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1. Introduction     
 

Rapid continual advances in computer and network technologies coupled with the 
availability of relatively cheap high-volume data storage devices have effected the 
production of thousands of digital images everyday. Therefore, many content-based image 
retrieval (CBIR) systems have been proposed to cope with such huge image archives. To 
facilitate image retrieval from the huge volume image repositories, there is a great need to 
search for effective content-based image features. Traditionally, the most straightforward 
way to implement image database management systems is to make use of the conventional 
database-management systems (DBMS) such as relational databases or object-oriented 
databases. Such systems are usually keyword-based, in which the image attributes, usually 
in the form of text annotations, are extracted manually or partially computed and managed 
within the framework of a conventional DBMS, such as Chabot (Ogle and Stonebraker 1995) 
Piction(Srihari 1995), Photobook(Pentland, Picard et al. 1996), WebSeer(Swain, Freankel  et 
al. 1997),etc.. However, the keyword-based approach provides limited capacity for 
retrieving visual information. In most cases, the associated image attributes cannot fully 
describe the contents of the imagery by themselves. Since the image attributes are annotated 
manually or semi-automatically, the process of feature extraction is extremely time-
consuming and labor-intensive.  Current researches on CBIR systems (Belongie, Carson et 
al. 1998; Gupta 1995; Smith and Chang 1996; Tao, Tang et al. 2006) mostly focus on the 
capability of visual search, i.e., images are retrieved based on a certain similarity criterion 
for a user provided sample images or sketch. These systems employ visual information 
indexing scheme and approximate matching instead of the exact matching used in 
conventional DBMS. However, most of these methods involve a high computational 
complexity for its feature extraction. On the other hand, with the rapid development of 
digital multimedia technology, different digital watermarking schemes have been proposed 
to address the issue of multimedia copyright protection. Many of robust watermarking 
schemes are using the frequency domain approach. Most of these approaches are based on 
discrete Fourier transform (DFT) (Pereira, Ruanaidh et al. 1999), cosine transform (DCT) 
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(Cox, Kilian et al. 1997; Hernandez, Amado et al. 2000; Piva, Barni et al. 1997) or  wavelet 
transform (DWT) (Hsieh, Tseng et al. 2001 ; Pun and Kong 2007; Wang and Kuo 1998; Wang 
and Lin 2004 ), and usually have fast watermarking detection.  
In this chapter, a novel approach using watermarking representation for adaptive image 
classification with Radial Basis Function (RBF) network is proposed. The original image is 
decomposed into wavelet coefficients using discrete wavelet packet transform. The energy 
signatures of most dominant sub-bands are extracted adaptively to form a reduced feature 
vector which is to be encoded as a binary watermark. The watermark is embedded by 
quantization into the wavelet coefficients with highest magnitudes except for those in the 
lowest frequency channel. Then the image features can be extracted from the watermarked 
image by a fast discrete wavelet packet transform and de-quantization.  The extracted image 
features are fed to the trained RBF network for image classification.  The outline of this 
chapter is organized as follows. In next section, we briefly introduce and review the 
standard 2-D discrete wavelet packets transform techniques.  In section III, we present our 
proposed algorithm for embedding image features by watermarking and the algorithm for 
extracting the image features from the watermarked image. In section IV, the algorithm for 
adaptive image classification with RBF network is proposed. The experiment results for 
robustness and classification accuracy of our proposed method to various attacks, and the 
efficiency comparison results with other image classification method are presented in 
Section V. Finally, conclusions are drawn in Section VI. 

