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1. Introduction 
 

In the last decade, digital imaging has experienced a worldwide revolution of growth in 
both the number of users and the range of applications. The amount of digital image content 
produced on a daily basis is still increasing drastically. As from the very beginning of 
photography, those who took pictures tried to capture as much information as possible 
about the photograph and in today's digital age, the need for appending metadata is even 
bigger. However, it is obvious that manually annotating images is a cumbersome, time 
consuming and expensive task for large image databases, and it is often subjective, context-
sensitive and incomplete. Furthermore, it is difficult for the traditional text-based methods 
to support a variety of task-dependent queries solely relying on textual metadata since 
visual information is a more capable medium of conveying ideas and is more closely related 
to human perception of the real world. The dynamic image characteristics require 
sophisticated methodologies for data visualization, indexing and similarity management 
and, as a result, have attracted significant research efforts in providing tools for content-
based retrieval of visual data. Content-based image retrieval uses the visual contents of an 
image such as color, shape, texture, and spatial layout to represent and index the image. 
Early content-based image retrieval systems were based on the search for the best match to a 
user-provided query image or sketch (Flickner et al., 1995; Mehrotra et al., 1997; Laaksonen 
et al., 2002).  Such systems decompose each image into a number of low-level visual features 
(e.g., color histograms, edge information) and the retrieval process is formulated as the 
search for the best match to the feature vector(s) extracted from a query image. However, it 
was quickly realized that the design of a fully functional retrieval system would require 
support for semantic queries (Picard, 1995).  The basic idea is to automatically associate 
semantic keywords with each image by building models of visual appearance of the 
semantic concepts of interest.  However, the critical point in the advancement of content-
based image retrieval is the semantic gap. The semantic gap is the major discrepancy in 
computer vision: the user wants to retrieve images on a semantic level, but the image 
characterizations can only provide a low-level similarity. As a result, describing high-level 
semantic concepts with low-level visual features is a challenging task. The first efforts 
targeted the extraction of specific semantics under the framework of binary classification, 
such as indoor versus outdoor (Szummer & Picard, 1998), and city versus landscape 
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classification (Vailaya et al., 1998). More recently, efforts have emerged to solve the problem 
in greater generality through the design of techniques capable of learning semantic 
vocabularies from annotated training image collections by applying (both unsupervised and 
semi-supervised) machine learning techniques, e.g. (Duygulu et al., 2002; Feng et al., 2004).  
In computer vision one of the traditional goals is the automatic segmentation and 
interpretation of general digital images of arbitrary scenes.  In the literature, certain methods 
have been proposed to extract the semantics of scenery images using low-level features. 
Most of these approaches use image partitioning as intermediate step. Wang et al. use a 
codebook to segment an image based on the statistics of the regions' color and texture 
features (Wang et al., 2002). At pixel level, color-texture classification is used to form the 
codebook. This codebook is used in the next stage to segment an image into regions. The 
context and content of these regions are defined at image level. Zhu et al. partition the image 
into equally sized blocks and indexes the regions using a codebook whose entries are 
obtained from the features extracted from a block (Zhu et al., 2000).  In (Li & Wang, 2003) a 
method is described to use 2-dimensional hidden Markov models to associate the image and 
a textual description. However, most approaches introduced above can not integrate the 
semantic descriptions into the regions, and therefore cannot support the high-level querying 
of images. Depalov et al. use a color-texture segmentation algorithm to segment images 
depicting natural scenes (Depalov et al., 2006). The features of the obtained regions are used 
as medium level descriptors to extract semantic labels at region level and later at scene level. 
However, the use of quantized features may result in weaker segmentations. Turtinen and 
Pietikäinen applied a Self-Organizing Map trained with local binary patterns to classify 
outdoor scene images (Turtinen & Pietikäinen, 2003). As a means of supervision, the user 
selects the map nodes with similar appearance and the corresponding samples are retrained 
using a smaller map in order to reveal if some classes are mixed up in the same node.  
Despite all efforts, humans still outperform the best machine vision systems in many 
aspects. Humans are very good at getting the conceptual category and layout of a scene 
within a single fixation. So, building a system that emulates the recognition tasks of the 
cortex is a challenging and attractive idea. However, in computer vision the use of visual 
neuroscience has often been limited to a tuning of Gabor filter banks (Jain & Farrokhnia, 
1991; Clausi & Jernigan, 2000; Zhang et al., 2000). No real attention has been given to 
biological features of higher complexity so far. Given the fact that the human vision system 
is best trained to color and texture perception, these low-level features could play an 
important role in image understanding. Indeed, Renninger and Malik already have 
concluded that a texture analysis provides useful information for rapid scene identification 
(Renninger & Malik, 2004). Therefore, the application of the appropriate features is of utter 
importance.  
This chapter deals with the combination of biologically inspired features and Self-
Organizing Maps (Kohonen, 2001) for the classification and recognition of real-world 
textures and the segmentation of textured images. Analogously to the processing principles 
of the visual cortex, the unsupervised learning capabilities and visualization techniques of a 
Self-Organizing Map are utilized with the highly efficient color and texture features. The 
Self-Organizing Maps are particularly well-suited for the combined task of mapping the 
high-dimensional and non-linear data distribution to a low dimensional plane while 
conserving the local neighborhood relations for fast and easy-to-use visualization. 

