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1. Introduction 

The ways to develop one-dimensional (1D) nanostructures, such as nanowires, nanorods, 
nanobelts and nanotubes, are being studied intensively, due to their unique applications in 
mesoscopic physics and nanoscale electronic devices [1-3]. Structural phase transition 
between the wurtzite (WZ) and zinc-blend (ZB) GaN induced by the deposition conditions 
[4], temperature-mediated phase selection during the growth of GaN [5], and substrate 
control [6] by the crystallographic alignment of GaN have all been observed.  It is known 
that x-ray scattering technique plays an important role in investigating the lattice excitations 
and structural transformation associated with thermal strain in 1D nanowires [7]. For 
example, Dahara and co-workers [8] reported a phase transformation from hexagonal to 
cubic in Ga+ implaned GaN nanowires (GaNWs). The SC16 phase of GaAs appears at high 
pressure can be transformed to the hexagonal WZ phase by reducing the pressure to the 
ambient one. WZ GaAs is stable in resisting a transformation to the ZB phase at 
temperatures up to 473 K at ambient pressure [9]. Currently, most of the studies on the 
crystalline structure of GaNWs are focused on the stable hexagonal α-GaN and metal-stable 
cubic β-GaN. In this work, we study the crystalline structure of GaNWs by using in situ low-
temperature x-ray diffraction and Rietveld analysis [10]. Our findings show that the ZB 
phase starts to develop below 260 K. A finite size model wherein the random phase 
distribution is utilized to describe the development of short range atomic ordering.  The 
phase separation was found to be reversible upon temperature cycling, and occurred 
through the exchange and interaction of the characteristic size of the ordered domain of the 
GaN nanowires. 

2. Important 

In situ low temperature x-ray diffraction was employed to investigate the phase separation 
of GaN nanowires. Observations showed that a distinct phase separation developed below 
260 K, the Zinc-Blend phase, which was related to short range ordering. Surprisingly, the 
correlation lengths of the Zinc-Blend phase reached their maximum at 140 K but correlation 
length was still revealed at around 23 nm. Our results may be understood using the short 
range correlation model, and support the conclusion that the phase separation was 
reversible and occurred through the interaction of the characteristic size of the ordered 
domain of the GaN nanowires. 
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3. Experimental details 

GaN is a direct wide band-gap semiconductor at room temperature. It is a prominent 
candidate for optoelectronic devices at blue and near ultra-violet wavelengths [11-14]. In 
addition, it exhibits high thermal conductivity and little radiation damage, suitable for high 
temperature and high power microelectronic devices[15]. GaN nanowires have been 
synthesized by several groups using different methods[16-22]. The randomly oriented 
GaNWs used in this study were synthesized by a low pressure thermal chemical vapor 
deposition (LPTCVD) technique. The samples were grown at 950 oC on Si [001] substrates 
precoated with a 5 nm Au catalyst layer by an E-Gun evaporator. Molten gallium was used 
as the source material and NH3 (30 sccm) as the reactant gas in a horizontal tubular furnace.  
Details of the growth process may be found elsewhere [23]. A low temperature in situ X-ray 
diffractometer (Scintag 2000) was utilized to investigate the crystalline structure of the 
GaNWs produced at various temperatures. The specimens were mounted on background-
free sample holders, which were then attached to a cold-head placed in a high vacuum ( < 
10-6 Torr) environment. The chamber was equipped with a beryllium hemisphere, and 
evacuated to reduce air scattering and absorption of the x-ray. No obvious differences were 
found in the x-ray diffraction patterns taken on different portions of the sample. 

4. Results and discussion 

 

Fig. 1. SEM micrograph of GaNWs homogeneously grown on the substrate. 

4.1 SEM results 
The morphology of sample was characterized by a field emission scanning electron 
microscope (FE-SEM, JEOL JSM-6500F) equipped with an energy dispersive x-ray 
spectroscope (EDS, Oxford Instrument INCA x-sight 7557). Atomic-resolution transmission 
electron microscopic (TEM) analysis and high-resolution transmission electron microscopy 
(HRTEM) images were taken with the CCD-camera of an electron microscope (JEOL JEM-
2100) at 200 kV. Analysis software (Digital Micrograph) was employed to digitalize and 
analyze the obtained images.  Figure 1 displays a portion of the SEM image showing the 
morphology of the GaNWs. The diameters of the GaNWs assembly ranged from 20 to 50 
nm, with a length of several tens of microns. The diameter distribution of the GaNWs 
assembly, as shown in the Fig. 2, is quite asymmetric and can be described using a log-
normal distribution function (solid line).  The log-normal distribution is defined as follows: 
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deviation of the function. The mean diameter obtained from the fit is <d>=40(3) nm. The 
small standard deviation (σ< 0.5) of the function indicates that the distribution is confined to 
a limited range.  The broadening of the width of the distribution profile is due to crystalline 
and nanoparticle aggregation effects. 
 

 
Fig. 2. The diameter distribution of the GaNWs obtained from SEM images. 