 
2. Discrete Wavelet Packet Transform 
 

The 2-D discrete wavelet packet transform (DWPT) is a generalization of 2D discrete 
wavelet transform (DWT) that offers a richer range of possibilities for image analysis. In 2D-
DWT analysis, an image is split into an approximation and three detail images. The 
approximation image is then itself split into a second-level approximation and detail 
images, and the process is recursively repeated. So there are n+1 possible ways to 
decompose or encode the image for an n-level decomposition. In 2D-DWPT analysis, the 
three details images as well as the approximation image can also be split. So there are 4n 
different ways to encode the image, which provide a better tool for image analysis.  The 
standard 2D-DWPT can be described by a pair of quadrature mirror filters (QMF) H and G 
(Mallat 1989). The filter H is a low-pass filter with a finite impulse response denoted by 

( )h n . And the high-pass G with a finite impulse response is defined by: 
 

                                   ( ) ( 1) (1 )ng n h n   , for all n                                                 (1) 
 
The low-pass filter is assumed to satisfy the following conditions for orthonormal 
representation: 
 

                                ( ) ( 2 ) 0
n
h n h n j  , for all 0j                                           (2) 

                                                    2( ) 1
n
h n                                                                  (3) 

 

                                  ( ) ( 2 ) 0
n
h n g n j  , for all j                                                  (4) 

 
The 2D discrete wavelet packet decomposition of an M N  discrete image x up to level p+1 
( 2 20 min(log ( ), log ( ))p N M  ) is recursively defined in terms of the coefficients of 
level p as follows: 
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where 0
0,( , ) ( , )i j i jC x  is given by the intensity levels of the image x.  

Since the image x has only a finite number of pixels, different methods such as symmetric, 
periodic or zero padding should be used for the boundary handling. At each step, we 

decompose the image p
kC  into four quarter-size images 1

4
p
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p
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
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4 2
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The inverse wavelet packet transform of a discrete image x from wavelet coefficients at level 

p+1 can be achieved by applying recursively the following formulae until 0
0,( , )i jC  is 

obtained: 
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Fig.1. Procedure of embedding image features as digital watermark into the original image 
for image analysis. 

 
3. Watermarking Representation of Image Features 
 

3.1 Embedding Image Features as Digital Watermark 
The procedure of embedding image features as digital watermark into the original image for 
image analysis or retrieval is depicted in Fig. 1. The MxN original image is decomposed into 
wavelet coefficients by a 2D discrete wavelet packet transform up to level p. An energy 
signature is computed for each sub-band of wavelet coefficients. However, the number of 
energy signatures for texture classification can be still very large.  As suggested by Chang 
and Kou (Chang and Kuo 1993) the most dominant frequency sub-band provide very useful 
information for discriminating images. Therefore, we sort all energy signatures and choose 
only H most dominant energy signatures (with highest energy values) as feature vector.  
This feature vector is then encoded in binary feature vector, which are embedded back to 
the wavelet sub-bands. In order to have better perceptual invisibility, the feature vector is 

 

embedded into the largest wavelet coefficients in each sub-band except the lowest frequency 
sub-band. To improve the robustness to various attacks, the same feature vector is 
embedded several times in remaining unused sub-bands. Finally, the inverse discrete 
wavelet packet transform is applied to obtain the watermarked image. The details of the 
algorithm are as follows: 
 
Algorithm I: Embedding image features 

Step 1. For a given M N image, apply the p-level discrete wavelet packet 
transform (as described in section 2) to generate 4p sub-bands of wavelet 

coefficients ,( , )
p
k i jC , where 2log ( )p N , {0, , 4 1}pk   and i, j 

= log0,1, , 2 1N p  . 
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for each sub-band of wavelet coefficients ,( , )
p
k i jC , where 

{0, , 4 1}pk  . 
Step 3. Arrange all energy signatures in descending order according to their 

values ' ' '
0 1 4 1
, , , pS S S


 , and choose first H most dominant energy 

signatures (with highest energy values) as feature vector, 
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Step 4. Encode the feature vector f to a binary feature 
vector 0 1 1( , , , )Hg E E E   by quantization, where each energy 
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nS  is  represented by En with β bits, where 0, , 1n H  . 

Step 5. For first H sub-bands of wavelet coefficients p
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where 0, , 1n H  , 1, ,q   . 