 

The remaining part of this chapter is organized as follows. Section 2 describes the 
computational model to calculate the biologically inspired texture features and in Section 3 
we briefly introduce the basic model of color perception. Section 4 outlines the calculation of 
the features and explains the data preprocessing with regard to classification. Unsupervised 
image partitioning experiments on gray-scale and real-life color textures are presented in 
Section 5. Section 6 describes the automatic interpretation of the obtained image regions and 
discusses the possible improvements. Final conclusions and future work appear in Section 7. 

 
2. Texture model 
 

Our system is inspired by the standard model of the human visual system (HVS) 
(Riesenhuber & Poggio, 2003). The standard model summarizes what most visual 
neuroscientists generally agree on:  

- the first few  hundred milliseconds of visual processing in primate cortex follows a 
mostly feed-forward hierarchy for immediate recognition tasks; 

- hierarchical build-up of invariances first to position and scale and to the viewpoint, 
and more complex transformations requiring the interpolation between several 
different object views; 

- in parallel, an increasing size of receptive fields; 
- plasticity and learning probably at all stages and certainly at the level of the cortex; 
- learning specific to an individual object is not required for scale and position 

invariance. 
In its simplest form, the view based module of the standard model consists of 4 layers of 
computational units. The first layer of simple cells S1 in the primary visual cortex (also 
called the striate cortex or V1) represents linear oriented filters followed by an input 
normalization. Each unit in the next layer (C1) pools the outputs of simple cells of the same 
orientation but at slightly different positions by using a maximum operation. Each of these 
units is still orientation selective but more invariant to the scale, similarly to some complex 
cells. In the next stage signals from complex cells with different orientations but similar 
positions are combined (in a weighted sum) into simple cells S2 to create neurons tuned to a 
dictionary of more complex features. The final layer of C2 units is similar to the C1 cells: by 
pooling together signals from S2 cells of the same type but at slightly different scales, the C2 
units become more invariant to the scale but preserve feature selectivity. 

 
2.1 Simple cells 
In a first stage, responses are obtained by applying a Gabor filter bank to an input image. As 
proposed by (Daugman, 1985) the following family of 2-dimensional isotropic Gabor filters 
are used to model the receptive cells of the HVS:  
 

 

 

(1)  

