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1. Introduction 
 

Since the start of the computer era, a substantial amount of information and data are stored 
on numerical form. Automatic classification becomes therefore a very useful tool in order to 
reduce data dimension and extract maximum knowledge for such configurations (Jajuga et 
al., 2002).  
Data classification is a very important data analysis operation, consisting in regrouping 
objects of a similar data set into homogenous classes. Two main types of classifications exist: 
supervised and unsupervised classification. Supervised classification is based on a set of 
objects L of known classes, called training set, with the main goal being to identify candidate 
objects into their belonging classes. Where, unsupervised classification consists in 
partitioning a set of data D into sub-sets of similar attributes called classes or clusters 
(Halgamuge, 2005). Unsupervised classification is termed clustering, and will be so in the 
remaining of the chapter. 
Many linear approaches such as Principal Component Analysis (PCA) (Jolliffe, 2002) and K-
means were extensively used for the classification and clustering purposes, with an 
application to identification of meteorological scenarios in (Reljin  et al., 2003). Although 
PCA proved to be a very useful knowledge extraction technique it suffers from poor 
visualisation when dealing with complex structure representations of a data sample 
(Vesanto, 1999). 
Nonlinear classification and clustering approaches stand as a strong alternative in order to 
treat the complexity and visualisation problem inherited from large multidimensional data 
sets. Self Organising Maps (SOM) or Kohonen maps qualify as a strong, leading, nonlinear 
approach. In the remaining of this chapter, they will be combined to K-means in order to 
solve the meteorological and electricity load day type clustering problems. 
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calculated between it and all the weight vectors of the map. The Best-Matching Unit (BMU), 
is the unit whose weight vector has the greatest similarity with the input sample P. The 
similarity is usually defined by means of a distance measure; typically Euclidian distance. 
The use of neighbourhood concept introduces the topological constraints in the final SOM 
geometry.  
The weights may or may be not, initialised randomly. In some cases they are initialised 
around the mean of the inputs as the inputs are all similar and thus restricted to a small 
portion of the space.  
The neurons of competitive networks (Kohonen maps) learn to recognize groups of similar 
input vectors. Thus, the neuron whose weight vector is closer to the input vector is then 
updated to be even closer. The result is that the winning neuron is more likely to win the 
competition next time if similar vector is presented, and less likely to win when a very 
different input vector is presented. The training stage stops when any of the following 
conditions are met: the maximum number of epochs is reached, the performance has been 
minimized to the goal, or maximum amount of time has been exceeded. 
During training the inputs are presented one by one and the weights of the triggered node 
(the node to which the inputs is mapped) and nodes in its neighbourhood are updated as in 
equation (2). 
 �ܹ���� � 1� � �ܹ����� � ߙ ��� ൣ �ܲ � �ܹ�����൧ (2) 
 
Where α is the adaptation gain, with 0 < α < 1, and m is the iteration number. This has the 
effect of increasing the activation of the triggered node and its neighbours. In a single 
iteration all the inputs are presented and the weights adapted. After several iterations, the 
neighbourhood size is reduced by one and so on until zero, i.e., the triggered node only is 
adapted. 
The SOM has proved his usefulness for multidimensional dataset clustering treating non-
linear problems. The SOM is capable to extracting the statistical properties of time series.  

 
3. The K-Means Clustering Algorithm  
 

The K-means clustering algorithm is a most known vector quantization method; it groups in 
classes a set of points of the observations space without having any information of particular 
properties of these groups. Objects are classified as belonging to one of k groups, k chosen a 
priori. K-means quickly converges to a local minimum of its cost function (Bradley & Fayad, 
1998; Kanungo et al., 2002). The aim of K-Means clustering is the optimisation of an objective 
function that is described by the following equation: 
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calculated between it and all the weight vectors of the map. The Best-Matching Unit (BMU), 
is the unit whose weight vector has the greatest similarity with the input sample P. The 
similarity is usually defined by means of a distance measure; typically Euclidian distance. 
The use of neighbourhood concept introduces the topological constraints in the final SOM 
geometry.  
The weights may or may be not, initialised randomly. In some cases they are initialised 
around the mean of the inputs as the inputs are all similar and thus restricted to a small 
portion of the space.  
The neurons of competitive networks (Kohonen maps) learn to recognize groups of similar 
input vectors. Thus, the neuron whose weight vector is closer to the input vector is then 
updated to be even closer. The result is that the winning neuron is more likely to win the 
competition next time if similar vector is presented, and less likely to win when a very 
different input vector is presented. The training stage stops when any of the following 
conditions are met: the maximum number of epochs is reached, the performance has been 
minimized to the goal, or maximum amount of time has been exceeded. 
During training the inputs are presented one by one and the weights of the triggered node 
(the node to which the inputs is mapped) and nodes in its neighbourhood are updated as in 
equation (2). 
 �ܹ���� � 1� � �ܹ����� � ߙ ��� ൣ �ܲ � �ܹ�����൧ (2) 
 
Where α is the adaptation gain, with 0 < α < 1, and m is the iteration number. This has the 
effect of increasing the activation of the triggered node and its neighbours. In a single 
iteration all the inputs are presented and the weights adapted. After several iterations, the 
neighbourhood size is reduced by one and so on until zero, i.e., the triggered node only is 
adapted. 
The SOM has proved his usefulness for multidimensional dataset clustering treating non-
linear problems. The SOM is capable to extracting the statistical properties of time series.  