Step 6. Repeat Step 5 for the next H sub-band of wavelet coefficients for     

times. 
Step 7. Apply the Inverse discrete wavelet packet transform (as described in 

section 2) to obtain the watermarked image. 

 
3.2 Extracting the Image Features 
The procedure of of extracting the image features in a watermarked image is depicted in Fig. 
2. The watermarked MxN image is first decomposed into wavelet coefficients by the 2D 
discrete wavelet packet transform up to level p. The binary feature vector is then extracted 
from the sub-bands of wavelet coefficients. In order to improve the reliability, several 
feature vectors are extracted and combined. Finally, the image feature vector can be 
obtained by de-quantization for content-based image classification. The details of the 
algorithm are as follows: 
 
 Algorithm II: Extracting image features 

Step 1. For a given M N watermarked image, apply the p-level discrete 
wavelet packet transform (as described in section 2) to generate 4p sub-

bands of wavelet coefficients ,( , )
p
k i jC , where 2log ( )p N , 

{0, , 4 1}pk   and i, j = log0,1, , 2 1N p  . 

Step 2. Extract the binary feature vector 0 1 1( , , , )Hg E E E    from the largest 

b coefficients ,
p
n qC in the sub-band n at level p by:  
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where 0, , 1n H  , 1, ,q   . 

Step 3. Obtain the feature vector ' ' '
0 2 1( , , , )Hf S S S    from a binary feature 

vector 0 1 1( , , , )Hg E E E   by de-quantization, where 
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Fig.2. Procedure of extracting the image features in a watermarked image. 
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Fig.2. Procedure of extracting the image features in a watermarked image. 
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Fig. 3. Radial Basis Function (RBF) architecture. 

 
4. Adaptive Image Classification with Radial Basis Function Network 
 

The extracted image feature vector is used as inputs for the Radial Basis Functions (RBF) 
network used in the proposed adaptive classification algorithm. The RBF network involves 
three different layers, namely, input layer, hidden layer, and output layer, as shown in Fig. 
3. The input layer is made up of a number of source / input nodes, one node for one energy 
signature from the reduced feature vector of a given query image. The goal of the hidden 
layer is to cluster the data and to further reduce its dimensionality. The output layer 
supplies the responses of the network to the reduced feature vector applied to the input 
layer during classification. The responses correspond to the distances between the input 
image and the different database image classes.  
The proposed adaptive image classification algorithm can be divided into two stages. The 
first stage is for training, which is done only once. Its main objective is to construct an RBF 
network based on the number of features in the feature vectors and the number of classes 
involved, and to compute the corresponding weights of the hidden layer in the RBF network 
using a number of training images. The inputs to the RBF network include the feature 
vectors of the training image samples and their corresponding image classes. The output of 
the training would be the weights of the hidden layer of the network. The network starts 
with some initial weights which would be adjusted incrementally by the network as each 
feature vector and its class data are input. Therefore, the objective of the training is to 
produce the weights to represent the image classes of the training samples for achieving 
good classification results.  Such weights would be used to classify query images during the 
classification stage. For efficiency sake, the training can be performed offline and the trained 
network information, including the weights, be saved for future use. The second stage is for 
online classification. Its main objective is to find the best match of any given query image to 

 

one of the predefined classes captured in the trained RBF network. The details of the 
algorithm are as follows: 
 
Algorithm III: Adaptive Image Classification Algorithm  
 
Offline Training (for k training samples): 

Step 1. For each training image i, compute a feature vector Ti by applying the 
Algorithm II: Extracting image features; where 1, ,i k  . 

Step 2. Construct a Radial Basis Function (RBF) network, with m input nodes, m-1 
hidden nodes, and the number of output nodes being equal to the number 
of image classes.  

Step 3. For each training image i, input the feature values of Ti and the class Cj of 
image i to the RBF network; use the singular value decomposition (SVD) 
techniques (Bishop 1995) to compute the corresponding weights of the 
hidden layer of the RBF network by mapping the reduced feature vector Ti 
to the class Cj, where 1, ,i k  , and  j =1, …, n. 