 
where  and .  
The orientation of the filter is represented by  and  denotes the standard deviation of the 
Gaussian which determines the size of the receptive field of the HVS. The phase offset  
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semi-supervised) machine learning techniques, e.g. (Duygulu et al., 2002; Feng et al., 2004).  
In computer vision one of the traditional goals is the automatic segmentation and 
interpretation of general digital images of arbitrary scenes.  In the literature, certain methods 
have been proposed to extract the semantics of scenery images using low-level features. 
Most of these approaches use image partitioning as intermediate step. Wang et al. use a 
codebook to segment an image based on the statistics of the regions' color and texture 
features (Wang et al., 2002). At pixel level, color-texture classification is used to form the 
codebook. This codebook is used in the next stage to segment an image into regions. The 
context and content of these regions are defined at image level. Zhu et al. partition the image 
into equally sized blocks and indexes the regions using a codebook whose entries are 
obtained from the features extracted from a block (Zhu et al., 2000).  In (Li & Wang, 2003) a 
method is described to use 2-dimensional hidden Markov models to associate the image and 
a textual description. However, most approaches introduced above can not integrate the 
semantic descriptions into the regions, and therefore cannot support the high-level querying 
of images. Depalov et al. use a color-texture segmentation algorithm to segment images 
depicting natural scenes (Depalov et al., 2006). The features of the obtained regions are used 
as medium level descriptors to extract semantic labels at region level and later at scene level. 
However, the use of quantized features may result in weaker segmentations. Turtinen and 
Pietikäinen applied a Self-Organizing Map trained with local binary patterns to classify 
outdoor scene images (Turtinen & Pietikäinen, 2003). As a means of supervision, the user 
selects the map nodes with similar appearance and the corresponding samples are retrained 
using a smaller map in order to reveal if some classes are mixed up in the same node.  
Despite all efforts, humans still outperform the best machine vision systems in many 
aspects. Humans are very good at getting the conceptual category and layout of a scene 
within a single fixation. So, building a system that emulates the recognition tasks of the 
cortex is a challenging and attractive idea. However, in computer vision the use of visual 
neuroscience has often been limited to a tuning of Gabor filter banks (Jain & Farrokhnia, 
1991; Clausi & Jernigan, 2000; Zhang et al., 2000). No real attention has been given to 
biological features of higher complexity so far. Given the fact that the human vision system 
is best trained to color and texture perception, these low-level features could play an 
important role in image understanding. Indeed, Renninger and Malik already have 
concluded that a texture analysis provides useful information for rapid scene identification 
(Renninger & Malik, 2004). Therefore, the application of the appropriate features is of utter 
importance.  
This chapter deals with the combination of biologically inspired features and Self-
Organizing Maps (Kohonen, 2001) for the classification and recognition of real-world 
textures and the segmentation of textured images. Analogously to the processing principles 
of the visual cortex, the unsupervised learning capabilities and visualization techniques of a 
Self-Organizing Map are utilized with the highly efficient color and texture features. The 
Self-Organizing Maps are particularly well-suited for the combined task of mapping the 
high-dimensional and non-linear data distribution to a low dimensional plane while 
conserving the local neighborhood relations for fast and easy-to-use visualization. 

 

The remaining part of this chapter is organized as follows. Section 2 describes the 
computational model to calculate the biologically inspired texture features and in Section 3 
we briefly introduce the basic model of color perception. Section 4 outlines the calculation of 
the features and explains the data preprocessing with regard to classification. Unsupervised 
image partitioning experiments on gray-scale and real-life color textures are presented in 
Section 5. Section 6 describes the automatic interpretation of the obtained image regions and 
discusses the possible improvements. Final conclusions and future work appear in Section 7. 
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Our system is inspired by the standard model of the human visual system (HVS) 
(Riesenhuber & Poggio, 2003). The standard model summarizes what most visual 
neuroscientists generally agree on:  

- the first few  hundred milliseconds of visual processing in primate cortex follows a 
mostly feed-forward hierarchy for immediate recognition tasks; 

- hierarchical build-up of invariances first to position and scale and to the viewpoint, 
and more complex transformations requiring the interpolation between several 
different object views; 

- in parallel, an increasing size of receptive fields; 
- plasticity and learning probably at all stages and certainly at the level of the cortex; 
- learning specific to an individual object is not required for scale and position 

invariance. 
In its simplest form, the view based module of the standard model consists of 4 layers of 
computational units. The first layer of simple cells S1 in the primary visual cortex (also 
called the striate cortex or V1) represents linear oriented filters followed by an input 
normalization. Each unit in the next layer (C1) pools the outputs of simple cells of the same 
orientation but at slightly different positions by using a maximum operation. Each of these 
units is still orientation selective but more invariant to the scale, similarly to some complex 
cells. In the next stage signals from complex cells with different orientations but similar 
positions are combined (in a weighted sum) into simple cells S2 to create neurons tuned to a 
dictionary of more complex features. The final layer of C2 units is similar to the C1 cells: by 
pooling together signals from S2 cells of the same type but at slightly different scales, the C2 
units become more invariant to the scale but preserve feature selectivity. 

