
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Improvements Quality of Kohonen Maps Using Dimension Reduction Methods 29

Improvements Quality of Kohonen Maps Using Dimension Reduction 
Methods

Jiˇr´ı Dvorsk´ y, V´aclav Sn´aˇsel, Jana Koˇc´ıbov´a

0

Improvements Quality of Kohonen Maps Using
Dimension Reduction Methods
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1. Introduction

The performance of Self Organizing Map (SOM) is always influenced by learn methods. The
resultant quality of the SOM is also highly dependent onto the learning rate and the neighbor-
hood function. In literature, there are plenty of studies to find a proper method to improve the
quality of learning process of the SOM. They focus especially on convergence (Cottrell et al.,
1998; Kohonen, 2001), the measure of the global topology preservation (Bauer et al., 1999)
and, at an individual level, the sensitivity to parameters such as initialization, rate of decrease
of neighborhood function, optimum learning rate etc. (de Bodt & Cottrell, 2000; Mulier &
Cherkassky, 1995; Germen, 2005; Flanagan, 1996; 1994).
Although various disciplines use the SOM model in order to find solutions to broad spec-
trum of problems, however, there is not so much clue about the how the resultant maps are
supposed to look after training.
Most articles are focused on the learning process of the SOM. The quality of the SOM is needed
to measure in this process. The question is how to measure this quality. The distortion, or
distortion measure, is certainly the most popular criterion for assessing the quality of the
classification of the SOM (Kohonen, 2001; Rynkiewicz, 2006). Distortion measure provides an
assessment of SOM properties with respect to the data and overcomes the absence of cost func-
tion in the SOM algorithm. Usually Mean Squared Error (MSE) is used to measure a distortion.
The MSE is just a number without any dimension or scale, and may be hard to understand.
What is the value of distortion is small enough? At what point should be the learning process
terminated? Alternative approach for measurement of quality of learning process is the goal
of our research.
In the SOM each neuron represents a set of input vectors. As the learning process continues,
the set should be more and more stable, i.e. particular input vector should not move from one
set to another in successive iteration in learning process. Movements, which still occur, can
measure the quality of the learning process or quality of resultant SOM, if we decide to stop
the learning.
Another idea is usage of a dimension reduction methods to capture most significant features
of resultant SOM (Dvorský, 2007). At the beginning of the learning process, weights in the
SOM are initialized with random values. In this case, there is no common, important feature
in the SOM – the SOM contains only noise. How learning process continues, the map will
learn significant features in the data. These features should be dominant, and if some approx-
imation of the SOM is computed, these features must be preserved. In this moment, SVD or
HOSVD, see sections 2.1 and 2.2, can be used to compute SOM approximation. In terms of
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SVD, dominant features of the SOM will be represented as greater singular values. And vice
versa, the small singular numbers will represent some noise in the SOM only. If small values
are neglected, the approximated SOM will be very similar to the original one. In this way,
quality of the SOM can be measured using data dimension reduction methods.

1.1 Notation of the SOM

In this chapter we will consider SOM as an array of neurons mi, usually arranged in a low
dimensionality grid (1D or 2D), the map, for ease of visualization. The grid may have several
forms like rectangular, hexagonal. For each input vector x(t), neuron that best matches input
vector is selected. This neuron is called Best Matching Unit (BMU). Then the weights of the
BMU and its neighborhood will be adapted as follows:

mi(t + 1) = mi(t) + η(t)h(t)(x(t)− mi(t)), ∀mi (1)

where η, 0 < η < 1 is the learning factor, which determines the speed of weight adaptation,
and h(t) is neighborhood size determining function.

2. Methods of Dimension Reduction

Since our approach is based on SVD and HOSVD techniques, we first briefly review matrix
SVD and then introduce tensor and the HOSVD technique. In this chapter, tensors are denoted
by calligraphic upper-case letters (A,B, . . .), matrices by uppercase letters (A, B, . . .), vectors
by bold lower case letters (a,b, . . .), and scalars by lower case letters (a,b, . . .).

