance, 
the following error e could be reduced. Then, The subliminal calibration attempts to reduce 

]1[ ke  with modifying [k]. 

 
3.2 Just Noticeable Difference 
The JND is described that a ratio between required difference to notice the stimulus ΔI and 
an original stimulus I is approximately constant as follows; 
 

(constant)|| c
I
I


 , (4) 

 
where, a constant ratio c is called JND or Weber’s ratio and its value depends on the kind of 
stimulus. For instance, that JND of pressure is 0.143 and 0.079 is for brightness was reported 
(Teghtsoonian, 1971). B. R. Brewer et al. applied the JND to a robotic rehabilitation system 
for effective rehabilitation, and investigated the JND of force and position for young and 
elderly subjects (Brewer at el., 2005). In our previous work, the JND for notice a difference of 
window size is investigated for an alert system on GUI (Igarashi et al., 2005).  
Then, we consider the JND of the machine impedances is described for calibration without 
human awareness as following equations; 
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]1[
|]1[][|





kM

kMkMc M , (5) 

]1[
|]1[][|





kB

kBkBcB , (6) 

 
where, cM and cB denote JND for inertia and viscous, respectively. Hence, maximum 
variations the machine impedances to not notice their changes, Mmax and Bmax, are 
described as follows; 
 









otherwise]1[

0])1[][(if]1[
][max kMc

kMkMkMc
kM

M

M , (7) 









otherwise]1[

0])1[][(if]1[
][max kBc

kBkBkBc
kB

B

B . (8) 

 
Thus, the variations of the machine impedances, M[k] and B[k], constraints for the 
subliminal calibration as following equation; 
 

][][ max kMkM  , (9) 
  

][][ max kBkB  , (10) 
 
then,  
 













][][
][][

][][]1[
kBkB
kMkM

kkk σσσ . (11) 

 
If the machine impedance modification were satisfied the Eqs. (9) and (10), the operator 
could not notice it. Finally, the subliminal impedance modification is implemented to the 
calibration with JND c by following filter;  
 












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otherwise]1[

]1[][]1[
]1[][]1[

)],[(JND
kX

kcXkXkcX
kcXkXkcX

ckXf  (12) 

 
By applying this filter, the calibration with impedance modification can be conducted 
without operator awareness. 

 
4. Theory of subliminal calibration 
 

The subliminal calibration is approaching operated machine impedance to the internal 
model without awareness. We assume if both models were enough closed, following error 

 

in the tracking task could be reduced. In this section, theory of the calibration and its 
procedure are described.  

 
4.1 Human Input Model by Neural Network 
For modifying the machine impedance [k] to reduce the following error e[k+1], human 
input u[k] is necessary to be predicted. The human input is predicted by the Neural 
Network. Input elements of the human model, ][kNNI , is represented as follows; 
 

 ][][][][][ ueNN NkukuNkekek  I , (13) 
 
where, Ne and Nu denote the number of tracing steps of the following errors e and input u, 
respectively. Thus, predicted input ]1[ˆ ku  is estimated as; 
 

])[(]1[ˆ kfku NNNN I , (14) 
 
where, )(NNf represents a forwarding Neural Network which is carried out back 
propergation learning with  INN[k-1] and its teaching signal u[k] in real-time.  

 
4.2 Subliminal modification of machine impedances 
Variation of the machine impedances  to reduce following error e is defined here.  
First, an evaluation function of following performance J[k] using predicted input is 
calculated as follows; 
 

2
0

2 ][]0[][ˆ(][ iiekJ
pTk

ki
e σσ  




 , (15) 

where, 
 

])[ˆ(:][ˆ ixxie r  , (16) 

][:][ˆ kxkx   , (17) 

][:][ˆ kxkx  , (18) 

pTkkiiuixiBiMix   ,,])[ˆ][ˆ][(][][ˆ 1  . (19) 
 
The evaluation value J[k] is determined with estimated motion of the machine until Tp step 
later by using predicted input ][ˆ ku , and Tp denotes time step number for predictive virtual 
motion. Then, e is weights for the evaluation, and 0 represents a weighting coefficients to 
constrain of impedance parameter divergence with initial impedance [0].  
Finally, the variation of impedance [k] by steepest descent method with JND filtering in 
Eq. (12) is as follows; 
 











 c
σ

σ ,][][ kJfk JND , (20) 
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By Eq. (20), a calibration without human awareness is realized for machine operation system. 
After the subliminal calibration, the impedances [k] are fixed to give high operability to 
the operator.  
Note that, human would operate the machine at will soon even if differences between the 
internal model and the machine impedance [k] are remains because human has a learning 
ability as swhon in Fig 2 (a). In other words, this technique enhances the human learing 
dynamics rather than operation performance. 

 
5. Experiments and Results 
 

Vehicle driving with the subliminal calibration is experimented (see Fig. 3). The vehicle 
model is based on hovercraft model because of difficult to drive and required getting skill 
for high performance.  
 