 
2.1 Simple cells 
In a first stage, responses are obtained by applying a Gabor filter bank to an input image. As 
proposed by (Daugman, 1985) the following family of 2-dimensional isotropic Gabor filters 
are used to model the receptive cells of the HVS:  
 

 

 

(1)  

 
where  and .  
The orientation of the filter is represented by  and  denotes the standard deviation of the 
Gaussian which determines the size of the receptive field of the HVS. The phase offset  
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affects the symmetry of the function. The parameter  determines the spatial wavelength of 
the receptive field function (1). Since  and  are not independent, the standard deviation is 
selected to satisfy  in order to obtain a one-octave spatial frequency bandwidth 
(Kruizinga & Petkov, 1999). Finally, the parameter , also called the spatial aspect ratio, 
affects the receptive field ellipse. It has been found that  ranges between 0.23 and 0.92 
(Jones & Palmer, 1987) and is set to 0.5 according to (Kruizinga & Petkov, 1998).  
The response of the receptive field function to an input image its luminance channel  
is defined by: 
 

 

 

(2) 

 
The response  of a simple cell of the visual cortex, modeled by a receptive field 
function  to , is given by:  
 

 

 
(3) 

 
where  denotes the maximum response level, the average gray value  

,  is the semi-saturation constant, and 
 for  and  for  (Kruizinga & Petkov, 1998). 

 
2.2 Grating cells 
The next layer corresponds to complex cells which provide some tolerance to shift and size. 
This tolerance is obtained by taking a maximum across neighboring scales and nearby 
pixels. Grating cells are orientation selective cells which respond strongly to gratings of 
appropriate periodicity and orientation, but in contrast to the simple cells or some other 
complex cells, they do not respond to a single bar (Kruizinga & Petkov, 1999). The 
computational model of a grating cell consists of two stages: 

(i) the calculation of the activity of a grating subunit  with a preferred 
orientation  and frequency , see (4)  

(ii) the summation of the responses for a given , see (6). 
A grating subunit  takes as input the simple cell outputs defined in (3) and will be 
activated if there are at least 3 parallel bars with orientation  and frequency : 
 

 
 

(4)
 

 
where  is a threshold in the proximity of 1. As suggested by (Kruizinga & Petkov, 
1998), it is assigned 0.9. The quantities  and  are computed as follows: 
 

 

 

(5)
  

 

 
where  for  and  for . Finally,  and  satisfy 
the condition: 
 

 
 

(6)
 

 
A grating subunit will be activated  if for the preferred orientation  and 
spatial frequency , the receptive field function (2) is alternately activated in intervals of 
length  for  and this along a line segment of length  centered on point 

. In other words, the condition is fulfilled in case there are at least 3 parallel bars with 
spacing  and orientation  of the normal encountered.  In the final stage, the output of the 
grating cell operator  is computed as: 
 

 
 

(7)
 

 
2.3 Enhanced grating cell operator 
This operator first applies a histogram equalization on the original input image  to 
obtain the enhanced image . Histogram equalization employs a monotonic, non-
linear mapping which re-assigns the intensity values of pixels in the input image such that 
the intensity values of the output image are more uniformly distributed (i.e. a flat histogram) 
and the image has a higher contrast (see Fig. 1).   
  

      
(a) original image (b) enhanced image 

 

Fig. 1.  Luminance histograms of the original and enhanced image 
 
For each gray level  in the input image , the new value  is calculated as follows: 
 

  (8)
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where  is the maximum gray level,  the total number of pixels and  the number of 
occurrences of gray level  in .  The result of this operation is that  has not only 
a higher contrast, but also its details are enhanced such that the salient texture specific 
periodicities are more distinguishable. The enhanced grating cell features  are 
obtained by substituting the enhanced image  in equations (2) and (3).  As shown in 
our previous work (Martens et al., 2007), the application of the enhanced grating cell 
operator has a positive influence on texture classification results. 