 
3. The K-Means Clustering Algorithm  
 

The K-means clustering algorithm is a most known vector quantization method; it groups in 
classes a set of points of the observations space without having any information of particular 
properties of these groups. Objects are classified as belonging to one of k groups, k chosen a 
priori. K-means quickly converges to a local minimum of its cost function (Bradley & Fayad, 
1998; Kanungo et al., 2002). The aim of K-Means clustering is the optimisation of an objective 
function that is described by the following equation: 
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represents the local inertia, compared with the referent Wc of the training set observations A 
which are affected to this referent, these observations belong thus to the subset PC. Inertia Ic 

is the quantization error obtained when deciding to replace PC observations by the referent 
Wc which represents them. The quantity I (W, X), which represents the sum of local inertia Ic 
is given by: 
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The K-means algorithm is iterative, where every iteration can be performed in two stages:  
Assignment phase: This stage aims to minimize the function I (W, X) compared to the 
assignment function X (determining the set of referents).  
Minimization phase: The second stage aims optimizing referents in order to representing 
the best observation points in p classes.  
The main objective of applying K-means to time series analysis is to identify the different 
clusters representing the series situation using clustering methods. These methods must 
provide groups which members are close (have high similarity degree) and well separated. 
In the clustering process, there are no predefined classes and no examples that would show 
what kind of desirable relations should be valid among the data, so it is natural to be asked 
about the validity and quality of the results obtained. Two different sets of validity indices 
may be used for comparing the results when dealing with K-means: the internal and 
external criteria. The first indices category quantifies the match between a subjective 
partition and the idea that there is a good classification (Guérif, 2006) and the most 
properties commonly searched are compactness and group’s separability. Different internal 
validity indices will be used in the rest of the chapter for meteorological and electricity load 
clustering, and are summarized in what follows: 
Davies-Bouldin index: takes into account both the compactness and the separability 
between groups, the value of this index is even lower than the clusters are compact and well 
separated (Davies & Bouldin, 1997). This index favoured hyperspheric groups and it is 
particularly well adapted for use with the K-means clustering algorithm (Guérif, 2006). 
 Silhouette index: Kaufman and Rousseeuw (1990) suggest choosing the number of groups 
k> 2, which gives the greatest value of silhouette.  
Homogeneity and separation: homogeneity is calculated as the average distance between 
each input vector and the centre of the group to which it belongs. The separation is 
calculated as the average distance between the weighted groups centres (Chen et al., 2002). 
The System Evolution (SE) method: Analyzes a dataset as a pseudo thermodynamics 
system, partition energy Ep(k) denotes the border distance between two closest clusters 
(called twin-clusters) among the k clusters, while merging energy Em(k) denotes the average 
distance between elements in the border region (Wang et al., 2007).  
Weighted inter-intra index: proceeds with a forward searching and stops at the first mark to 
the bottom of the index, which indicates the optimal number of groups (Strehl, 2002). 
For the external category the validity indices are used:  

 

 Rand index and Mirkin metrics. The rand index shows the proportion of pairs object where  
two partitions are concordant (Guérif, 2006), whereas the Mirkin metrics is defined as the 
number of edges that exists only in one of two partitions.  
 Hubert index. Higher values of this index show a large similarity between two groups 
(Halkidi et al., 2001).  

 
4. A two clustering level approach 

 

 
Fig. 2. First abstraction level is obtained by creating a set of prototypes vectors using the 
SOM. Clustering of the SOM creates the second abstraction level. 
 
The number of prototype vectors resulting from SOM clustering is large especially when 
dealing with highly multidimensional time series applications. Only one classification level 
can then be revealing. A high level is interesting because it provides more detailed quality 
analysis and less compresses the dataset if we summarize all days by representatives of a 
small class’s number (Rousset, 1999). It also can be very difficult to attribute some units of 
the input vector to a given cluster given by the map. The problem lies in the selection of 
some clusters border, where a clear distinction between two clusters is impossible. A second 
clustering stage becomes then useful to remove ambiguity and validate the SOM results. 
The approach used in this chapter, is depicted in Fig. 2, the first abstraction level is achieved 
by creating a set of prototypes using SOM. These prototypes are then clustered in the second 
abstraction level using K-means clustering algorithm. It was noticed that clustering a large 
multidimensional time series data using only k-means generates a more computational time 
than the two-level clustering approach. Another advantage of this approach is the noise 
reduction (Vesanto & Alhoniemi, 2000), as the prototypes are local averages of the data and 
therefore less sensitive to random variations than the original data. 

 
5. Application to Meteorological Parameters Clustering 
 

It is extremely important to consider the effect of meteorological conditions on air pollution, 
because they directly influence the dispersion possibilities of the atmosphere. Severe 
pollution episodes in the urban environment are not usually attributed to sudden increases 
in the emission of pollutants, but to certain meteorological conditions which decrease the 
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Assignment phase: This stage aims to minimize the function I (W, X) compared to the 
assignment function X (determining the set of referents).  
Minimization phase: The second stage aims optimizing referents in order to representing 
the best observation points in p classes.  
The main objective of applying K-means to time series analysis is to identify the different 
clusters representing the series situation using clustering methods. These methods must 
provide groups which members are close (have high similarity degree) and well separated. 
In the clustering process, there are no predefined classes and no examples that would show 
what kind of desirable relations should be valid among the data, so it is natural to be asked 
about the validity and quality of the results obtained. Two different sets of validity indices 
may be used for comparing the results when dealing with K-means: the internal and 
external criteria. The first indices category quantifies the match between a subjective 
partition and the idea that there is a good classification (Guérif, 2006) and the most 
properties commonly searched are compactness and group’s separability. Different internal 
validity indices will be used in the rest of the chapter for meteorological and electricity load 
clustering, and are summarized in what follows: 
Davies-Bouldin index: takes into account both the compactness and the separability 
between groups, the value of this index is even lower than the clusters are compact and well 
separated (Davies & Bouldin, 1997). This index favoured hyperspheric groups and it is 
particularly well adapted for use with the K-means clustering algorithm (Guérif, 2006). 
 Silhouette index: Kaufman and Rousseeuw (1990) suggest choosing the number of groups 
k> 2, which gives the greatest value of silhouette.  
Homogeneity and separation: homogeneity is calculated as the average distance between 
each input vector and the centre of the group to which it belongs. The separation is 
calculated as the average distance between the weighted groups centres (Chen et al., 2002). 
The System Evolution (SE) method: Analyzes a dataset as a pseudo thermodynamics 
system, partition energy Ep(k) denotes the border distance between two closest clusters 
(called twin-clusters) among the k clusters, while merging energy Em(k) denotes the average 
distance between elements in the border region (Wang et al., 2007).  
Weighted inter-intra index: proceeds with a forward searching and stops at the first mark to 
the bottom of the index, which indicates the optimal number of groups (Strehl, 2002). 
For the external category the validity indices are used:  