 
Fig. 3. View of experimental environment in line trace task  
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Fig. 4. Model of operated vechile in the experiment 

 
5.1 Operated vehicle model 
The equations of motion for an operated vehicle, which is with hovercraft-normative 
dynamics as shown Fig. 3, is described here. Where (x, y) denotes the global positioning axes 
of the vehicle, and  the angle to forwarding direction.  
Equations of motion are expressedas as follows, where M[k] denotes mass, B[k] translational 
viscosity, I[k] inertial moment, and N[k] rotational viscosity: 
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Where, fL[k] and fR[k] denote output of thrusters as; 
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])[1(][:][ kukukf saR  . (26) 

 
where, ua [k] (-1 ≤ ua [k] ≤ 1) denotes command input for forward movement, us [k] (-1 ≤ us 

[k] ≤ 1) rotation, l distance between thrusters, and  a constant. 
The subliminal calibration modifies M, B, I, and N closer to the internal model by reducing 
following error. The machine impedances are rewriten Eq. (12) into following vector; 
 

 TkNkIkBkMk ][][][][][ σ . (27) 

l( x, y )



fL
x

y

fR

forward direction

o

l

www.intechopen.com



Subliminal Calibration for Machine Operation 163

 

where,  
 











B

M
c
c

:c . (21) 

 
By Eq. (20), a calibration without human awareness is realized for machine operation system. 
After the subliminal calibration, the impedances [k] are fixed to give high operability to 
the operator.  
Note that, human would operate the machine at will soon even if differences between the 
internal model and the machine impedance [k] are remains because human has a learning 
ability as swhon in Fig 2 (a). In other words, this technique enhances the human learing 
dynamics rather than operation performance. 

 
5. Experiments and Results 
 

Vehicle driving with the subliminal calibration is experimented (see Fig. 3). The vehicle 
model is based on hovercraft model because of difficult to drive and required getting skill 
for high performance.  
 

 
Fig. 3. View of experimental environment in line trace task  
 

target

reference line

19’’ monitor

driving interface

(b) Operator view in line tracking experiment.(a) Experiment setup.

 

 
Fig. 4. Model of operated vechile in the experiment 

 
5.1 Operated vehicle model 
The equations of motion for an operated vehicle, which is with hovercraft-normative 
dynamics as shown Fig. 3, is described here. Where (x, y) denotes the global positioning axes 
of the vehicle, and  the angle to forwarding direction.  
Equations of motion are expressedas as follows, where M[k] denotes mass, B[k] translational 
viscosity, I[k] inertial moment, and N[k] rotational viscosity: 
 

 ])[][]([cos][][
][

1][ kfkfkkxkB
kM

kx RL   , (22) 

 ])[][]([sin][][
][

1][ kfkfkkykB
kM

ky RL   , (23) 

])[][(
][4

][
][
][

][ kfkf
kI

lk
kI
kN

k RL    . (24) 

 
Where, fL[k] and fR[k] denote output of thrusters as; 
 

])[1(][:][ kukukf saL  , (25) 
])[1(][:][ kukukf saR  . (26) 

 
where, ua [k] (-1 ≤ ua [k] ≤ 1) denotes command input for forward movement, us [k] (-1 ≤ us 

[k] ≤ 1) rotation, l distance between thrusters, and  a constant. 
The subliminal calibration modifies M, B, I, and N closer to the internal model by reducing 
following error. The machine impedances are rewriten Eq. (12) into following vector; 
 

 TkNkIkBkMk ][][][][][ σ . (27) 

l( x, y )



fL
x

y

fR

forward direction

o

l

www.intechopen.com



Remote and Telerobotics164

 

 
Fig. 5. Driving course and area of giving the Subliminal Calibration (SC) in the experiment  
 

Fig. 6. Evaluation indexes for vehicle operation experiment 
 
Similar to Eqs. (5) and (6), cM, cB, cI and cN are represented as JNDs on M, B, I, and N, 
respectively. According to our prior experimental results, cM = cB = cI = cN = 0.05 are small 
enough for subliminal calibration for the vehicle operation. 
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As shown in Fig. 4, participants use a driving interface to operate the vehicle in the OpenGL 
3D-CG environment. In this experiment, the accelerator was set at a constant ua[k] = 1.0 to 
focus on sterring performance. 