 
3. Color Perception 
 

Since color is the primary visual stimulus, the choice of a color system is of great importance 
for the purpose of proper image retrieval. Color can be modeled and interpreted in many 
different ways and color systems have been developed for various purposes, such as RGB & 
CMYK for displaying and printing, YIQ & YUV for television and video transmission 
efficiency, XYZ for color standardization, etc. 
The first geometrical model of color perception was created in the 17th century by Isaac 
Newton. He epitomized his experiments in light and pigment mixing by ingeniously 
overlapping the red and violet ends of the spectrum to create a hue circle. This circle shows 
the spectrum as a continuous gradation of color from red to violet, and from violet to red via 
the mixed colors carmine, magenta and purple. This circular representation of color is also 
used in the HSI space, where HSI stands for hue, saturation, and intensity (Gevers, 2001). 
In the HVS color vision is mediated by specialized nerve cells in the retina, called cones. The 
ability to discern different wavelengths of light (i.e. colors) gives us more information for 
detecting and identifying objects than would be provided solely by black and white vision. 
The human retina has three types of cones which makes color detection possible: red, green 
and blue cones. By appropriately mixing these three primary colors it is possible to match all 
of the colors in the visible spectrum. The latter observation is known as the trichromatic 
theory (von Helmholtz, 1867). 
However, the fact that some colors cannot be perceived in combination, e.g. “reddish green” 
or “bluish yellow”, cannot be explained by the trichromatic theory. This proved to Edward 
Hering that the visual substances were organized as opponent processes (Herring, 1874). In 
summary, Hering proposed there are six fundamental color processes arranged as three 
visual contrasts including two opponent processes: 

(i) black versus white, 
(ii) red - green opponent process,  
(iii) blue - yellow opponent process.  

By the middle of the 20th century it was proven that both theories are necessary to explain 
the physiological processes of color perception. So, color vision is a dual process: the 
trichromatic theory is correct at photo-pigment level (by conical photoreceptors in the 
retina) and the opponent theory is correct at the neural level (by opponent cells found in the 
lateral geniculate nucleus). 

 
 
 

 

4. Features 
 

Scaling of the feature vectors is of special importance since the Self-Organizing Map 
classifier uses the Euclidean metric to measure the distances between feature vectors, 
otherwise bigger variables tend to dominate the others. The sigmoidal transformation (also 
called the softmax transformation) has been applied since it reduces the influence of outliers 
in the data. We also empirically observed that this normalization gives the best results, i.e.: 

 where  for a vector  with mean  and standard 
deviation .   

 
4.1 Texture  
The texture features are obtained by combining enhanced grating cell features (see Section 
2.3) with spatially smoothed Gabor responses. The latter are obtained by convolving the 
simple cell responses, see (2) where , with a Gaussian with standard deviation . 
Smoothed Gabor responses are known to improve the performance for texture analysis 
(Bovik et al., 1990). The frequencies for the filters are , and  cycles 
per image and we use eight orientations . This results in an 80-dimensional 
vector (smoothed Gabor responses + enhanced grating cell responses) to represent a texture 
feature. 

 
4.2 Color 
Digital images are mainly stored in RGB and can thus easily be transformed into color 
opponent values  (COV) using the following transformation: 
 

 
 

(9) 

 
where ,  and  represent the red-green, blue-yellow and black-white channel, 
respectively. For , , and  values between  and , the values for  and  range 
between  and , while  ranges between  and . Remark that the 
transformation from RGB to HSI is computationally more expensive than the transformation 
into COV. Both the HSI and COV color space are considered in our experiments. 