 

 Rand index and Mirkin metrics. The rand index shows the proportion of pairs object where  
two partitions are concordant (Guérif, 2006), whereas the Mirkin metrics is defined as the 
number of edges that exists only in one of two partitions.  
 Hubert index. Higher values of this index show a large similarity between two groups 
(Halkidi et al., 2001).  

 
4. A two clustering level approach 

 

 
Fig. 2. First abstraction level is obtained by creating a set of prototypes vectors using the 
SOM. Clustering of the SOM creates the second abstraction level. 
 
The number of prototype vectors resulting from SOM clustering is large especially when 
dealing with highly multidimensional time series applications. Only one classification level 
can then be revealing. A high level is interesting because it provides more detailed quality 
analysis and less compresses the dataset if we summarize all days by representatives of a 
small class’s number (Rousset, 1999). It also can be very difficult to attribute some units of 
the input vector to a given cluster given by the map. The problem lies in the selection of 
some clusters border, where a clear distinction between two clusters is impossible. A second 
clustering stage becomes then useful to remove ambiguity and validate the SOM results. 
The approach used in this chapter, is depicted in Fig. 2, the first abstraction level is achieved 
by creating a set of prototypes using SOM. These prototypes are then clustered in the second 
abstraction level using K-means clustering algorithm. It was noticed that clustering a large 
multidimensional time series data using only k-means generates a more computational time 
than the two-level clustering approach. Another advantage of this approach is the noise 
reduction (Vesanto & Alhoniemi, 2000), as the prototypes are local averages of the data and 
therefore less sensitive to random variations than the original data. 

 
5. Application to Meteorological Parameters Clustering 
 

It is extremely important to consider the effect of meteorological conditions on air pollution, 
because they directly influence the dispersion possibilities of the atmosphere. Severe 
pollution episodes in the urban environment are not usually attributed to sudden increases 
in the emission of pollutants, but to certain meteorological conditions which decrease the 
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capacity of the atmosphere to disperse pollutants (Ziomas et al., 1995). In meteorological 
studies it is very difficult to represent the data in statistically independent terms because the 
air pollution depends on all meteorological parameters (Kalkstein, 1991). One of the most 
interesting applications in the field of meteorological studies is the use of clustering 
methods in order to extract a representative set of prototypes (clusters) of the meteorological 
models in an area of interest. This technique has been successfully used in numerous studies 
such as (Eder et al., 1994). Principal component analysis (PCA) and K-means clustering 
algorithms have been used in (Reljin et al., 2003) to determine the synoptic weather 
scenarios. PCA is a powerful linear technique for data reduction (Kwan et al., 2003), but 
suffers poor visualization as it is not well adapted to represent the datasets complex 
structure (Laitinen et al., 2002). Recently, and as an alternative tool being used to deal with 
the complexity of multidimensional data, Kohonen self-organizing maps were used for 
clustering data in various ecosystems: forest,  agriculture, etc. (Recknagel, 2002; Suwardi et 
al., 2007), water quality (Aguilera et al., 2001; Tison et al., 2005) and  day type identification 
for electrical load (Khadir et al., 2006). Although the SOM has proved its efficiency in 
meteorological parameters clustering such as in (Hewitson & Crane, 2002; Cavasos, 2000; 
Turias et al., 2006), it is difficult to clearly identify the clusters and their borders when the 
map is very populated.  
A two level clustering approach is proposed in this work in order to analyse and identify the 
meteorological day type for Annaba region in Algeria. In the first stage the SOM was used 
to reduce the set of prototypes which are then clustered using the K-means clustering 
algorithm in the second stage. This approach is more powerful than that of a direct 
clustering in data partitioning and computing time reduction. The correctness of clustering 
algorithm results is verified using quantitative validation based on two criterions categories 
(internal and external) and qualitative criteria, these cluster validity indices allowed us to 
respond to some frequently asked questions such as: “how many clusters are there in the 
dataset?”, “does the resulting clustering scheme fits our data set?”, “is there a better 
partitioning for our dataset?”.  

 
5.1. Area of Study and Used Data 
Annaba region is located in the Eastern part of Algerian coast (600 km of Algiers), Fig. 3. The 
town is constituted of a vast plain bordered in the South and West, of a mountainous 
massive in North, and by the Mediterranean Sea in the East (Mebirouk & Mebirouk –Bendir, 
2007). Its basin shaped topography, supports air stagnation and creation of temperature 
inversions. These situations allow the pollutants accumulation and the rise in concentration 
rates which results from it. Industry is the main factor causing air quality deterioration; this 
industrialization has allowed providing the needs of the country and population in iron and 
steel products, nitrate fertilizers, railway constructions and many other transformation 
industries. Controversially, it caused a disproportionate urbanization of the town with all its 
corollaries.  
 