4.2 TEM and HRTEM results 
Figure 3 shows the TEM morphology of a typical nanowire.  TEM image reveals that most of 
the nanowires are straight, and the diameter along the growth direction is uniform, with a 
mean diameter of 40(3) nm. Figure 4 shows the selected area electron diffraction (SAED) 
pattern taken on a region close to the surface of a single nanowire. It clearly reveals a single 
crystalline nature for the sample studied. The Bragg spots correspond to the [001] reflection 
of the wurtzite structure of the GaNW. The pattern of the main spots can easily be seen as 
hexagonal cells with lattice parameters of a=3.195 Å and c=5.193 Å, which indicates a 
predominantly polycrystalline hexagonal wurtzite GaN, shown in Fig. 5. In wurtzite 
 

 
Fig. 3. TEM image of the GaNWs revealing a uniform diameter of ~40 nm. 
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Fig. 4. SAED pattern of the GaNWs confirming the [001] growth direction. 

 
Fig. 5. Crystal structure of WZ-GaN. 

structure of GaNWs, on the surface of [001], each Ga atom has three complete bonds to the 
underlying nitrogen atomic plane. Details of the description of crystal structure may be 
found  with the earlier finding [24]. 

4.3 X-ray diffraction 
X-ray diffraction patterns are known as the fingerprints of crystalline materials.  They reveal 
details of the crystalline structure and their formation during synthesis, and even the 
crystalline phase transitions or separation at various temperatures.  The x-ray and Rietveld 
refined diffraction patterns of the GaNWs, taken at 320 K and 80 K, are shown in Fig. 6 and 
7, respectively.  Diffraction patterns were utilized to characterize the crystalline structure in 
the prepared samples. The diffraction peaks appeared to be much broader than the 
instrumental resolution, reflecting the nano-size effects. The analysis was performed using 
the program package of the General Structure Analysis System (GSAS) [25] following the 
Rietveld method [10]. Several models with different symmetries were assumed during the 
preliminary analysis. In our structural analysis we then pay special attention to searching 
for the possible symmetries that can describe the observed diffraction pattern well. All the 
structural and lattice parameters were allowed to vary simultaneously, and refining 
processes were carried out until Rp, the weighted Rwp factor, differed by less than one part in 
a thousand within two successive cycles.  Figure 6 shows the diffraction pattern (black cross) 

www.intechopen.com



Low Temperature Phase Separation in Nanowires  

 

219 

taken at room temperature, where the solid curve (red curve) indicates the fitted pattern and 
the differences (blue curve) between the observed and the fitted patterns are plotted at the 
bottom of Fig. 6.  The refined lattice parameters at 320 K are a=b=3.195(2) Å and c=5.193(1) 
Å.  This c/a=1.625 that we obtained for the WZ structure agrees very well with that obtained 
in a separated study [26], but is ~0.5% smaller than the theoretically expected value [27] of 
1.633. The reasons for this are not completely clear, but could be due to the nanowires are 
expected to grow in the c-direction that resulted in a smaller length-to-width ratio.  
 

 
Fig. 6. The observed (crosses) and Rietveld refined (solid lines) x-ray diffraction patterns of 
GaNWs taken at 320 K.   
 

 
Fig. 7. The observed (crosses) and Rietveld refined (solid lines) x-ray diffraction patterns of 
GaNWs taken at 80 K.  A new set of diffraction peaks that is associated with the zinc-blend 
phase appears in the pattern taken at 80 K.   

A series of new peaks, at scattering angles of 44.08o, 56.22o, 58.2o 68.2o, and 75.3o, becomes 
visible in the diffraction patterns taken at 80 K, as can be seen in the Fig. 7.  These peaks 
were not observed at 320 K and cannot be associated to the α-GaNW.  They, however, may 
be indexed as the {220}ZB, {311}ZB, {222}ZB, {400}ZB, {331}ZB, and {420}ZB reflections of the ZB 
phase, shown in Fig.8.  All these new peaks may be identified to belong a cubic F-43m GaN 
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structure of lattice constant a=5.49 Å.  All the x-ray diffraction patterns taken on the sample 
holder, on the silicon substrate, and on the empty chamber reveal no such signals. 
 

 
Fig. 8. Crystal structure of ZB-GaNWs. 

4.4 In situ low temperature X-ray diffraction 
Figure 9 shows the temperature dependency of the in situ x-ray diffraction patterns, where 
the color bars represent the diffraction intensity.  The {112}WZ, {201}WZ, {004}WZ, and {202}WZ 
reflections are clearly revealed at high temperatures, while the {331}ZB and {420}ZB reflections 
develop below 260 K.  No obvious changes in the width of the diffraction peaks that belong 
to the WZ-phase may be identified in the temperature regime studied, as can be seen in the 
Fig. 10 where FWHM represents the full width at half maximum of the diffraction peak.  
Figure 11 and 12 show the temperature dependency of the integrated intensity and the 
FWHM of the {420}ZB reflection, respectively.  Below 260 K, the integrated intensity of the 
 

 
Fig. 9. Plots of the temperature dependence of the in situ low-temperature x-ray diffraction 
patterns.  
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Fig. 10. The FWHM of the {112}WZ reflection taken at various temperatures, revealing a 
monotonic change of the FWHM is related to the fluctuation in temperature or to the fit of 
the error bar. 
 