 
5. Unsupervised segmentation 
Texture segmentation experiments are applied on multiple composite images of 256  256 
and 512  512 pixels containing gray-scale textures from the Brodatz album (Brodatz, 1966). 
No pixel adjacency information has been used in this clustering process. Introducing pixel 
adjacency information generally boosts the classification correctness due to the fact that 
pixels belonging to the same texture are close to each other, and consequently, they should 
be clustered together. However, the latter requires a priori information about the image 
(which is not always available, e.g., in digital photos). Consequently, this method will not 
perform well if some texture regions are not adjacent in the image.  
To segment an image, the extracted texture features (see Section 4.1) are employed to train a 
2-dimensional Self-Organizing Map (SOM). In a first stage the map is linearly initialized 
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between  and , while  ranges between  and . Remark that the 
transformation from RGB to HSI is computationally more expensive than the transformation 
into COV. Both the HSI and COV color space are considered in our experiments. 

 
5. Unsupervised segmentation 
Texture segmentation experiments are applied on multiple composite images of 256  256 
and 512  512 pixels containing gray-scale textures from the Brodatz album (Brodatz, 1966). 
No pixel adjacency information has been used in this clustering process. Introducing pixel 
adjacency information generally boosts the classification correctness due to the fact that 
pixels belonging to the same texture are close to each other, and consequently, they should 
be clustered together. However, the latter requires a priori information about the image 
(which is not always available, e.g., in digital photos). Consequently, this method will not 
perform well if some texture regions are not adjacent in the image.  
To segment an image, the extracted texture features (see Section 4.1) are employed to train a 
2-dimensional Self-Organizing Map (SOM). In a first stage the map is linearly initialized 
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along the 2 greatest eigenvectors of the data. Next, the SOM is trained using the well-known 
batch-training algorithm which is, in contrast to the sequential training algorithm, much 
faster to calculate and the results are as just as good. A result of the training process is that 
pixels belonging to the same texture are assigned to the same or adjacent nodes. The number 
of nodes has evidently an influence on the classification result. A general rule is that a 
higher number of nodes results in better classification results but a side effect is that 
overclassification may occur. On the other hand, small-sized maps are more attractive 
because of their lower computational cost during the training phase. Nevertheless, we are 
able to use small sized maps to receive decent segmentation results because of the 
distinguishing characteristics of the proposed texture features. For the classification of 
images containing 2, 4, 5, and 9 textures, maps of dimension 4  2, 4  4, 8  7, and 8  9 
nodes are trained, respectively. Figure 2 exemplifies the segmentation of images containing 
4, 5 and 9 Brodatz textures using enhanced grating cell and smoothed Gabor features.  Table 
1 depicts the precision of the segmentation using real Gabor filter responses, smoothed real 
Gabor filter responses, enhanced grating cell responses, and the combination of the latter 
and former features. We notice that the real Gabor filter responses have low discriminating 
capabilities compared to the other features. The SOM-based classifier produces clearly the 
most precise segmentation using the combination of the enhanced grating cell features with 
smoothed Gabor filter responses.   
 

# textures Real Gabor Smoothed Gabor Enhanced grating cell Enhanced grating cell + 
 smoothed Gabor 

2 0.69 0.97 0.89 0.97 
4 0.34 0.85 0.72 0.90 
5 0.42 0.85 0.67 0.89 
9 0.25 0.81 0.59 0.86 

Table 1. Segmentation precision of Brodatz textures. 
 
To investigate the application of the proposed color and texture features for segmenting 
scenery images, experiments are conducted on 100 composite images of size 512 × 512 pixels 
containing randomly selected natural color textures. Each collected texture belongs to one of 
these five classes: (i) bricks, (ii) grass, (iii) tree, (iv) sky, and (v) water, as exemplified in Fig. 3. 
An example of the partitioning of natural textures is shown in Fig. 4. It is important to 
remark that in contrast to the gray-scale textures from the Brodatz album, the intra-variation 
in terms of orientation and scale of a natural texture class in scenery images is much higher. 
The latter is exemplified in Fig. 5 which consists of four different grass textures. As can be 
seen, it is even for the human eye hard to distinct the upper two textures, but the difference 
with the grass textures at the bottom of the image is much larger. Nevertheless, our 
segmentation algorithm is, to a certain extent, still capable to distinguish them, even using 
such a small-sized SOM. The segmentation results depicted in Table 2 are obtained by 
applying a 4  4 SOM for unsupervised segmentation. As can be seen, the combination of 
color and texture features gives a relatively stable segmentation result. We also notice that 
the application of color features gives a slight boost of about 5% while the precision using 
solely color rapidly decreases. The HSI and COV color space induces almost identical 
segmentation results. Since the transformation of RGB into COV is computational less 
expensive than HSI, the COV color space will be used in the next stage of our experiments.  
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Fig. 2. Image containing different Brodatz textures (a, d, g); ground truth (b, e, h); 
segmentation using enhanced grating cell and smoothed Gabor features (c, f, i) 
 