Step 4. Store the trained RBF network information to secondary storage. 
 
Online Classification: 

Step 1. Load the trained RBF network information from secondary storage and 
reconstruct the RBF network. 

Step 2. Compute a feature vector S for a query image using the Algorithm II: 
Extracting image features. 

Step 3. Feed the input layer of the RBF network with the reduced feature vector S.  
Step 4. Compute the outputs of the hidden unit i  in the hidden layer by: 
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where  Φi is a radial basis function; ci is a proportionality constant for the 

variance 2
ik  ; sk is the kth component of the input vector 

1 2[ , , ]Ns s s s  , and ik  and 2
ik are the kth components of the mean 

and variance vectors defining the Basis Functions (BF) respectively, and o is 
the overlap factor between BFs.  

Step 5. Compute and output the feature distance Dj between the query texture 
image and class texture image j via output node j as follows:   
 

                       
0j ij i j

i
D w radbas w                                                 (14) 

 
where ijw  is the weight connecting the ith BF node to the jth output node, 

and 0 jw  is the threshold of the jth output node. 
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Fig. 3. Radial Basis Function (RBF) architecture. 
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one of the predefined classes captured in the trained RBF network. The details of the 
algorithm are as follows: 
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Step 1. For each training image i, compute a feature vector Ti by applying the 
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Step 2. Construct a Radial Basis Function (RBF) network, with m input nodes, m-1 
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techniques (Bishop 1995) to compute the corresponding weights of the 
hidden layer of the RBF network by mapping the reduced feature vector Ti 
to the class Cj, where 1, ,i k  , and  j =1, …, n. 

Step 4. Store the trained RBF network information to secondary storage. 
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Step 2. Compute a feature vector S for a query image using the Algorithm II: 
Extracting image features. 
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where ijw  is the weight connecting the ith BF node to the jth output node, 
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Step 6. Assign the query texture image to class i if i jD D  for all j i . 

 

 
Fig. 3. Twenty class textures from Brodatz album. Row 1: D1, D4, D6, D20, D21. Row 2: D22, 
D28, D34, D52, D53. Row 3: D57, D74, D76, D78, D82. Row 4: D84, D102, D103, D105, D110 

 
5. Experimental Results 
 

In order to demonstrate the robustness and effectiveness of our proposed method, several 
experiments have been carried out based on a set of twenty classes of natural texture images 
as shown in Fig. 5,  from the Brodatz’s texture album (Brodatz 1996). Each texture is scanned 
with 150 dpi resolution, and each image, having the size 640640 pixels and 256 gray levels, 
is divided into twenty-five 128128 non-overlapping regions. So, a database of 500 (2025) 
images was created for our testing. 200 of the texture images, with 10 images from each 
class,  were used for training the RBF network, and the remaining 300 texture images  form 
another dataset  used for different watermarking and classification experiments. For 
embedding the image features by Algorithm I,  a 20-tap Daubechies wavelet (Daubechies 
1992) was used for discrete wavelet packet transform up to levels 3. The coefficients of the 
low-pass filter h of the 20-tap Daubechies wavelet transforms are listed in Table 1. For 
classification testing, a simple Euclidean classifier was used. 
 

h(0) 0.01885858 h(10) -0.02082962 

h(1) 0.13306109 h(11) 0.02348491 

h(2) 0.37278754 h(12) 0.00255022 

h(3) 0.48681406 h(13) -0.00758950 

 

h(4) 0.19881887 h(14) 0.00098666 

h(5) -0.17666810 h(15) 0.00140884 

h(6) -0.13855494 h(16) -0.00048497 

h(7) 0.09006372 h(17) -0.00008235 

h(8) 0.06580149 h(18) 0.00006618 

h(9) -0.05048329 h(19) -0.00000938 
Table 1. 20-tap Daubechies wavelet transform filter coefficients. 
 