 
 
 

 

 
Fig. 3. Location of Annaba region 
 
The dataset used in this study includes 04 meteorological parameters collected for 60 
months (1995 to 1999) with a 3 hours expiry, therefore each row of the dataset (unspecified 
day) is characterized by 32 parameters during the 24 hours. The meteorological parameters 
which are obtained from the weather station of Annaba are dynamic and thermodynamic 
air descriptions: the pressure measured in tenth of millibars ; The temperature measured in 
tenth of °C; The moisture humidity in hundredths and the wind speed measured in nodes. 
A pre-treatment phase is needed to prepare the data, consisting in noise elimination, error 
corrections and data standardisation. 

 
5.2. Results of the two Stages Clustering Approach  
A. Results of the SOM Map 

   
(c)                                    (d)                                            (e) 

Fig. 4. The U-matrix map, (b and c) are average version of U-matrix, (d) the color coding 
map, (e) some component plane. 
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capacity of the atmosphere to disperse pollutants (Ziomas et al., 1995). In meteorological 
studies it is very difficult to represent the data in statistically independent terms because the 
air pollution depends on all meteorological parameters (Kalkstein, 1991). One of the most 
interesting applications in the field of meteorological studies is the use of clustering 
methods in order to extract a representative set of prototypes (clusters) of the meteorological 
models in an area of interest. This technique has been successfully used in numerous studies 
such as (Eder et al., 1994). Principal component analysis (PCA) and K-means clustering 
algorithms have been used in (Reljin et al., 2003) to determine the synoptic weather 
scenarios. PCA is a powerful linear technique for data reduction (Kwan et al., 2003), but 
suffers poor visualization as it is not well adapted to represent the datasets complex 
structure (Laitinen et al., 2002). Recently, and as an alternative tool being used to deal with 
the complexity of multidimensional data, Kohonen self-organizing maps were used for 
clustering data in various ecosystems: forest,  agriculture, etc. (Recknagel, 2002; Suwardi et 
al., 2007), water quality (Aguilera et al., 2001; Tison et al., 2005) and  day type identification 
for electrical load (Khadir et al., 2006). Although the SOM has proved its efficiency in 
meteorological parameters clustering such as in (Hewitson & Crane, 2002; Cavasos, 2000; 
Turias et al., 2006), it is difficult to clearly identify the clusters and their borders when the 
map is very populated.  
A two level clustering approach is proposed in this work in order to analyse and identify the 
meteorological day type for Annaba region in Algeria. In the first stage the SOM was used 
to reduce the set of prototypes which are then clustered using the K-means clustering 
algorithm in the second stage. This approach is more powerful than that of a direct 
clustering in data partitioning and computing time reduction. The correctness of clustering 
algorithm results is verified using quantitative validation based on two criterions categories 
(internal and external) and qualitative criteria, these cluster validity indices allowed us to 
respond to some frequently asked questions such as: “how many clusters are there in the 
dataset?”, “does the resulting clustering scheme fits our data set?”, “is there a better 
partitioning for our dataset?”.  

 
5.1. Area of Study and Used Data 
Annaba region is located in the Eastern part of Algerian coast (600 km of Algiers), Fig. 3. The 
town is constituted of a vast plain bordered in the South and West, of a mountainous 
massive in North, and by the Mediterranean Sea in the East (Mebirouk & Mebirouk –Bendir, 
2007). Its basin shaped topography, supports air stagnation and creation of temperature 
inversions. These situations allow the pollutants accumulation and the rise in concentration 
rates which results from it. Industry is the main factor causing air quality deterioration; this 
industrialization has allowed providing the needs of the country and population in iron and 
steel products, nitrate fertilizers, railway constructions and many other transformation 
industries. Controversially, it caused a disproportionate urbanization of the town with all its 
corollaries.  
 
 
 
 

 

 
Fig. 3. Location of Annaba region 
 
The dataset used in this study includes 04 meteorological parameters collected for 60 
months (1995 to 1999) with a 3 hours expiry, therefore each row of the dataset (unspecified 
day) is characterized by 32 parameters during the 24 hours. The meteorological parameters 
which are obtained from the weather station of Annaba are dynamic and thermodynamic 
air descriptions: the pressure measured in tenth of millibars ; The temperature measured in 
tenth of °C; The moisture humidity in hundredths and the wind speed measured in nodes. 
A pre-treatment phase is needed to prepare the data, consisting in noise elimination, error 
corrections and data standardisation. 

 
5.2. Results of the two Stages Clustering Approach  
A. Results of the SOM Map 

   
(c)                                    (d)                                            (e) 