 
5.2 Experimental Setup 
The line tracking task was to have participants maneuver a vehicle through a commercial 
driving interface (R220, Saitek Ltd.) while observing robot camera views displayed on a 19-
inch monitor. Participants were instructed to follow the reference line as closely as possible 
by steering only with accelerator input set constant. The driving performance, with/ 
without calibration, for 8 participants was evaluated. To reduce effects on unconscious 
learning, subjects had breaks between two trials, and experiments were conducted in a 
random sequence. 
To prevent participants from memorizing the reference line, the line generation was 
expressed as a combination of sine waves shown in Fig. 5; 
 

xxxxf 05.0sin307.0sin411.0sin5)(map  . (30) 
 
The goal of the course is set at x = 1000 and it takes about three minutes to finish. In this task, 
the subliminal calibration was set for x < 500 and performances with/without it was 
compared. The calibration was conducted intermittently as shown in Fig. 6, to let 
participants display adaptability and learning unconscioully.  
Performance evaluation indexes of the line tracing are shown in Fig. 6, following error on 
the Y-axis from the reference line is expressed by ed and those in orientation between the 
target and the the vehicle, by e, then we obtain the following evaluation values:  
 

]),[(][][ mapd kxfkyke   (28) 

][
][)][(

tan][ map1 k
L

kyLkxf
ke

T

T  


  , (29) 

 
Where, LT denotes distance on the x-axis from the vehicle to a target flag, which moves on 
reference line; with LT = 10 in the experiment.  
The human model is constructed based on these evaluation values, namely input vector to 
the Nerural Network in Eq. (13) is rewriten as follows; 
 

 ][][][][][][][ usseeddNN NkukuNkekeNkekek   I . (30) 
 
Where, in the experiments, Ne = Nu = 5. 
Because accelalation input ua = 1.0, human input is only predicted for sterring input us. 
Therefore, using forwarding Neural Network fNN with input INN[k] in Eq. (30) , the input 
prediction is as; 
 

])[(]1[ˆ kfku NNNNs I . (31) 
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Then, the modification of the impedance is as follows; 
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wehre, the initial value of the machine impedance was set to [0] = [50, 50, 50, 50]T. In 
experiments with the calibration, initial  would be modified to minimize J[k] by Eq. (20).  

 
5.3 Experimental Results 
Fig. ７ shows averages of line tracking performance for all 8 participants. All participants 
couuld NOT notice changes of the machine impedance by the subliminal calibration 
through the experiment. Fig. 7 (a), (b), (c) and (d) show line following evaluation without 
the subliminal calibration. Note that, inspete of without the calibation, following errors 
decreased as x increased, apparently representing improvements due to operator learning 
dynamics. This indicates that participants can have their internal model approach operated 
vehicle dynamics even without the calibration. Fig. 7 (e), (f), (g) and (h) show results of 
giving subliminal calibration intermittently in x < 500.  
By Fig. (e) and (g) following error ed and e improved over the case without the calibration, 
and standard deviation also improved as shown in Fig. 7(f) and (h). Note that machine 
impedances were intermittently updated in calibration of x < 500 but no updating was done 
for x > 500. This suggests that the calibration in the first half of the course has transformed 
the machine whoes impedance into the internal model and the operator could get high 
operability. 
Next, Fig. 8 shows typical two participants who are the most skilled and unskilled operator 
are focused on. According to Fig. 8 (a), the skilled operator is enough high performance 
without the calibration. Note Fig. 8 (b) that, the subliminal calibration did not interfere in 
the skilled operator.  
Fig. 8 (c) and (d) shows the following performance of an unskilled operator. As shown in Fig. 
8 (d), even after the calibration x > 500, the unskilled operator could keep performance, that 
is, the machine impedance could approach to the internal model of the unskilled operator. 
Therefore, the subliminal calibration can be applied without concern of operator’s skill.  
 
 

 

 
Fig. 7. Experimental results: means and STD of the evaluation value ed and e with/without 
the Subliminal Calibration (SC). 
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Fig. 8. Experiment results: following performance in skilled and unskilled operator. 

 
6. Conclusion 
 

Most of conventional assist techniques for human-machine systems relied on autonomous 
behaviour of the system with adding external force to command input, and thus on the 
subjectivity of system designers. These techniques, however, may work well only in a 
specific task a system designer assumed, and also may hinder the human initiative and 
learning ability.  
Therefore, we proposed a calibration technique approaching the machine impedance to 
operator's internal model. This is expected to maximize the operability with which operator 
maneuver a machine at will with maintaining the initiative. 
Human learning ability makes them feel uncomfortable in the face of variations in machine 
dynamics and it brings for the worse of operability. We set up a criterion on varying the 
operated machine impedance using JND as a perception criterion for varying stimulation. 
Variations in machine impedance within the limits of the criterion ensure calibration 
subliminally.  
Our proposal requires estimation of an operator's internal model, so we conducted 
calibrations during a line tracking task in the experiment. The results show that all subjects 
improved line following accuracy without being aware of variations in operated vehicle 
impedance. This means that the vehicle dynamics approached the internal model, 
confirming that accuracy of x > 500 was maintained even after the calibration stopped. In 
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other words, our proposed calibration effectively customizes operated machine dynamics 
for individual subjects. 
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improved line following accuracy without being aware of variations in operated vehicle 
impedance. This means that the vehicle dynamics approached the internal model, 
confirming that accuracy of x > 500 was maintained even after the calibration stopped. In 

(d) following error with SC : unskilled participant
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(b) following error with SC : skilled participant

(b) following error without SC : unskilled participant
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(a) following error without SC : skilled participant
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other words, our proposed calibration effectively customizes operated machine dynamics 
for individual subjects. 
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