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1. Introduction

Interest in designing feedback controllers for helicopters has increased over the last ten years
or so due to the important potential applications of this area of research. The main diffi-
culties in designing stable feedback controllers for helicopters arise from the nonlinearities
and couplings of the dynamics of these aircraft. To date, various efforts have been directed
to the development of effective nonlinear control strategies for helicopters (Sira-Ramirez et
al., 1994; Kaloust et al., 1997; Kutay et al., 2005; Avila et al., 2003). Sira-Ramirez et al. ap-
plied dynamical sliding mode control to the altitude stabilization of a nonlinear helicopter
model in vertical flight. Kaloust et al. developed a Lyapunov-based nonlinear robust control
scheme for application to helicopters in vertical flight mode. Avila et al. derived a nonlin-
ear 3-DOF (degree-of-freedom) model as a reduced-order model for a 7-DOF helicopter, and
implemented a linearizing controller in an experimental system. Most of the existing results
have concerned flight regulation.
This study considers the two-input, two-output nonlinear model following control of a 3-DOF
model helicopter. Since the decoupling matrix is singular, a nonlinear structure algorithm
(Shima et al., 1997; Isurugi, 1990) is used to design the controller. Furthermore, since the model
dynamics are described linearly by unknown system parameters, a parameter identification
scheme is introduced in the closed-loop system.
Two parameter identification methods are discussed: The first method is based on the differ-
ential equation model. In experiments, it is found that this model has difficulties in obtaining
a good tracking control performance, due to the inaccuracy of the estimated velocity and ac-
celeration signals. The second parameter identification method is designed on the basis of a
dynamics model derived by applying integral operators to the differential equations express-
ing the system dynamics. Hence this identification algorithm requires neither velocity nor
acceleration signals. The experimental results for this second method show that it achieves
better tracking objectives, although the results still suffer from tracking errors. Finally, we
introduce additional terms into the equations of motion that express model uncertainties and
external disturbances. The resultant experimental data show that the method constructed
with the inclusion of these additional terms produces the best control performance.
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2. System Description

Consider the tandem rotor model helicopter of Quanser Consulting, Inc. shown in Figs. 1 and
2. The helicopter body is mounted at the end of an arm and is free to move about the elevation,
pitch and horizontal travel axes. Thus the helicopter has 3-DOF: the elevation ε, pitch θ and
travel φ angles, all of which are measured via optical encoders. Two DC motors attached to
propellers generate a driving force proportional to the voltage output of a controller.

Fig. 1. Overview of the present model helicopter.

Fig. 2. Notation.

The equations of motion about axes ε, θ and φ are expressed as

Jε ε̈ = −
(

M f + Mb

)

g
La

cos δa
cos (ε − δa) + Mcg

Lc

cos δc
cos (ε + δc)− ηε ε̇

+KmLa

(

Vf + Vb

)

cos θ (1)

Jθ θ̈ = −M f g
Lh

cos δh
cos (θ − δh) + Mbg

Lh

cos δh
cos (θ + δh)− ηθ θ̇ + KmLh

(

Vf − Vb

)

(2)

Jφφ̈ = −ηφφ̇ − KmLa

(

Vf + Vb

)

sin θ. (3)
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A complete derivation of this model is presented in (Apkarian, 1998). The system dynamics
are expressed by the following highly nonlinear and coupled state variable equations

ẋp = f (xp) + [g1(xp), g2(xp)]up (4)

where

xp = [xp1, xp2, xp3, xp4, xp5, xp6]
T

= [ε, ε̇, θ, θ̇, φ, φ̇]T

up = [up1, up2]
T

up1 = Vf + Vb

up2 = Vf − Vb

f (xp) =

















ε̇
p1 cos ε + p2 sin ε + p3 ε̇

θ̇

p5 cos θ + p6 sin θ + p7 θ̇
φ̇

p9φ̇

















g1(xp) = [0, p4 cos θ, 0, 0, 0, p10 sin θ]T

g2(xp) = [0, 0, 0, p8, 0, 0]T

p1 =
[

−(M f + Mb)gLa + McgLc

]/

Jε

p2 = −
[

(M f + Mb)gLa tan δa + McgLc tan δc

]/

Jε

p3 = −ηε

/

Jε

p4 = KmLa/Jε

p5 = (−M f + Mb)gLh

/

Jθ

p6 = −(M f + Mb)gLh tan δh

/

Jθ

p7 = −ηθ

/

Jθ

p8 = KmLh

/

Jθ

p9 = −ηφ

/

Jφ

p10 = −KmLa
/

Jφ

δa = tan−1{(Ld + Le)/La}

δc = tan−1(Ld/Lc)