Fig. 4. The U-matrix map, (b and c) are average version of U-matrix, (d) the color coding 
map, (e) some component plane. 
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The results obtained from the Kohonen map using the specified dataset are shown in Fig. 4; 
the maps are connected to adjacent hexagonal nodes with sizes 18×10 by adapting the 
meteorological situations of the area. There are no explicit rule allowing the choice of 
Kohonen network node’s number, but the principle is that the size should allow easier 
detection capabilities (Hautaniemi et al., 2003). For this reason different experiments have 
been done to determine the optimal number of Kohonen units, by changing the number of 
nodes and checking the performance of each solution. Also different experiments have been 
done by changing the training parameters in order to determine the appropriate SOM for 
this dataset.    Fig. 4 (a) provides a visualization of the U-matrix which represents a relative 
measurement of distance between the network coloured units, where the grey colour 
(shade) of the hexagon indicates the distance measure of the node to its adjacent. More the 
shade is dark more the distance is large; a cluster which represents similar data vectors can 
be seen as a clear zone with dark borders. 
Fig. 4 (b) and 4 (c) present the average version of the U-matrix, for Fig. 4 (c) the size of each 
unit of the Kohonen maps is proportional to the average distance to its neighbours. It can be 
seen, for example, in Fig. 4 (a) that U-matrix provides clustering information of similar units 
which are presented with some circles on the map. However, the map of U-matrix indicates 
the situation where the distance measure was not reliable to determine the representative 
clusters. As reported by (Kiang et al., 2003), it is difficult to visually SOM units when the 
network is strongly populated. In this case, the decision seems to be difficult and the use 
only of the Euclidean distance to select the meteorological clusters is not reliable.  
To overcome the SOM deficiency in clustering data, a combination of the distance measure 
and the SOM colour-coding are used. The SOM colour-coding is a method for clustering 
data, according to their properties (Vesanto, 1999). As shown by Fig. 4 (d), the units which 
have similar parameters evaluate automatically similar colours of nodes on the grid. Greater 
distance measures of the network nodes are automatically assigned to different colours and 
clusters. To select a cluster, we first identify the clusters region based on the discoloration of 
units. In the situations when colours of nodes are not clear to indicate the differences of the 
clusters, the distance measures are then used to verify the clusters, Although, it was very 
difficult to attribute some units to a given group. The problem was the selection of some 
clusters border, it can be seen that a second clustering stage is useful to remove ambiguity 
and validate the SOM results.  
B. Refining SOM Results by K-means 
The K-means clustering algorithm has been applied to group the SOM units with different 
k-values (the number of clusters in which data are partitioned). Due to the inherent process 
randomness and because these methods depend on initial centres, the order of the 
presentation and the geometric properties of the data, a relatively high number of 
experiments (50 were ran in this study) has to be done and their results checked. The best 
partitioning for each (k) is selected using the error criteria described by equation (3), also the 
optimal number of clusters among different values of k is selected according to the validity 
indices described in section 2. The results of these indices are shown in Fig. 5, .6 and 7.  
According to Davies-Bouldin index shown in Fig. 5, a negative peak is noticed at k=6 which 
indicate the optimal number of clusters proposed by this index. As well as the system 
evolution method where results values are presented in Fig. 6 indicating that the optimal 
partition of the dataset is obtained for k=6. The same result is proposed by silhouette and 

 

inter-intra weighted indices shown in Fig. 7. According to the different indices values, the 
clusters obtained are well separated and homogeneous. 
 

Fig. 5. Davies-Bouldin index and SSE 
 

 
Fig. 6. System Evolution method results 

 

 
Fig. 7. Internal and external validity indices   

 
The results of the two stage clustering procedure are shown in Fig. 6 and the average 
meteorological parameters for each cluster are shown in Fig. 9. The cluster C3 is 
characterized by a steady pressure throughout the 24 day hours, and high temperature 
which exceeds 25°C during the day and slightly lower in the night, this cluster is also 
characterized by a high pressure during the night which decrease in the day, the wind speed 
is very low in the night period and starts increasing during the day, according to the 
monthly distribution of clusters shown in Fig. 10 this cluster represents the warmer months. 
The sixth cluster is particularly concentrated in the winter and autumn months and is 
mainly characterized by a steady pressure and a high wind speed during the day.  
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The results obtained from the Kohonen map using the specified dataset are shown in Fig. 4; 
the maps are connected to adjacent hexagonal nodes with sizes 18×10 by adapting the 
meteorological situations of the area. There are no explicit rule allowing the choice of 
Kohonen network node’s number, but the principle is that the size should allow easier 
detection capabilities (Hautaniemi et al., 2003). For this reason different experiments have 
been done to determine the optimal number of Kohonen units, by changing the number of 
nodes and checking the performance of each solution. Also different experiments have been 
done by changing the training parameters in order to determine the appropriate SOM for 
this dataset.    Fig. 4 (a) provides a visualization of the U-matrix which represents a relative 
measurement of distance between the network coloured units, where the grey colour 
(shade) of the hexagon indicates the distance measure of the node to its adjacent. More the 
shade is dark more the distance is large; a cluster which represents similar data vectors can 
be seen as a clear zone with dark borders. 
Fig. 4 (b) and 4 (c) present the average version of the U-matrix, for Fig. 4 (c) the size of each 
unit of the Kohonen maps is proportional to the average distance to its neighbours. It can be 
seen, for example, in Fig. 4 (a) that U-matrix provides clustering information of similar units 
which are presented with some circles on the map. However, the map of U-matrix indicates 
the situation where the distance measure was not reliable to determine the representative 
clusters. As reported by (Kiang et al., 2003), it is difficult to visually SOM units when the 
network is strongly populated. In this case, the decision seems to be difficult and the use 
only of the Euclidean distance to select the meteorological clusters is not reliable.  
To overcome the SOM deficiency in clustering data, a combination of the distance measure 
and the SOM colour-coding are used. The SOM colour-coding is a method for clustering 
data, according to their properties (Vesanto, 1999). As shown by Fig. 4 (d), the units which 
have similar parameters evaluate automatically similar colours of nodes on the grid. Greater 
distance measures of the network nodes are automatically assigned to different colours and 
clusters. To select a cluster, we first identify the clusters region based on the discoloration of 
units. In the situations when colours of nodes are not clear to indicate the differences of the 
clusters, the distance measures are then used to verify the clusters, Although, it was very 
difficult to attribute some units to a given group. The problem was the selection of some 
clusters border, it can be seen that a second clustering stage is useful to remove ambiguity 
and validate the SOM results.  
B. Refining SOM Results by K-means 
The K-means clustering algorithm has been applied to group the SOM units with different 
k-values (the number of clusters in which data are partitioned). Due to the inherent process 
randomness and because these methods depend on initial centres, the order of the 
presentation and the geometric properties of the data, a relatively high number of 
experiments (50 were ran in this study) has to be done and their results checked. The best 
partitioning for each (k) is selected using the error criteria described by equation (3), also the 
optimal number of clusters among different values of k is selected according to the validity 
indices described in section 2. The results of these indices are shown in Fig. 5, .6 and 7.  
According to Davies-Bouldin index shown in Fig. 5, a negative peak is noticed at k=6 which 
indicate the optimal number of clusters proposed by this index. As well as the system 
evolution method where results values are presented in Fig. 6 indicating that the optimal 
partition of the dataset is obtained for k=6. The same result is proposed by silhouette and 

 

inter-intra weighted indices shown in Fig. 7. According to the different indices values, the 
clusters obtained are well separated and homogeneous. 
 