www.intechopen.com



Bridging the Semantic Gap using Human Vision System Inspired Features 269

 

along the 2 greatest eigenvectors of the data. Next, the SOM is trained using the well-known 
batch-training algorithm which is, in contrast to the sequential training algorithm, much 
faster to calculate and the results are as just as good. A result of the training process is that 
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The latter is exemplified in Fig. 5 which consists of four different grass textures. As can be 
seen, it is even for the human eye hard to distinct the upper two textures, but the difference 
with the grass textures at the bottom of the image is much larger. Nevertheless, our 
segmentation algorithm is, to a certain extent, still capable to distinguish them, even using 
such a small-sized SOM. The segmentation results depicted in Table 2 are obtained by 
applying a 4  4 SOM for unsupervised segmentation. As can be seen, the combination of 
color and texture features gives a relatively stable segmentation result. We also notice that 
the application of color features gives a slight boost of about 5% while the precision using 
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segmentation results. Since the transformation of RGB into COV is computational less 
expensive than HSI, the COV color space will be used in the next stage of our experiments.  
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Fig. 2. Image containing different Brodatz textures (a, d, g); ground truth (b, e, h); 
segmentation using enhanced grating cell and smoothed Gabor features (c, f, i) 
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Fig. 3 Examples of real life textures: branches (a, b); bricks (c, d), grass (e), sky (f, g) and water 
(h, i). 
 

# textures COV HSI Texture COV + Texture HSI + Texture 
4 0.75 0.76 0.89 0.92 0.89 
5 0.74 0.69 0.89 0.94 0.93 
9 0.53 0.49 0.83 0.91 0.91 

 

Table 2. Segmentation precision of real-life color textures 

 

 
(a) natural textures 

 
(b) ground truth 

 
(c) segmentation 

Fig. 4. Example of the segmentation of five natural textures. 
 

   
(a) grass textures (b) ground truth (c) segmentation 

Fig. 5. Segmentation of similar grass textures using COV + texture features. 

 
6. Labeling of image regions  
Using the previously computed color-texture samples, a 10  10 SOM is trained such that 
similar vectors are grouped in the same or in adjacent nodes. After this training phase, each 
SOM node is assigned a 5-dimensional probability vector  by counting the labels of the 
corresponding training vectors such that  is the probability that the label of node  is . 
To test the labeling behavior, we employ ten random scenery images from the World Wide 
Web (containing no other classes than those listed above). To label a segment of an image, 
the following procedure is applied. At first, the best matching unit  for each corresponding 
feature vector is calculated. Then, the probabilities  are summed together for each . 
Figure 6 shows a 2-dimensional mesh visualization of the 10  10 SOM along the 2 highest 
principle components of the training vectors. The color of each node in Fig. 5 corresponds to 
the label  with the highest probability, i.e. , and illustrates the fact that 
the different texture classes are nicely clustered. 
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Fig. 5. Segmentation of similar grass textures using COV + texture features. 
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Figure 6 shows a 2-dimensional mesh visualization of the 10  10 SOM along the 2 highest 
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the label  with the highest probability, i.e. , and illustrates the fact that 
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water grass       branches sky         bricks 
Fig. 6 A 10  10 SOM trained with natural color texture features. The nodes are given the 
label with the highest probability 
 