δh = tan−1(Le/Lh)

The notation employed above is defined as follows: Vf , Vb [V]: Voltage applied to the front
motor, voltage applied to the rear motor,
M f , Mb [kg]: Mass of the front section of the helicopter, mass of the rear section,
Mc [kg]: Mass of the counterbalance,
Ld, Lc, La, Le, Lh [m]: Distances OA, AB, AC, CD, DE=DF,
g [m/s2]: gravitational acceleration,
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Jε, Jθ , Jφ [kg·m2]: Moment of inertia about the elevation, pitch and travel axes,

ηε, ηθ , ηφ [kg·m2/s]: Coefficient of viscous friction about the elevation, pitch and travel axes.
The forces of the front and rear rotors are assumed to be Ff =KmVf and Fb=KmVb [N], re-
spectively, where Km [N/V] is a force constant. It may be noted that all the parameters
pi (i = 1 . . . 10) are constants. For the problem of the control of the position of the model
helicopter, two angles, the elevation ε and the travel φ angles, are selected as the outputs from
the three detected signals of the three angles. Hence, we have

yp = [ε, φ]T (5)

3. Nonlinear Model Following Control

3.1 Control system design

In this section, a nonlinear model following control system is designed for the 3-DOF model
helicopter described in the previous section.
First, the reference model is given as

{

ẋM = AMxM + BMuM

yM = CMxM
(6)

where

xM = [xM1, xM2, xM3, xM4, xM5, xM6, xM7, xM8]
T

yM = [εM, φM]T

uM = [uM1, uM2]
T

AM =

[

K1 0
0 K2

]

Ki =









0 1 0 0
0 0 1 0
0 0 0 1

ki1 ki2 ki3 ki4









, i = 1, 2

BM =

[

i1 0

0 i1

]

CM =

[

i2
T

0
T

0
T i2

T

]

i1 =









0
0
0
1









, i2 =









1
0
0
0









From (4) and (6), the augmented state equation is defined as follows.

ẋ = f (x) + G(x)u (7)
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where

x = [xT
p , x

T
M]T

u = [uT
p , u

T
M]T

f (x) =

[

f (xp)
AMxM

]

G(x) =

[

g1(xp) g2(xp) O
0 0 BM

]

Here, we apply a nonlinear structure algorithm to design a model following controller (Shima
et al., 1997; Isurugi, 1990). New variables and parameters in the following algorithm are de-
fined below the input (19).

• Step 1

The tracking error vector is given by

e =

[

e1

e2

]

=

[

xM1 − xp1

xM5 − xp5

]

(8)

Differentiating the tracking error (8) yields

ė =
∂e

∂x

{ f (x) + G(x)u}

=

[

−xp2 + xM2

−xp6 + xM6

]

(9)

Since the inputs do not appear in (9), we proceed to step 2.

• Step 2

Differentiating (9) leads to

ë =
∂ė

∂x

{ f (x) + G(x)u} (10)

=

[

r1(x)
−p9xp6 + xM7

]

+ [Bu(x), Br(x)] u (11)

where

Bu(x) =

[

−p4 cos xp3 0
−p10 sin xp3 0

]

, Br(x) = O

From (11), the decoupling matrix Bu(x) is obviously singular. Hence, this system is not de-
couplable by static state feedback. The equation (11) can be re-expressed as

ë1 = r1(x)− p4 cos xp3up1 (12)

ë2 = −p9xp6 + xM7 − p10 sin xp3up1 (13)

then, by eliminating up1 from (13) using (12) under the assumption of up1 �= 0, we obtain

ë2 = −p9xp6 + xM7 +
p10

p4
tan xp3(ë1 − r1(x)) (14)
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• Step 3