Fig. 5. Davies-Bouldin index and SSE 
 

 
Fig. 6. System Evolution method results 

 

 
Fig. 7. Internal and external validity indices   

 
The results of the two stage clustering procedure are shown in Fig. 6 and the average 
meteorological parameters for each cluster are shown in Fig. 9. The cluster C3 is 
characterized by a steady pressure throughout the 24 day hours, and high temperature 
which exceeds 25°C during the day and slightly lower in the night, this cluster is also 
characterized by a high pressure during the night which decrease in the day, the wind speed 
is very low in the night period and starts increasing during the day, according to the 
monthly distribution of clusters shown in Fig. 10 this cluster represents the warmer months. 
The sixth cluster is particularly concentrated in the winter and autumn months and is 
mainly characterized by a steady pressure and a high wind speed during the day.  
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Fig. 8. Second stage clustering results  
 

 
  

Fig. 9. (a) Pressure mean values, (b) temperature mean values, (c) humidity mean values, (d) 
wind speed mean values. 
 

 
Fig. 10. Monthly distribution of clusters   

 
The fourth cluster parameters are similar to the sixth with a high pressure in the night 
period and larger wind speed. The fifth cluster is characterized by a high pressure and 
humidity compared to the other clusters, temperature and wind speed are stable and low all 
the day hours. The first cluster is almost similar to the fourth with a low pressure at the 
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beginning of the day, however growing with time, and a lower wind speed values. The 
second cluster seems to be a sub-cluster of C4 with a small increase in pressure. 

 
6. Day type Identification of Electricity load 

 

Short term electricity load forecasting is nowadays, of paramount importance in order to 
estimate next day electricity load resulting in energy save and environment protection. 
Electricity demand is influenced (among other things) by the day of the week, the time of 
year and special periods and/or days, all of which must be identified prior to modeling. 
This identification, known as day-type identification, must be included in the modeling 
stage either by segmenting the data and modeling each day-type separately or by including 
the day-type as an input. It is proven that the day types or daily consumer’s habits for 
different periods of time, such as working days, weekends, special holidays, etc affect 
heavily the load shape (Fay, 2004). Different prediction models may then be designed for 
each day type. 

 
6.1. Overview of Algerian Electricity load 
Electrical demand in Algeria from 01/01/2000 to 31/12/2004 is shown in Fig. 11. As can be 
seen there is an upward trend in the data reflecting increased economic activity over this 
period. 

 
Fig.11. Algerian electricity load 2000-2004. 

 

 
Fig. 12. Weekly load. 

 

Daily load data can be disaggregated into distinct groups (called day-types) each of which 
has common characteristics. As can be seen in (Fig 12.) there is, for example, an obvious 
difference between the shapes of the load on a typical weekend day, such as Friday and a 
working day like Saturday or Sunday due to decreased economic activity and the weekly 
religious prayer on Friday. Note that in Algeria the weekend is on Thursdays and Fridays. 
Furthermore, there is a distinct difference between the shape of a typical winter day and 
summer day. 
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Fig. 10. Monthly distribution of clusters   
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period and larger wind speed. The fifth cluster is characterized by a high pressure and 
humidity compared to the other clusters, temperature and wind speed are stable and low all 
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second cluster seems to be a sub-cluster of C4 with a small increase in pressure. 
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the day-type as an input. It is proven that the day types or daily consumer’s habits for 
different periods of time, such as working days, weekends, special holidays, etc affect 
heavily the load shape (Fay, 2004). Different prediction models may then be designed for 
each day type. 
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Electrical demand in Algeria from 01/01/2000 to 31/12/2004 is shown in Fig. 11. As can be 
seen there is an upward trend in the data reflecting increased economic activity over this 
period. 
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6.2. Day type identification using Kohonen Map 
The existence of several different day-types has been shown by several researchers 
(Bretschneider et al., 1999; Hsu and yang, 1991; Muller and Petrisch, 1998) However, the 
level of desegregation in day-type selection is, to a large extent, subjective and dependant on 
the judgment of the forecaster. As pointed out by (Hubele and Cheng 1990), the application 
of a separate load forecasting model for different seasons (for example summer, autumn, 
winter and spring) has the advantage that the models do not need to incorporate seasonal 
information. 
Further desegregation of the load by day of the week (for example Summer Sunday, Winter 
Sunday, Summer Monday etc.) reduces further the amount of information that the model 
need incorporate. Such approaches have been implemented successfully by (Srinivasan et 
al., 1999) and (Mastorocostas et al., 1999), to mention but a few. Where a single model is used 
for all the data, the day-type information is often incorporated as an additional input (two 
examples are (Chen et al., 1992) and (Lertpalangsunti and Chan, 1998). In either case the 
day-types must, however, be identified. The selection of day-types can be guided by 
analytical techniques. The self-organising feature map or Kohonen map (Kohonen, 1990) 
would appear ideal for day-type identification as the number and similarity between day-
types is not known a priori. The Kohonen map can be implemented for day-type 
identification in several different ways (examples are (Fay and Ringwood, 2003; Hsu and 
yang, 1991; Muller and Petrisch, 1998) however differences in the results are insignificant in 
most cases thus the algorithm used by Hsu and Yang (Hsu and yang, 1991) was chosen.  
For the present trials, the full years of data from 2003 and 2004 for the region of Algiers 
(north center and capital of Algeria) were used. The Kohonen map was trained using the 
following parameters, an initial neighborhood size of  Nc=1, adaptation gain equal to 0.003, 
a total number of iteration m=10 and a grid size 18*18 (324) in total.  
Initially, the daily load curve is extracted from each day to give a set of load curves that 
have a minimum value of zero and a maximum value of one (Hsu and yang, 1991). 
 Y′�i�� � Y�i�� �mi�Y�maxY� �mi�Y� i � 1� � � �24 