Finally, the label of an image partition is obtained by selecting the label  with the highest 
probability, i.e. . Using the in Section 4 proposed texture and COV 
features, the average precision of the classification is 89% of the pixels while the recall is 
86%.  The labeling precision without an intermediate segmentation step was 72% (Martens 
et al., 2008). Remark that the ground-truth images are created manually and therefore they 
should be interpreted as an approximation rather than a certainty.  The interpretation of 
some scenery images is exemplified in Fig. 7.  In this figure, different types of errors occur. 
At first, isolated pixels and edges are misclassified. The latter occurs because they are 
assigned to the same cluster of nodes in the segmentation step. Consequently, during the 
labeling step, they will be given the wrong label. To avoid this, small blobs can be filtered 
out by assigning thresholds to define the minimum size of a partition. Information of 
enclosing or adjacent regions can then be used to find the most probable label. Another type 
of error is caused by misclassification in the labeling step. An example hereof is the wrong 
interpretation of the roof, see Fig. 7 (i). This is mainly caused by the fact that the training set 
of the class bricks doesn’t contain any examples which are similar to the corresponding 
region in Fig. 7 (g). The sky blob in the lake of Fig. 7 (d) is also a fault. However, the latter is 
due to reflection: the increase of brightness causes the contrast to decrease such that the 
texture significantly alters and a misclassification results. Such errors can only be corrected 
by incorporating domain knowledge such that, e.g., no blob of bricks can ‘float’ in the sky. 
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Fig. 7.  Interpretation of scenery images: original image (a, d, g), ground truth (b, e, h), and 
classification (c, f, i). 
 
Other errors, e.g., the water detected as grass (or vice versa), emerge from the fact that the 
scaling of certain textures alters due to the perspective. This problem is harder to tackle. 
Enhancing the segmentation process, e.g. by using a larger SOM, will certainly be helpful 
but a special approach might be needed for those regions. However, a top-down approach 
for the detection and correction of misclassifications by embedding domain knowledge is 
out of scope of this chapter.  
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7. Conclusion and future work 
 

Due to the semantic gap, the automatic interpretation of images is an intricate task. In this 
chapter, we have presented a bottom-up approach for the segmentation and interpretation 
of outdoor scenery images. We established a link between the proposed low-level, biological 
features and some predefined semantic concepts by applying a SOM for classification. Our 
method generally consists of two stages. At first, color opponent values and textures are 
extracted from the image’s pixels. Color opponent values induce comparable classification 
results as colors from the HSI space. Since the transformation of RGB into color opponent 
values is computationally less expensive than the transformation into HSI, the former are 
preferred over the latter. The texture features consist of enhanced grating cell features and 
smoothed Gabor responses and correspond to outputs of cells found in the primary visual 
cortex of primates and humans. Analogously to the processing principles of the auditory 
and visual cortex, Self-Organizing Maps are used for the unsupervised segmentation and 
labeling of textured images. Even using small-sized maps, high precision image 
segmentations can be obtained (both on gray-scale and on natural color textures). By adding 
color information, the precision of the segmentation results averagely increased with 5% to a 
total of 91% of the pixels. In the next stage, the same features are used to train a Self-
Organizing Map with textures belonging to one of the 5 predefined classes: (i) grass, (ii) 
bricks, (iii) branches, (iv) water, and (v) sky. This map is then used to label the previously 
obtained image segments. Experiments conducted on randomly collected images from the 
World Wide Web achieved a precision of 89%.  The latter observations indicate that the 
application of biologically inspired features is very useful for scene interpretation and 
categorization. We further believe that the classification can be improved by (i) a more 
accurate segmentation, (ii) a larger, more representative training set, and by (iii) introducing 
high-level domain knowledge (i.e. a top-down approach). These aspects will be thoroughly 
investigated. In order to recognize more concepts, we have experienced that when extra 
texture classes are added to the training set, the number of misclassifications drastically 
increases. A solution to this problem might be the introduction of hierarchical or tree-
structured Self-Organizing Maps (Koikkalainen & Oja, 1990). Nodes containing two (or 
more) classes are, in a next stage, split up into different clusters what results in the 
separation of the related concepts. Furthermore, since the visual cortex contains different 
types of (complex) cells which are tuned to a specific task (e.g., for the detection of edges), 
we believe that they can also play an important role in image understanding. 
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