Further differentiating (14) gives rise to

e
(3)
2 =

∂ë2

∂x

{ f (x) + G(x)u}+
∂ë2

∂ë1
e
(3)
1

=
p10

p4
tan xp3

{

−xp2

(

p1 sin xp1 − p2 cos xp1

)

+ p3(xM3 − r1(x))− xM4 + e
(3)
1

}

−
p10

p4 cos xp3
xp4 (ë1 − r1(x))− p2

9xp6 + xM8

+
[

p10 sin xp3(p3 − p9), 0, 0, 0
]

u (15)

As well as step 2, we eliminate up1 from (15) using (12), and it is obtained that

e
(3)
2 =

p10

p4
tan xp3

{

p3xM3 − xp2

(

p1 sin xp1 − p2 cos xp1

)

− p3r1(x)− xM4 + e
(3)
1

− (p3 − p9) (ë1 − r1(x))
}

+ xM8 − p2
9xp6 −

p10

p4 cos xp3
xp4 (ë1 − r1(x)) (16)

• Step 4

It follows from the same operation as step 3 that

e
(4)
2 =

∂e
(3)
2

∂x

{ f (x) + G(x)ux}+
∂e

(3)
2

∂ë1
e
(3)
1 +

∂e
(3)
2

∂e
(3)
1

e
(4)
1

= r2(x) + [d1(x), d2(x), d3(x), 1] u (17)

From (12) and (17), we obtain

[

e
(2)
1

e
(4)
2

]

=

[

r1(x)
r2(x)

]

+

[

−p4 cos xp3 0 0 0
d1(x) d2(x) d3(x) 1

]

uM (18)

The system is input-output linearizable and the model following input vector is determined
by

up = R (x) + S (x) uM (19)

R (x) =
1

d2(x)p4 cos xp3

[

−d2(x) 0
d1(x) p4 cos xp3

][

ē1 − r1 (x)
ē2 − r2 (x)

]

S (x) =
−1

d2(x)p4 cos xp3

[

−d2(x) 0
d1(x) p4 cos xp3

][

0 0
d3(x) 1

]
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where

ē1 = −σ12 ė1 − σ11e1

ē2 = −σ24e
(3)
2

− σ23 ë2 − σ22 ė2 − σ21e2

r1(x) = −p1 cos xp1 − p2 sin xp1 − p3xp2 + xM3

r2(x) =

{

−
(

p1 sin xp1 − p2 cos xp1

)

(

p9 p10

p4

tan xp3 +
p10

p4 cos xp3

xp4

)

−
p10

p4

xp2 tan xp3

(

p1 cos xp1 + p2 sin xp1

)

}

xp2

+

{

p3 p10

p4 cos xp3

xp4 +
p10

p4

tan xp3

(

p3 p9 − p1 sin xp1 + p2 cos xp1

)

}

(xM3 − r1(x))

+
{

p3 (xM3 − r1(x)) + (2xp4 tan xp3 − p3 + p9) (ë1 − r1(x))

−xM4 + e
(3)
1

− xp2

(

p1 sin xp1 − p2 cos xp1

)

} p10

p4 cos xp3

xp4

+
p10

p4 cos xp3

(ë1 − r1(x))
(

p5 cos xp3 + p6 sin xp3 + p7xp4

)

+

{

p10

p4 cos xp3

xp4 −
p10

p4

(p3 − p9) tan xp3

}

e
(3)
1

+
p10

p4

tan xp3 {(p3 − p9) xM4 − k1xM1 − k2xM2 − k3xM3 − k4xM4}

−
p10

p4 cos xp3

xp4xM4 + k5xM5 + k6xM6 + k7xM7 + k8xM8 +
p10

p4

e
(4)
1

tan xp3 − p3
9
xp6

d1 (x) =
(

p3 p9 − p1 sin xp1 + p2 cos xp1 − p2
9

)

p10 sin xp3 +
p3 p10

cos xp3

d2 (x) =
p8 p10

p4 cos xp3

(ë1 − r1(x))

d3 (x) = −
p10

p4

tan xp3

e1 = xM1 − xp1

ė1 = xM2 − xp2

ë1 = −σ12 ė1 − σ11e1

e
(3)
1

= (σ2
12
− σ11)ė1 + σ12σ11e1

e
(4)
1

= (−σ
3
12
+ 2σ12σ11)ė1 − σ11(σ

2
12
− σ11)e1

e2 = xM5 − xp5

ė2 = xM6 − xp6

ë2 =
p10

p4

tan xp3 (ë1 − r1(x))− p9xp6 + xM7

e
(3)
2

=
p10

p4

tan xp3

{

p3 (xM3 − r1(x))− xp2

(

p1 sin xp1 − p2 cos xp1

)