 
Fig. 11. Temperature dependence of the integrated intensity of the {420}ZB reflection, where 
the solid curve is guide to the eye only.  A distinct structural transformation may be clearly 
seen to occur at around 260 K.   

{420}ZB reflection increases rapidly, which is accompanied by a reduction in the peak width.  
Clearly, these behaviors signal the development of the ZB-phase GaNWs below 260 K. 
It is known that the reduction in the peak width with decreasing temperature indicates the 
growth of the crystalline domain.  The observed peak profiles for the ZB-phase are much 
broader then the instrument resolution function show that the crystalline domains are finite 
sized, which can be described by the finite lattice model [28].  It follows the instrumental 
resolution function, which can be well approximated by a Gaussian function. We propose 
that the intensity of the Bragg reflection from finite size systems can be described [29] as 
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Fig. 12. Temperature dependence of the FWHM of the {420}ZB reflection, where the solid 
curves is guide to the eye only. The temperature dependency of the FWHM of the selected 
peak of {4 2 0}ZB indicates the structure of the ordering parameter with temperature. 
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where 2θ is the scattering angle, C is the instrumental constant, 2Me−  is the Debye 
temperature factor, μ is the linear absorption coefficient, M is the multiplicity of the {h k l} 
reflection, Fhkl is the structure factor, and the phase factor S(θ) reads 
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Here λ is the wavelength of the incident x-ray, θB is the Bragg angle of the {h k l} reflection, 
and ξ is the correlation length of the Bragg scattering that indicates the characteristic size of 
the crystalline domains. In Fig. 13 we show the development of the {420}ZB reflection with 
temperature.  No significant ZB-phase crystallinity may be identified at above 260 K.  At 230 
K a broad peak at the {420}ZB position becomes evident, as shown in Fig. 13(f). The 
diffraction patterns taken at different temperatures show that this peak starts to develop at 
T~260 K, and becomes saturated in intensity at T=140 K. The solid curves shown in 
Figs.13(a)-(f) indicate the fits of the data to the above expression convoluted with the 
Gaussian instrumental resolutions function. This reflection originates from the development 
of finite size atomic crystalline domains that belong to the ZB-GaNWs phase. Fig. 13(i) 
shows a portion of the diffraction pattern taken in a subsequent warm up to 320 K. It shows 
that the occurrence of phase separation in temperature cycling is reversible. 
This critical scattering originates from the short range ordered domains that can be indexed 
by the ZB-GaNWs, as observed by the in situ x-ray diffraction method. The correlation 
length ξ of the Bragg scattering that represents the characteristic size of the ordered domain 
can be used to investigate the growth of the GaNWs. Figure 14 shows the obtained 
correlation lengths of GaNWs versus temperatures. The results show that the self 
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organization process is characterized by a rapid initial growth rate that slows down and 
self-terminates.  This solid curve shown in Fig. 14 describes an exponential growth function 

[30], namely 
T

o eτξ ξ β= − , where ξο =23.8 nm, τ=75.3 K, and β=0.776 nm represent the initial 
constants and the fitted parameters, respectively.  Furthermore, the nanowire growth rate, 
defined by G=∣dξ/dT∣, can be used to probe the growth rate of short range domain.  Thus, at 
T=230 to 80 K, we have a growth rate of 0.0103 Å/K and a self-terminated length of ξο=23.8 nm. 

 
Fig. 13. Variations of the {420}ZB reflection with temperature.  The solid curves indicate the 
fitted of the data to the diffraction profile for finite size structure.  
 

 
Fig. 14. Temperature dependence of the obtained correlation lengths, revealing a growth 
rate of 0.0103 Å/K and self-terminated length if ξ0=23.8 nm. 
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5. Conclusion 

In conclusion, we have fabricated GaN nanowires employing the LPTCVD method, which 
we take the advantage of the reaction of gallium with NH3.  The mean diameter of the GaN 
nanowires fabricated was 40(3) nm, and their crystallized into the known wurtzite GaN 
structure at ambient temperatures.  Profile refining of the diffraction patterns shows that the 
low temperature patterns cannot be described using the hexagonal α-GaN solely.  The ZB-
GaN phase was found to develop below 260 K.  A new short range ordered ZB-GaN phase 
was observed.  The width of the diffraction profile associated to ZB-GaN is noticeably larger 
than that of the WZ-GaN phase.  Short range ordering effect and the phase distribution of 
random ZB-GaNWs must be taken into account.  A short range modeling was employed to 
identify the correlation lengths of the temperature dependence to the ordered domains [31].  
The short-range ordered domains observed are not only of great interest for understanding 
the thermal effect of the phase separation in the GaNWs system (e.g., for CuO [32, 33], WO2 

[34], MoO2 [35] and Ta2O5 nanowires [36-41]) but also for investigating fundamental physics 
and mechanisms in the future. 
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