(6) 

 
where Y ‘(i)k and Y (i)k are the ith elements (hour) of the load curve Y‘k Є R1×24, and actual 
load Yk Є R1×24 of day k  respectively. The load curves are then normalised to give them 
unity length: P�i�� � Y��i���∑ Y′������� �� �⁄ i � 1� � � �24 

(7) 

where P(i) k is the ith element of Pk. The weights are initialised as: 
 W��� � ������1�� � � ����24��� � �� �����1�� � � ����24���� (8) 

 
where μp(1) and ρp(1) are the sample mean and standard deviation of P(i) over all k, u is a 
uniformly distributed random number in the range -0.5 to 0.5 and Wi,j is normalised to unit 
length as in (Hsu and yang, 1991). Weight update is then done following Equation (9) 
repeated below for clarity: 

 

 

�ܹ���� � 1� � �ܹ����� � ߙ ��� ൣ �ܲ � �ܹ�����൧ (9) 
 
Fig 13 shows the triggered nodes identified for the years stating from 2000 until 2004. We 
notice that the triggered nodes are located in the map (i between 0 and 17) and (j between 10 
and 20).  

 
Fig. 13. Kohonen map results for Algiers load 

 
It can be seen, Figure 14, that week days activate roughly the same map nodes where, the 
weekend activate different nodes for the Algiers load. This is true for Friday which is the 
weekly prayer occurring from 12 to 2:30. Thursday and Friday are the day of the weekend in 
Algeria.  
Weekdays and weekends however appear differently on the map. The nodes that are 
triggered from Saturday to Wednesday occupy the same parts of the grid but Thursday and 
Friday (weekends) loads; trigger different parts of the grid showing the difference between 
these day types.  The figure shows the difference between these days for Algiers load, where 
the disparate distribution of Fridays appears clearly, and is heavily dependant on seasonal 
effect.  
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6.2. Day type identification using Kohonen Map 
The existence of several different day-types has been shown by several researchers 
(Bretschneider et al., 1999; Hsu and yang, 1991; Muller and Petrisch, 1998) However, the 
level of desegregation in day-type selection is, to a large extent, subjective and dependant on 
the judgment of the forecaster. As pointed out by (Hubele and Cheng 1990), the application 
of a separate load forecasting model for different seasons (for example summer, autumn, 
winter and spring) has the advantage that the models do not need to incorporate seasonal 
information. 
Further desegregation of the load by day of the week (for example Summer Sunday, Winter 
Sunday, Summer Monday etc.) reduces further the amount of information that the model 
need incorporate. Such approaches have been implemented successfully by (Srinivasan et 
al., 1999) and (Mastorocostas et al., 1999), to mention but a few. Where a single model is used 
for all the data, the day-type information is often incorporated as an additional input (two 
examples are (Chen et al., 1992) and (Lertpalangsunti and Chan, 1998). In either case the 
day-types must, however, be identified. The selection of day-types can be guided by 
analytical techniques. The self-organising feature map or Kohonen map (Kohonen, 1990) 
would appear ideal for day-type identification as the number and similarity between day-
types is not known a priori. The Kohonen map can be implemented for day-type 
identification in several different ways (examples are (Fay and Ringwood, 2003; Hsu and 
yang, 1991; Muller and Petrisch, 1998) however differences in the results are insignificant in 
most cases thus the algorithm used by Hsu and Yang (Hsu and yang, 1991) was chosen.  
For the present trials, the full years of data from 2003 and 2004 for the region of Algiers 
(north center and capital of Algeria) were used. The Kohonen map was trained using the 
following parameters, an initial neighborhood size of  Nc=1, adaptation gain equal to 0.003, 
a total number of iteration m=10 and a grid size 18*18 (324) in total.  
Initially, the daily load curve is extracted from each day to give a set of load curves that 
have a minimum value of zero and a maximum value of one (Hsu and yang, 1991). 
 Y′�i�� � Y�i�� �mi�Y�maxY� �mi�Y� i � 1� � � �24 

(6) 

 
where Y ‘(i)k and Y (i)k are the ith elements (hour) of the load curve Y‘k Є R1×24, and actual 
load Yk Є R1×24 of day k  respectively. The load curves are then normalised to give them 
unity length: P�i�� � Y��i���∑ Y′������� �� �⁄ i � 1� � � �24 

(7) 

where P(i) k is the ith element of Pk. The weights are initialised as: 
 W��� � ������1�� � � ����24��� � �� �����1�� � � ����24���� (8) 

 
where μp(1) and ρp(1) are the sample mean and standard deviation of P(i) over all k, u is a 
uniformly distributed random number in the range -0.5 to 0.5 and Wi,j is normalised to unit 
length as in (Hsu and yang, 1991). Weight update is then done following Equation (9) 
repeated below for clarity: 
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Fig 13 shows the triggered nodes identified for the years stating from 2000 until 2004. We 
notice that the triggered nodes are located in the map (i between 0 and 17) and (j between 10 
and 20).  