+e
(3)
1

+ (p3 − p9) (r1(x)− ë1)− xM4

}

+ xM8 +
p10

p4 cos xp3

xp4 (ë1 − r1(x))− p2
9xp6
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The input vector is always available since the term d2(x) cos xp3 does not vanish for −π/2 <

θ < π/2. The design parameters σij (i = 1, 2, j = 1, · · · , 4) are selected so that the following
characteristic equations are stable.

λ2 + σ12λ + σ11 = 0 (20)

λ4 + σ24λ3 + σ23λ2 + σ22λ + σ21 = 0 (21)

Then, the closed-loop system has the following error equations

ë1 + σ12 ė1 + σ11e1 = 0 (22)

e
(4)
2 + σ24e

(3)
2 + σ23 ë2 + σ22 ė2 + σ21e2 = 0 (23)

and the plant outputs converge to the reference outputs. From (11) and (17), up1 and up2

appear first in ë1 and e
(4)
2 , respectively. Thus, there are no zero dynamics and the system is

minimum phase since the order of (4) is six. Further, we can see that the order of the reference
model should be eight so that the inputs (19) do not include the derivatives of the reference
inputs uM.
Since the controller requires the angular velocity signals ε̇, θ̇ and φ̇, in the experiment these
signals are calculated numerically from the measured angular positions by a discretized dif-
ferentiator with the first-order filter

Hl (z) =
α
(

1 − z−1
)

1 − z−1 + αTs
(24)

which is derived by substituting

s =
(1 − z−1)

Ts
(25)

into the differentiator

Gl(s) =
αs

s + α
(26)

where z−1 is a one-step delay operator, Ts is the sampling period and the design parameter α
is a positive constant. Hence, for example, we have

ε̇(k) ≈
1

αTs + 1
[ε̇ (k − 1) + α {ε (k)− ε (k − 1)}]

ε̈(k) ≈
1

αTs + 1
[ε̈ (k − 1) + α {ε̇ (k)− ε (k − 1)}]

θ̇(k) ≈
1

αTs + 1

[

θ̇ (k − 1) + α {θ (k)− θ (k − 1)}
]

θ̈(k) ≈
1

αTs + 1

[

θ̈ (k − 1) + α
{

θ̇ (k)− θ (k − 1)
}]

φ̇(k) ≈
1

αTs + 1
[φ̇ (k − 1) + α {φ (k)− φ (k − 1)}]

φ̈(k) ≈
1

αTs + 1
[φ̈ (k − 1) + α {φ̇ (k)− φ (k − 1)}]
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3.2 Experimental studies

The control algorithm described above was applied to the experimental system shown in
Section 2. The nominal values of the physical constants are as follows: Jε=0.86 [kg·m2],
Jθ=0.044 [kg·m2], Jφ=0.82 [kg·m2], La=0.62 [m], Lc=0.44 [m], Ld=0.05 [m], Le=0.02 [m],
Lh=0.177 [m], M f =0.69 [kg], Mb=0.69 [kg], Mc=1.67 [kg], Km=0.5 [N/V], g=9.81

[m/s2], ηε=0.001 [kg·m2/s], ηθ=0.001 [kg·m2/s], ηφ=0.005 [kg·m2/s].
The design parameters are given as follows: The sampling period of the inputs and the out-
puts is set as Ts = 2 [ms]. The inputs uM1 and uM2 of the reference model are given by

uM1 =

{

0.3, 45k − 30 ≤ t < 45k − 7.5
−0.1, 45k − 7.5 ≤ t < 45k + 15

uM2 =





0, 0 ≤ t < 7.5
0.4, 45k − 37.5 ≤ t < 45k − 22.5
−0.4, 45k − 22.5 ≤ t < 45k

(27)

k = 0, 1, 2, · · ·

All the eigenvalues of the matrices K1 and K2 are −1, and the characteristic roots of the error
equations (22) and (23) are specified as (−2.0, −3.0) and (−2.0, −2.2, −2.4, −2.6), respec-
tively. The origin of the elevation angle ε is set as a nearly horizontal level, so the initial angle
is ε = −0.336 when the voltages of two motors are zero, i.e., Vf = Vb = 0.
The outputs of the experimental results are shown in Figs. 3 and 4. The tracking is incomplete
since there are parameter uncertainties in the model dynamics.