First, we evaluate the perceptual quality of the watermarked images using the images in our 
database. Fig. 5 shows the original and the watermarked D1 image, which was embedded 
with 15 image features ( 4.27  ) encoded in 5 bits ( 5  ). The two images are visually 
indistinguishable with PSNR is 41.5 dB.  
Second, the experiments for verifying the robustness and classification accuracy of our 
method are carried out. Fig. 5 shows the watermarked D1 image attacked by Gaussian noise, 
JPEG compression and median filter. Table 2 shows the classification accuracy and 
robustness of our method for different attacks and number of dominant energy features. 
From the table, it was shown that the common attacks such as Gaussian noise, JPEG, and 
median filtering has only little effect on the classification performance. Our method has 
strong resistance to noise and JPEG compression with very low quality factor. The best 
performance was obtained using 47 features with 96.8% accuracy. The results also indicate 
that a higher number of dominant energy features does not imply a higher accuracy rate.  
Third, the algorithm efficiency of our method was compared with other image classification 
method. Table 3 shows that our proposed  method achieved the same classification 
accuracy, while having much lower complexity than other texture classification method 
such as wavelet packet signature method (Laine and Fan 1993). 
 

(b)(a)  
Fig. 4. (a) The original D1 image; (b) Watermarked D1 image with  =33 , 4.27  , 

5  ,PSNR=41.5 dB. 
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indistinguishable with PSNR is 41.5 dB.  
Second, the experiments for verifying the robustness and classification accuracy of our 
method are carried out. Fig. 5 shows the watermarked D1 image attacked by Gaussian noise, 
JPEG compression and median filter. Table 2 shows the classification accuracy and 
robustness of our method for different attacks and number of dominant energy features. 
From the table, it was shown that the common attacks such as Gaussian noise, JPEG, and 
median filtering has only little effect on the classification performance. Our method has 
strong resistance to noise and JPEG compression with very low quality factor. The best 
performance was obtained using 47 features with 96.8% accuracy. The results also indicate 
that a higher number of dominant energy features does not imply a higher accuracy rate.  
Third, the algorithm efficiency of our method was compared with other image classification 
method. Table 3 shows that our proposed  method achieved the same classification 
accuracy, while having much lower complexity than other texture classification method 
such as wavelet packet signature method (Laine and Fan 1993). 
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(a) (b) (c)  
Fig. 5. Watermarked D1 image in Fig 4(b) attacked by (a) Gaussian noise 0.01; (b) JPEG 
quality factor 50; (c) 3x3 median filter. 
 

Attacks 
Number of image features 

15 23 31 47 55 63 

Gaussian Noise (0,0.01) 86.5 90.5 92.6 94.5 93.2 92.8 
JPEG (QF = 50) 85.5 89.6 92.5 94.3 93.3 93.3 

JPEG (QF = 30) 82.6 86.4 90.2 92.1 91.8 90.2 

3x3 median filter 71.5 75.6 76.3 76.3 76.1 75.8 

No attack 89.2 93.8 95.3 96.8 95.6 95.4 

Table 2. Classification accuracy (%) with different attacks and number of image features. 
 

 Proposed WPS 

Accuracy (%) 96.8 95.6 

Complexity ( )O n  
2( )O n  

Table 3. Performance comparison with the wavelet packet signature method. 

 
6. Conclusion 
 

In this chapter, a novel approach using watermarking representation for adaptive image 
classification with Radial Basis Function (RBF) network has been proposed. Experimental 
results show that the proposed method has strong resistance to noise and JPEG compression 
with very low quality factor, and has much better efficiency than the other image 
classification method. However, the performance for median filtering attacks still needs to 
be improved further. For image classification experiments, the best performance was 
obtained using only 47 features with 96.8% accuracy. Future work may focus on embedding 
more useful image features such as invariant features for image analysis. 
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Fig. 5. Watermarked D1 image in Fig 4(b) attacked by (a) Gaussian noise 0.01; (b) JPEG 
quality factor 50; (c) 3x3 median filter. 
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