2.1 Singular Value Decomposition

Singular value decomposition (SVD) is well known because of its application in information
retrieval – Latent semantic indexing (LSI) (Berry & Browne, 1999; Berry et al., 1995). SVD is
especially suitable in its variant for sparse matrices (Larsen, 1998).

Theorem 2.1 (Singular value decomposition) Let A is an n × m rank-r matrix. Be σ1 ≥ · · · ≥ σr

eigenvalues of a matrix
√

AAT . Then there exist orthogonal matrices U = (u1, . . . ,ur) and V =
(v1, . . . ,vr), whose column vectors are orthonormal, and a diagonal matrix Σ = diag(σ1, . . . ,σr).
The decomposition A = UΣVT is called singular value decomposition of matrix A and numbers
σ1, . . . ,σr are singular values of the matrix A. Columns of U (or V) are called left (or right) singular
vectors of matrix A.

Now we have a decomposition of original matrix A. It is not needed to say, that the left and
right singular vectors are not sparse. We have at most r nonzero singular numbers, where rank
r is the smaller of the two matrix dimensions. Luckily, because the singular values usually fall
quickly, we can take only k greatest singular values and corresponding singular vector co-
ordinates and create a k-reduced singular decomposition of A.

Definition 2.1 Let us have k,0 < k < r and singular value decomposition of A

A = UΣVT = (UkU0)

(

Σk 0
0 Σ0

)(

VT
k

VT
0

)

We call Ak = UkΣkVT
k a k-reduced singular value decomposition (rank-k SVD).
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Fig. 1. rank-k Singular Value Decomposition

For an illustration of rank-k SVD see Figure 1, the gray areas determine first k coordinates
from singular vectors, which are being used.

Theorem 2.2 (Eckart-Young) Among all n × m matrices C of rank at most k Ak is the one, that
minimizes ||Ak − A||2F = ∑

i,j
(Ai,j − Cw,j)

2.

Because rank-k SVD is the best rank-k approximation of original matrix A, any other decom-
position will increase the sum of squares of matrix A − Ak.
SVD rank-k approximation of original matrix A can be understood in several ways. In in-
formation retrieval, matrix A represents term-document matrix, and a latent semantics is ob-
tained using rank-k approximation of original matrix A. From another point of view rank-k
approximation can be viewed as elimination of noise from data represents in matrix A.
The SVD is computed by a batch O(nm2 + n2m + m3) time algorithm (Golub & Loan, 1996),
that is unfeasible for large datasets, but for our case this algorithm is fully adequate.

Note 2.1 From now on, we will assume rank-k singular value decomposition when speaking about
SVD.

2.2 Tensors and HOSVD

A tensor is a higher order generalization of a vector (first order tensor) and a matrix (second
order tensor). Higher order tensors are also called multidimensional matrices or multi-way
arrays. The order of a tensor A ∈ R

I1×I2×···×IN is N. Elements of A are denoted as ai1···in ···iN

where 1 ≤ in ≤ In. In tensor terminology, matrix column vectors are referred to as mode-1 vec-
tors and row vectors as mode-2 vectors. The mode-n vectors of an N-th order tensor A are the
In-dimensional vectors obtained from A by varying the index in and keeping the other indices

fixed, that is the column vectors of n-mode matrix unfolding A(n) ∈ RIn×(I1 I2···In−1 In+1···IN) of
tensor A. See (De Lathauwer et al., 2000) for details on matrix unfoldings of a tensor.
The n-mode product of a tensor A ∈ R

I1×I2×···×IN by a matrix M ∈ R
Jn×In is an I1 × I2 × · · · ×

In−1 × Jn × In+1 × · · · × IN-tensor of which the entries are given by

(A×n M)i1···in−1 jn in+1···iN
= ∑

in

ai1···in−1in in+1···iN
mjn in

(2)

Note that the n-mode product of a tensor and a matrix is a generalization of the product of
two matrices. It can be expressed in terms of matrix unfolding:

B(n) = MA(n) (3)
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A

=

V1

S

V3

V2

Fig. 2. 3-order HOSVD

where B(n) is the n-mode unfolding of tensor B =A×n M.