Fig. 3. Time evolution of angle ε (—) and reference output εM (· · · ).
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Fig. 4. Time evolution of angle φ (—) and reference output φM (· · · ).

4. Parameter Identification Based on the Differential Equations

4.1 Parameter identification algorithm

It is difficult to obtain the desired control performance by applying the algorithm in the previ-
ous section directly to the experimental system, since there are parameter uncertainties in the
model dynamics. However, it is straightforward to see that the system dynamics (4) are linear
with respect to unknown parameters, even though the equations are nonlinear. It is therefore
possible to introduce a parameter identification scheme in the feedback control loop. In the
present study, the parameter identification scheme is designed in discrete-time form using
measured discrete-time signals. Hence, the estimated parameters are calculated recursively at
every instant kT, where T is the updating period of the parameters and k is a nonnegative in-
teger. Henceforth we omit T for simplicity. Then, the dynamics of the model helicopter given
by equation (4) can be re-expressed as

w1(k) ≡ ε̈(k)

= ζT
1 v1(k) (28)

w2(k) ≡ θ̈(k)

= ζT
2 v2(k) (29)

w3(k) ≡ φ̈(k)

= ζT
3 v3(k) (30)
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where

ζ1 = [p1, p2, p3, p4]
T

ζ2 = [p5, p6, p7, p8]
T

ζ3 = [p9, p10]
T

v1(k) = [v11(k), v12(k), v13(k), v14(k)]
T

v2(k) = [v21(k), v22(k), v23(k), v24(k)]
T

v3(k) = [v31(k), v32(k)]
T

v11(k) = cos ε(k), v12(k) = sin ε(k)

v13(k) = ε̇(k), v14(k) = up1 cos θ(k)

v21(k) = cos θ(k), v22(k) = sin θ(k)

v23(k) = θ̇(k), v24(k) = up2(k)

v31(k) = φ̇(k), v32(k) = up1 sin θ(k)

Defining the estimated parameter vectors corresponding to the vectors ζ1, ζ2, ζ3 as ζ̂1(k),

ζ̂2(k), ζ̂3(k), the estimated values of w1(k), w2(k), w3(k) are obtained as

ŵ1(k) = ζ̂
T
1 (k)v1(k) (31)

ŵ2(k) = ζ̂
T
2 (k)v2(k) (32)

ŵ3(k) = ζ̂
T
3 (k)v3(k) (33)

respectively.
Along with the angular velocities, the angular accelerations w1(k) = ε̈(k), w2(k) = θ̈(k),
w3(k) = φ̈(k) are also obtained by numerical calculation using a discretized differentiator.

The parameters are estimated using a recursive least squares algorithm as follows.

ζ̂i(k) = ζ̂i(k − 1) +
Pi(k − 1)vi(k − 1) [wi(k − 1)− ŵi(k − 1)]

λi + v
T
i (k − 1)Pi(k − 1)vi(k − 1)

(34)

P−1
i (k) = λiP

−1
i (k − 1) + vi(k − 1)vT

i (k − 1)

P−1
i (0) > 0 , 0 < λi ≤ 1, i = 1, 2, 3

Then, the tracking of the two outputs is achieved under the persistent excitation of the signals
vi, i = 1, 2, 3.