 
Fig. 13. Kohonen map results for Algiers load 

 
It can be seen, Figure 14, that week days activate roughly the same map nodes where, the 
weekend activate different nodes for the Algiers load. This is true for Friday which is the 
weekly prayer occurring from 12 to 2:30. Thursday and Friday are the day of the weekend in 
Algeria.  
Weekdays and weekends however appear differently on the map. The nodes that are 
triggered from Saturday to Wednesday occupy the same parts of the grid but Thursday and 
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these day types.  The figure shows the difference between these days for Algiers load, where 
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Fig. 14. Nodes triggered for working days(Saturday to Wednesday) and Week days 
(Thursday and Friday) loads fort he region of Algiers. 
 
The seasonal effect is clearly shown for northern cities, Fig. 15 for Algiers where peaks 
appear along the longitudinal axe of the SOM with respect to monthly (seasonal) load. As 
for southern cities, minor seasonal effect is noticed.  As can be seen in Fig. 9, the monthly 
SOM representation shows common peak for all months with a second peak appearing from 
May to august. The number of visually identified clusters may be numbered as 8 or 9 
clusters. 
 

   

  

 

Fig. 15. Seasonal day-type identification for Algiers. 
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The K-mean algorithm is performed on the output obtained by Kohonen map in order to 
better define boundaries between clusters, and thus defining clearly the cluster number. The 
selection of the adequate cluster’s number is accomplished using the Davies- Bouldin index 
defined earlier, and given in the following equations: 
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where � � � � ��measures the scatter within a cluster and  � � ��� � ��  is a cluster to cluster 
distance measure. 
 

 
Fig. 16. Definite clusters identified for Algiers load 
 
This clustering procedure aims to find internally compact spherical clusters which are 
widely separated. 
As shown in Fig. 16, the number of clusters is found to be 8 with a value of DB=0.8788.  
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Fig. 14. Nodes triggered for working days(Saturday to Wednesday) and Week days 
(Thursday and Friday) loads fort he region of Algiers. 
 
The seasonal effect is clearly shown for northern cities, Fig. 15 for Algiers where peaks 
appear along the longitudinal axe of the SOM with respect to monthly (seasonal) load. As 
for southern cities, minor seasonal effect is noticed.  As can be seen in Fig. 9, the monthly 
SOM representation shows common peak for all months with a second peak appearing from 
May to august. The number of visually identified clusters may be numbered as 8 or 9 
clusters. 
 

   

  

 

Fig. 15. Seasonal day-type identification for Algiers. 
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The K-mean algorithm is performed on the output obtained by Kohonen map in order to 
better define boundaries between clusters, and thus defining clearly the cluster number. The 
selection of the adequate cluster’s number is accomplished using the Davies- Bouldin index 
defined earlier, and given in the following equations: 
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Fig. 16. Definite clusters identified for Algiers load 
 
This clustering procedure aims to find internally compact spherical clusters which are 
widely separated. 
As shown in Fig. 16, the number of clusters is found to be 8 with a value of DB=0.8788.  
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Fig 17. Kohonen map, clustered SOM with k-means and Number of items per cluster 

Fig. 17 summarizes the Kohonen map, the clustered SOM and the number of items per 
cluster for Algiers’s load. It can be also deducted that some clusters are dominant in terms of 
number of days, e.g., C3 . 
Table 1 shows the weekly clusters distribution. Where, for example C1 contains a majority of 
Fridays. This includes that the cluster represent weekends at certain season. 
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3 

Table 1 Weekly distribution of cluster for Algiers load 
 

Fig. 18 shows the weekly and monthly distribution of clusters. Detailed content of each 
cluster in terms of day types and number of days is also shown. For example Table 1, shows 
that C1 contains a majority of Fridays, which makes it a class containing weekends and bank 
holidays.  
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Fig 18.  Weekly distribution of cluster 

 
 
7. Conclusion 
 

Time series analysis using Kohonen maps, allows a rough visual identification of the 
different existing classes. The K-Means algorithm comes as a complement for better class 
clustering and a clear frontiers definition when validated using different types of indices. 
Using a two stage clustering procedure seems to be more efficient than a direct clustering 
approach involving only SOM or K-means algorithms from an applicative and results view 
points.  The obtained classification is also more compact as it merges neighbouring clusters 
into one. 
Different clusters have been identified with clear borders definition for both day type 
identification along with a comprehensive analysis for constituents of each cluster in terms 
of size, day types and seasonal effects for meteorological and electricity load with, 
respectively, six and eight identified clusters. The results obtained may then be used to 
design prediction multi-model systems according to the number and the nature of each 
cluster (data type). Such approach may be more advantageous and can   improve the results 
of a unique global predictor or classifier.  
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Fig. 17 summarizes the Kohonen map, the clustered SOM and the number of items per 
cluster for Algiers’s load. It can be also deducted that some clusters are dominant in terms of 
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Fig. 18 shows the weekly and monthly distribution of clusters. Detailed content of each 
cluster in terms of day types and number of days is also shown. For example Table 1, shows 
that C1 contains a majority of Fridays, which makes it a class containing weekends and bank 
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7. Conclusion 
 

Time series analysis using Kohonen maps, allows a rough visual identification of the 
different existing classes. The K-Means algorithm comes as a complement for better class 
clustering and a clear frontiers definition when validated using different types of indices. 
Using a two stage clustering procedure seems to be more efficient than a direct clustering 
approach involving only SOM or K-means algorithms from an applicative and results view 
points.  The obtained classification is also more compact as it merges neighbouring clusters 
into one. 
Different clusters have been identified with clear borders definition for both day type 
identification along with a comprehensive analysis for constituents of each cluster in terms 
of size, day types and seasonal effects for meteorological and electricity load with, 
respectively, six and eight identified clusters. The results obtained may then be used to 
design prediction multi-model systems according to the number and the nature of each 
cluster (data type). Such approach may be more advantageous and can   improve the results 
of a unique global predictor or classifier.  
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