In terms of n-mode products, the matrix SVD can be rewritten as F = S ×1 V(1) ×2 V(2). By
extension, High order singular value decomposition (HOSVD) is a generalization of matrix SVD:
every I1 × I2 × · · · × IN tensor A can be written as the n-mode product (De Lathauwer et al.,
2000):

A = S ×1 V(1) ×2 V(2) · · · ×N V(N) (4)

HOSVD is illustrated in Figure 2 for N = 3. Vn contains the orthonormal vectors (called n-
mode singular vectors) spanning the column space of the matrix A(n) (n-mode matrix unfold-
ing of tensor A). S is called core tensor. Instead of being pseudodiagonal (nonzero elements
only occur when the indices satisfy i1 = i2 = · · ·= iN), S has the property of all-orthogonality.
That is, two subtensors Sin

= α and Sin
= β are orthogonal for all possible values of n, α and

β subject to α �= β. At the same time, the Frobenius-norms σn
i = ||Sin=i|| are n-mode singular

values of A and are in decreasing order: σn
1 ≥ σn

2 ≥ · · · ≥ σn
In
≥ 0 S is in general a full tensor

and governs the interactions among Vn.

3. SVD and HOSVD Approximation of SOM

3.1 BMU Movements

BMU is found for each training vector during learning process. As the SOM learns the struc-
ture of training set, the BMU of given training vector usually changes its position within the
map. Movement of the BMU at the initial phase of learning process will be probably very
rapid, and as the SOM converges to stable configuration the movement of the BMU will be
very tight. The learning process could be stopped, when user specific maximal number of
moved BMUs is reached.
In this way, the number of moved BMUs can be taken as alternative learning process qual-
ity measurement. The number of changes of BMUs’ positions between successive iterations
was considered as measure in our initial work. But this approach is not very helpful. Some
movements of the BMU still remain.

3.2 SVD Approach

The second approach to measurement of BMU movement uses SVD decomposition of SOM.
It is supposed, that movement of BMUs among original SOM and its rank-k approximations
will be very low, when stable configuration of the SOM is reached.
To verify this hypothesis following experiment was performed:
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1. The SOM S is transformed to rc × m matrix A, where r is the number of rows, c is the
number of columns of SOM S, and m is the dimension of input.

A =



























m1,1(t)
m1,2(t)

...
m1,c(t)
m2,1(t)

...
mr,c(t)



























(5)

Note 3.1 Each mi,j(t) is m dimensional vector.

2. Rank k approximation Ak of matrix A is computed, 1 ≤ k ≤ m.

3. SOM S(k) is created from matrix Ak.

4. The BMUS for each training vector is computed with original SOM S.

5. The BMUS(k) is computed with rank k approximation S(k) for each training vector.

6. If BMUS is different from BMUS(k) the movement is encountered.

3.3 HOSVD Approach

The SOM forms usually 2D dimensional grid, each neuron is represented as m dimensional
vector, where m is the dimension of input, training, vectors. From this point of view, SOM
can be understood as 3-order tensor, and 3-dimensional HOSVD, see Figure 2, can be applied
onto SOM. There is no need to form matrix by transformation of SOM. 3-order HOSVD can
directly decompose SOM. It is expected that HOSVD preserves better relationships among
neurons and structure of SOM.
Experiment similar as in SVD approach was performed:

1. The SOM S is transformed to tensor A∈ Rr×c×m, where r is the number of rows, c is the
number of columns of SOM S, and m is the dimension of input.

2. A(k1,k2,k3) approximation of tensor A was computed. This approximation generalizes
rank-k approximation of matrix in SVD.

3. SOM S(k1,k2,k3) is created from tensor A(k1,k2,k3).

4. The BMUS for each training vector is computed with original SOM S.

5. The BMUS(k1,k2,k3) is computed with approximated SOM S(k1,k2,k3) for each train-
ing vector.

6. If BMUS is different from BMUS(k1,k2,k3) the movement is encountered.

4. Experimental Results

A number of experiments were carried out to prove our hypothesis. One of them is provided
in this chapter. Parameters of used SOM S are given in Table 1. The input data comes from
experiments done by Kudelka et al. (Kudelka et al., 2006).
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Parameter Value