4.2 Experimental studies

The estimation and control algorithm described above was applied to the experimental system
shown in Section 2.
The design parameters are given as follows: The sampling period of the inputs and the out-
puts is set as Ts = 2 [ms] and the updating period of the parameters, T, takes the same value,
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T = 2 [ms]. Further, the filter parameter, α, for the estimation of velocities and accelerations is
α = 100. The variation ranges of the identified parameters are restricted as

−1.8 ≤ p̂1 ≤ −0.8, −2.2 ≤ p̂2 ≤ −1.2

−0.3 ≤ p̂3 ≤ 0.0, 0.1 ≤ p̂4 ≤ 0.6

−0.5 ≤ p̂5 ≤ 0.5, −7.0 ≤ p̂6 ≤ −5.2 (35)

−0.6 ≤ p̂7 ≤ 0.0, 1.5 ≤ p̂8 ≤ 2.2

−0.5 ≤ p̂9 ≤ 0.0, −0.5 ≤ p̂10 ≤ −0.1

The design parameters of the identification algorithm are fixed at the values λ1 = 0.999, λ2 =
0.9999, λ3 = 0.999 and P1

−1(0) = P2
−1(0) = 104 I4, P3

−1(0) = 104 I2. The other design
parameters are the same as those of the previous section. The values of the design parameters
above are chosen by mainly trial and error. The selection of the sampling period is most
important. The achievable minimum sampling period is 2 [ms] due to the calculation ability
of the computer. The longer it is, the worse the tracking control performance is.
The outputs of the experimental results are shown in Figs. 5 and 6. The tracking is incomplete
because the neither of the output errors of ε or φ converge. Figures 7, 8 and 9 display the
estimated parameters. All of the estimated parameters move to the limiting values of the
variation range.

Fig. 5. Time evolution of angle ε (—) and reference output εM (· · · ).
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Fig. 6. Time evolution of angle φ (—) and reference output φM (· · · ).

Fig. 7. Time evolution of the estimated parameters p̂1 and p̂2. The dotted lines represent the limited

values of variation.

www.intechopen.com



Mechatronic Systems, Simulation, Modelling and Control160

www.intechopen.com



Nonlinear Adaptive Model Following Control for a 3-DOF Model Helicopter 161

Fig. 8. Time evolution of the estimated parameters from p̂3 to p̂10. The dotted lines represent the limited

values of variation.

5. Parameter Identification Based on the Integral Form of the Model Equations

5.1 The model equations without model uncertainties and external disturbances

5.1.1 Parameter identification algorithm

The main reason why the experimental results exhibit the poor tracking performance de-
scribed in the previous subsection 4.2 lies in the fact that the parameter identification is unsat-
isfactory due to the inaccuracy of the estimation of the velocity and the acceleration signals.
To overcome this problem, a parameter estimation scheme is designed for modified dynamics
equations obtained by applying integral operators to the differential equations expressing the
system dynamics (28)-(30) in this subsection. Neither velocities nor accelerations appear in
these modified equations. Define z1(k) by the following double integral

z1 (k) ≡
∫ kT

kT−nT

∫

τ

τ−nT
ε̈(σ)dσdτ (36)

Then, the direct calculation of the right-hand side of equation (36) leads to

∫ kT

kT−nT

∫

τ

τ−nT
ε̈(σ)dσdτ =

∫ kT

kT−nT
(ε̇(τ)− ε̇(τ − nT)) dτ

= ε (kT)− 2ε (kT − nT) + ε (kT − 2nT) (37)

Next, discretizing the double integral of the right-hand side of equation (28) yields

p1

∫ kT

kT−nT

∫

τ

τ−nT
cos ε(σ)dσdτ + · · ·+ p3

∫ kT

kT−nT
{ε(τ)− ε(τ − nT)} dτ + · · ·

≈ p1T2
k

∑
l=k−(n−1)

l

∑
i=l−(n−1)

cos ε(i) + · · ·+ p3T
k

∑
l=k−(n−1)

{ε(l)− ε(l − (n − 1))}+ · · ·(38)

As a result, the integral form of the dynamics is obtained as

zi(k) = ζT
i v̄i(k), i = 1, 2, 3 (39)
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where

z1 (k) ≡ ε (k)− 2ε (k − n)+ ε (k − 2n) (40)

z2 (k) ≡ θ (k)− 2θ (k − n) + θ (k − 2n) (41)

z3 (k) ≡ φ (k)− 2φ (k − n) + φ (k − 2n) (42)

v̄1(k) = [v̄11(k), v̄12(k), v̄13(k), v̄14(k)]
T

v̄2(k) = [v̄21(k), v̄22(k), v̄23(k), v̄24(k)]
T

v̄3(k) = [v̄31(k), v̄32(k)]
T

v̄ij(k) = T
k

∑
l=k−(n−1)