# of rows 50
# of columns 50
SOM shape toroid
input dimension 10
# of input vectors approx 25,000
# of iterations 5000

Table 1. Experimental SOM S parameters

4.1 Results of SVD Approach

The experimental results are summarized in following tables and graphs. Table 2 provides
insight to learning process. Each rank-k, 1≤ k ≤ 10, approximation S(k) of SOM S is computed
and number of moved BMUs are stored, moreover a distance of the movement.
In initial phase of learning process, there is no significant difference among S(k) approxima-
tions. The number of moved BMUs varies from 99% to 26% in iteration 0. Average distance of
movement is also near constant, from 13.6 to 15.4.
There are significant difference among each S(k) approximations after 4000 and 5000 itera-
tions. S(1) approximation has 76% of moved input vectors, but S(8) resp. S(9) has only 9%
resp. 2.6% of moved input vectors after 5000 iterations. The average distance is also very
small, only 2.4 resp. 3.
Although maximal distance of the movement remains very high in all phases of learning pro-
cess, the average distance of BMUs movement decreases. Histograms of these distances can
provide very useful information about learning. Figure 3(a) demonstrates initial state of SOM
S. The distribution of distances is random; there are plenty of short movements and also a
lot of long movement of BMUs. The charts 3(d) have different shape. Histogram of distances
has strong hyperbolic shape, i.e. very short movements are predominate. Cumulative his-
togram shows, that movements of length 1 (less than 20%) comprise slightly more than 80%
of all movements for S(8) resp. S(9) approximations. These results coincide with the widely
known ”Pareto’s 80/20 law”. In other words, SOMs S(8) resp. S(9) are very close to original
SOM S, consequently SOM S after 5000 iterations completed contains very small amount of
noise (compare S(9) approximation after 500 iterations completed). We can conlude, that well
trained SOM is resistant to SVD decomposition.
U-matrices (Ultsch, 1993) of experimental SOM S and its approximations S(k) are given in
Figure 4. These figures show, that even S(1) approximation is used, the main features, main
structure, of original SOM is preserved. S(2) resp. S(3) approximation add more details to
basic structure of S(1) approximation. S(8) resp. S(9) approximations are not easily distin-
guishable from original SOM.

4.2 Results of HOSVD Approach

On the other hand performance of HOSVD approximation of SOM S was disappointing. U-
matrices of approximated SOM are very similar to SVD ones, see Figure 6. Also cumulative
histograms 5 of BMUs’ movements show very similar characteristics. But when absolute val-
ues are compared, there are very high differences, see Table 3 e.g. only 616 BMUs were moved
after 5,000 iterations in rank-9 SVD approximation, which is only 2.63 % of all input vectors.
But in similar HOSVD approximation more than 9,000 BMUs were moved.
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5. Conclusion

Alternative approach of quality measurement of the SOM learning process was presented.
This approach uses SVD decomposition of the SOM, and number of moved BMUs are counted
among each consecutive rank-k approximations of original SOM. Our experiments show some
properties of SVD decomposition of SOM. That is new and good.
On the other hand HOSVD cause some problems, because number of moved BMUs is very
high. It seems that SOM is not true three dimensional object – the third dimension consisting
of neurons is not relevant. We should check if this behavior is feature or bug of this method
or if it is a matter of coincidence. This is new and quite disappointing.
Usage of Non-negative Matrix Factorization (Golub & Loan, 1996) is our goal in future re-
search. The second goal is application of presented method on the other type of neural net-
work, such as Growing Neural Gas (Fritzke, 1994).
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(a) Initial SOM with random weights
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(b) SOM after 500 iterations
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(c) SOM after 4000 iterations
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(d) SOM after 5000 iterations (final state)

Fig. 3. Frequency and cumulative frequency histograms of distances between BMUS and
BMUS(k) for SOM S
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(a) Original SOM (b) k = 1 approximation

(c) k = 2 approximation (d) k = 3 approximation

(e) k = 8 approximation (f) k = 9 approximation

Fig. 4. SVD rank-k approximations of final SOM S (after 5000 iterations)
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(a) Initial SOM with random weights
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(b) SOM after 4000 iterations
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(c) SOM after 5000 iterations (final state)

Fig. 5. Frequency and cumulative frequency histograms of distances between BMUS and
BMUS(k1,k2,k3) for SOM S
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(a) Original SOM (b) k1 = 5,k2 = 5,k3 = 1 approximation

(c) k1 = 10,k2 = 10,k3 = 2 approximation (d) k1 = 15,k2 = 15,k3 = 3 approximation

(e) k1 = 40,k2 = 40,k3 = 8 approximation (f) k1 = 45,k2 = 44,k3 = 9 approximation

Fig. 6. S(k1,k2,k3) HOSVD approximations of final SOM S (after 5000 iterations)
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Number of singular values k
1 2 3 4 5 6 7 8

0 completed iterations
MSE 0.784 0.74 0.712 0.64 0.614 0.57 0.536 0.537
# of moved BMUs 23,381 22,570 18,053 15,897 14,963 12,326 11,031 10,654
Moved BMUs [%] 99.825 96.362 77.077 67.872 63.884 52.626 47.097 45.487
Max. distance 25 25 25 25 25 25 25 25
Average distance 13.6 13.9 16.6 17.7 17.2 16.3 17 14.9

500 completed iterations
MSE 0.603 0.456 0.366 0.303 0.244 0.209 0.172 0.132
# of moved BMUs 22,000 19,805 18,468 16,496 13,823 11,681 9,788 7,147
Moved BMUs [%] 93.929 84.557 78.849 70.43 59.017 49.872 41.79 30.514
Max. distance 25 25 25 25 25 25 25 25
Average distance 14.3 10 9.2 6.6 6.4 5.9 5.5 5

4000 completed iterations
MSE 0.595 0.452 0.356 0.284 0.236 0.184 0.143 0.092
# of moved BMUs 20,643 16,252 13,698 11,964 9,353 8,185 4,907 3,925
Moved BMUs [%] 88.135 69.388 58.483 51.08 39.933 34.946 20.95 16.758
Max. distance 25 25 25 25 25 25 25 25
Average distance 11.4 8 6.9 5.8 4.8 3.8 4.2 3.7

5000 completed iterations
MSE 0.595 0.452 0.355 0.284 0.229 0.18 0.119 0.083
# of moved BMUs 1,7748 10,760 7,555 6,868 5,058 3,781 2,564 2,125
Moved BMUs [%] 75.775 45.94 32.256 29.323 21.595 16.143 10.947 9.073
Max. distance 25 25 25 25 25 25 25 25
Average distance 13.2 9.1 7.5 5.5 5 4 3.7 2.4

Table 2. Parameters of SVD rank-k approximations of given SOM
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Approximation parameters (k1,k2,k3)
(5, 5, 1) (10, 10, 2) (15, 15, 3) (20, 20, 4) (25, 25, 5) (30, 30, 6) (35, 35, 7)

0 completed iterations
MSE 1.485 1.218 1.136 0.979 0.887 0.754 0.696
# of moved BMUs 23,422 23,421 23,407 23,104 23,299 23,109 21,829
Moved BMUs [%] 100 99.996 99.936 98.642 99.475 98.664 93.199
Max. distance 25 25 25 25 25 25 25
Average distance 18.4 14.6 16.3 16.7 15 15.9 15.9

4000 completed iterations
MSE 0.595 0.452 0.356 0.285 0.237 0.184 0.143
# of moved BMUs 23,404 23,304 22,722 21,671 20,141 18,890 17,265
Moved BMUs [%] 99.923 99.496 97.011 92.524 85.992 80.651 73.713
Max. distance 25 25 25 25 25 25 25
Average distance 14.3 11 6.6 6.5 5 2.5 2.3

5000 completed iterations
MSE 0.595 0.453 0.356 0.285 0.23 0.182 0.12
# of moved BMUs 23,398 23,220 21,419 18,217 19,305 18,132 15,638
Moved BMUs [%] 99.898 99.138 91.448 77.777 82.423 77.414 66.766
Max. distance 25 25 25 25 25 25 25
Average distance 14.6 13.7 8.6 6 3.4 2.2 1.8

Table 3. Parameters of S(k1,k2,k3) HOSVD approximations of given SOM S
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