ṽij (l), for (i, j) = {(1, 3), (2, 3), (3, 1)}

v̄ij(k) = T2
k

∑
l=k−(n−1),

l

∑
m=l−(n−1)

vij (m), for other (i, j)

ṽ13(l) ≡ ε (l)− ε (l − (n − 1))

ṽ23(l) ≡ θ (l)− θ (l − (n − 1))

ṽ31(l) ≡ φ (l)− φ (l − (n − 1))

Hence, the estimate model for (39) is given by

ẑi(k) = ζ̂
T
i (k)v̄i(k), i = 1, 2, 3 (43)

and the system parameters ζ̂i(k) can be identified from expression (43) without use of the
velocities or accelerations of ε, θ and φ.
Finally, the following recursive least squares algorithm is applied to the estimate model (43).

ζ̂i(k) = ζ̂i(k − 1) +
Pi(k − 1)v̄i(k − 1) [zi(k − 1)− ẑi(k − 1)]

λ̄i + v̄
T
i (k − 1)Pi(k − 1)v̄i(k − 1)

(44)

P−1
i (k) = λ̄iP

−1
i (k − 1) + v̄i(k − 1)v̄T

i (k − 1)

P−1
i (0) > 0 , 0 < λ̄i ≤ 1, i = 1, 2, 3

Note here that the estimated velocity and acceleration signals are still used in the control input
(19).

5.1.2 Experimental studies

The design parameters for the integral form of the identification algorithm are given by n =
100, λ̄1 = λ̄2 = λ̄3 = 0.9999 and P1

−1(0) = P2
−1(0) = 103 I4, P3

−1(0) = 103 I2. The reference
inputs uM1 and uM2 are given by

uM1 =

{
0.3, 45k − 30 ≤ t < 45k − 7.5
−0.1, 45k − 7.5 ≤ t < 45k + 15

uM2 =





0, 0 ≤ t < 7.5
−0.8, 45k − 37.5 ≤ t < 45k − 22.5
0.8, 45k − 22.5 ≤ t < 45k

(45)

k = 0, 1, 2, · · ·
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The other parameters are the same as those of the previous section.
The outputs are shown in Figs. 9 and 10. The tracking performance of both the outputs ε and
φ is improved in comparison with the previous section. However, there remains a tracking
error. The estimated parameters are plotted in Figs. 11 and 12. All of the parameters change
slowly, and the variation of the estimated parameters in Figs. 11 and 12 is smaller than that of
the corresponding value shown in Figs. 7 and 8.

Fig. 9. Time evolution of angle ε (—) and reference output εM (· · · ).

Fig. 10. Time evolution of angle φ (—) and reference output φM (· · · ).
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M

Fig. 11. Time evolution of the estimated parameters p̂1 and p̂2. The dotted lines represent the limited

values of variation.
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Fig. 12. Time evolution of the estimated parameters from p̂3 to p̂10. The dotted lines represent the limited

values of variation.

5.2 The model equations with model uncertainties and external disturbances

5.2.1 Parameter identification algorithm

Although the use of the integral form of the dynamics has improved the tracking performance
of both the outputs ε and θ, tracking errors still remain. On the basis that these errors are
caused by model uncertainties and external disturbances, for example, motor dynamics or
friction (other than viscous friction), we add the additional terms fε, fθ and fφ into equation
(4) to represent model uncertainties and external disturbances. Generally, the additional terms
should be given as, for instance,

fε(t) = ∑ ci fi(t) (46)

where ci is a constant and fi is a known function of time. For simplicity, however, here we
assume these additional terms are constant because tracking errors in the experimental results
approximately remain constant in Fig. 10. Then, the system dynamics are expressed as

w1(k) ≡ ε̈(k) = ξT
1 q1(k)

w2(k) ≡ θ̈(k) = ξT
2 q2(k) (47)

w3(k) ≡ φ̈(k) = ξT
3 q3(k) (48)

www.intechopen.com



Mechatronic Systems, Simulation, Modelling and Control166

where

ξ1 =
[
ζT

1 , p11

]T

ξ2 =
[
ζT

2 , p12

]T

ξ3 =
[
ζT

3 , p13

]T

q1(k) =
[
v

T
1 (k), 1

]T

q2(k) =
[
v

T
2 (k), 1

]T

q3(k) =
[
v

T
3 (k), 1

]T

p11 = fε/Jε

p12 = fθ/Jθ

p13 = fφ/Jφ

It is worth noting that all the parameters pi (i = 1, . . . , 13) of the equations are constant. Then,
the integral form of the dynamics is obtained as well as the previous subsection as

zi(k) = ξT
i q̄i(k), i = 1, 2, 3 (49)

where

q̄1(k) =
[
v̄

T
1 (k), q̄15(k)

]T

q̄2(k) =
[
v̄

T
2 (k), q̄25(k)

]T

q̄3(k) =
[
v̄

T
3 (k), q̄33(k)

]T

q̄15(k) = T2
k

∑
l=k−(n−1)

l

∑
i=l−(n−1)

1

= T2(n − 1)2

q̄25(k) = T2(n − 1)2

q̄33(k) = T2(n − 1)2

Hence, defining the estimated parameter vectors corresponding to the vectors ξ1, ξ2, ξ3 as

ξ̂1(k), ξ̂2(k), ξ̂3(k), the estimate model for expression (49) is given by

ẑi(k) = ξ̂
T
i (k)q̄i(k), i = 1, 2, 3 (50)

and the system parameters ξ̂i(k) can be identified by the following recursive least squares
algorithm.

ξ̂i(k) = ξ̂i(k − 1) +
Pi(k − 1)q̄i(k − 1) [zi(k − 1)− ẑi(k − 1)]

λ̄i + q̄T
i (k − 1)Pi(k − 1)q̄i(k − 1)

(51)

P−1
i (k) = λ̄iP

−1
i (k − 1) + q̄i(k − 1)q̄T

i (k − 1)

P−1
i (0) > 0 , 0 < λ̄i ≤ 1, i = 1, 2, 3
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5.2.2 Experimental studies

The weighting factor of the least squares algorithm is given by

λ̃ = 0.9995 + 0.0005 exp

(

−5
√

e2
1 + e2

2

)

The updating period of the parameters, T, is T = 10 [ms], while other design parameters
are the same as those of the previous section. The value of T stated above led to the best
experimental result unlike the previous experimental studies.
The outputs are depicted in Figs. 13 and 14, while the estimated parameters are shown in
Figs. 15, 16 and 17. The tracking performance of both of the outputs ε and φ has been further
improved by the inclusion of the uncertainties.

Fig. 13. Time evolution of angle ε (—) and reference output εM (· · · ).
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Fig. 14. Time evolution of angle φ (—) and reference output φM (· · · ).

Fig. 15. Time evolution of the estimated parameters from p̂1 to p̂4. The dotted lines represent the limited

values of variation.
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Fig. 16. Time evolution of the estimated parameters from p̂5 to p̂12. The dotted lines represent the limited

values of variation.

Q
Fig. 17. Time evolution of the estimated parameter p̂13. The dotted lines represent the limited values of

variation.

6. Conclusions

This paper considers the nonlinear adaptive model following control of a 3-DOF model heli-
copter. The system model here is not decouplable by static state feedback, and the nonlinear
structure algorithm is applied. When a simple model following controller is designed, it is
not easy to obtain a good control performance mainly due to the parameter uncertainties.
Then, two parameter identification schemes are discussed: The first scheme is based on the
differential equation model. This scheme is unable to obtain a good tracking control perfor-
mance because of the inaccuracy of the estimated velocity and acceleration signals. The sec-
ond scheme is designed for a dynamics model derived by applying integral operators to the
differential equations expressing the system dynamics. Hence, this identification algorithm
requires neither velocity nor acceleration signals. The experimental results show that the sec-
ond method yields a better tracking result, although tracking errors still remain. Finally, we
introduce additional terms into the equations of motion to express model uncertainties and
external disturbances. With reference to experimental results, this modification is shown to
further improve the tracking control performance.
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