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1. Introduction 
 

Scatterometers are non-imaging active sensors used to measure the intensity of microwave 
backscatter while scanning the surface of the earth from an aircraft or a satellite. Active 
microwave sensors are radars providing their own illumination and do not depend upon 
ambient radiation like passive microwave sensors. They transmit microwave 
electromagnetic pulses toward the surface and measure how much of that signals return 
after interacting with the target. Scatterometer is a form of radar that is used to investigate 
different geophysical properties of the surface and few centimeters beneath. Spaceborne 
scatterometers have the advantage of providing global coverage on a continuous basis, 
which cannot be achieved through airborne or ground measurements. They have the 
capability of providing day and night time measurements unaffected by cloud cover. 
Scatterometers were originally designed to study ocean winds but have been also used to 
study of cryosphere, vegetation, and soil surface properties. 
A number of scatterometers have been flown on space missions since the early 1970s. The 
first scatterometer in space was a Ku-band instrument on Skylab mission. Investigations on 
the potential use of scatterometers in geosciences achieved a major technical milestone with 
the launch of Seasat, carrying a Ku-band scatterometer (SASS), in 1978. Other missions have 
followed SASS; C-band scatterometers onboard the European Space Agency’s (ESA) Earth 
Remote Sensing (ERS 1 & ERS-2) satellites in 1991 and 1995, the NASA’s Ku-band 
scatterometer (NSCAT) in 1996, SeaWinds on QuikSCAT in 1999, SeaWinds on ADEOS-II in 
2002, and Advanced Scatterometer (ASCAT) onboard Metop-A launched in 2006. 
In this study we focus on spaceborne C-band scatterometers and present an overview of 
their applications in geoscience.  

 
2. C-band Scatterometers 
 

2.1 SCAT onboard ERS satellites 
The first spaceborne C-band scatterometer was flown on ERS-1, the European Earth 
observation mission. ERS-1, launched in July 1991, was aimed to provide environmental 
monitoring particularly in the microwave spectrum. ERS-1 has been placed in a near-polar 
orbit at a mean altitude of about 780km with an instrument payload comprising active and 
passive microwave sensors and a thermal infra-red radiometer. ERS-2 the follow-up ESA 
mission of ERS-1 was launched in 1995. The ERS-2 satellite is a copy of ERS-1 except that it 
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includes a number of enhancements and new payload instruments. Both scatterometers 
onboard ERS-1 and ERS-2 are part of an Active Microwave Instrument (AMI) operating in 
C-band (5.3 GHz). The AMI incorporates two separate radar systems; Synthetic Aperture 
Radar (SAR) and scatterometer (SCAT) operating in three different modes. SAR for Image 
and Wave mode operations, and scatterometer for Wind mode operation. The Wind and 
Wave modes are capable of interleaved operation, i.e. so-called Wind/Wave mode, but the 
operation in Image mode excludes the operation of the other two modes (Attema, 1991). 

 
2.2 ASCAT onboard Metop satellites 
The Advanced Scatterometer (ASCAT) is the new generation and successor of the ERS 
SCATs onboard the Meteorological Operational (Metop) series of satellites. Metop-A, 
launched on 19 October 2006, is the first satellite in the series foreseen in EUMETSAT Polar 
System (EPS) program (Klaes et al., 2007). Like SCAT, ASCAT system uses a fan-beam 
antenna technology and transmits vertically polarized pulses at frequency of 5.255 GHz 
with high radiometric stability. Contrary to SCAT it uses two sets of three antennas instead 

 

2
0

0
 K

m

g
ro

u
n

d
 t

ra
ck

59°

47°18°

25°

59°

25°

500 Km

450 Km

25 km

g
ro

u
n

d
 t

ra
ck

left side swath right side swath

65.3° 65.3°

54.6°
54.6°25.0°

33.7°33.7°

33.7°

25.0°

65.3° 65.3°

33.7°

550 Km

500 Km

fi
rs

t 
n

o
d

e la
st

 n
o

d
e

25 km

side swath

fi
rs

t 
n

o
d

e la
st

 n
o

d
e

3
3

6
 K

m

fo
re

 b
eam

fo
re

 b
eam

aft beam

aft beam

aft 
beam

fore beam

mid beam mid beammid beam

SCAT ASCAT

ERS METOP

 
 

Fig. 1. Viewing geometries of the scatterometers onboard ERS and Metop satellites. 

 

of one. For ASCAT the incidence angle range has been extended from 25° to 65°. Hence 
ASCAT covers two 550 km swaths to the left and right of the satellite ground track which 
are separated from the satellite ground track by about 336 km. This results in over twice 
faster global-coverage capability than its predecessor SCAT. Beside an optimized viewing 
geometry, ASCAT also features a number of technical improvements. The improved 
instrument design and radiometric performance results in higher stability and reliability of 
ASCAT measurements. Additionally EUMETSAT foresees to generate a research product at 
a resolution of 25km (Figa-Saldana et al., 2002). Figure 1 illustrates the viewing geometries 
of SCAT and ASCAT. Specifications of the C-band scatterometers and their carrier satellites 
are given in table-1. 

 
3. Wind Speed and Direction Measurement  
 

The primary application of the spaceborne scatterometry has been the measurement of near-
surface winds over the ocean. The concept of retrieving wind speed at sea surface from the 
radar backscatter goes back to the Second World War. During the World War II, marine 
radar operators observed disturbing noises, called “clutter”, on their radar screens, which 
made them difficult detecting targets on the ocean surface (Moore et al., 1979). The clutters 
were the backscatter of the radar pulses from the small waves on the sea surface. Since that 
time many theoretical studies and experiments have been carried out to find the relationship 
between the microwave backscatter and the surface wind speed (Liu, 2002). The idea of 
remote sensing of the wind relies on the fact that winds over the sea cause small-scale 
disturbances of the sea surface which modify the radar backscattering characteristics. The 
backscatter from oceans is largely due to these small centimeter ripples, capillary waves, 
which is in equilibrium with the local wind stress. The backscatter depends not only on the 
magnitude of the wind stress but also the wind direction relative to the direction of the 

Satellite Specifications ERS-1 ERS-2 Metop-A 
        Launch Time 17 July 1991 21 April 1995 19 October 2006 
        Launch Mass 2354 kg 2516 kg 4093 kg 
        launcher Ariane 4 Soyuz/ST 
        Spacecraft Altitude 770 to 785 km 800 to 850 km 
        Inclination 98.52° 98.7° 
        Local Solar Time 10:30 am* 9:30 am* 
        Orbit Period 100 minutes 101 minutes 
        Orbit Near-circular, polar, Sun-synchronous 
   
Scatterometer Specifications SCAT ASCAT 
        Frequency 5.3 GHz. (C-Band) 5.255 GHz. (C-Band) 
        Polarization VV VV 
        Swath Width 500 km 550 km (double swath) 
        Swath Stand-off 200 km to the right of sub-satellite track 336 km 
        Localization Accuracy 5 km 4.4 km 
        Spatial Resolution 50 km 50 km, 25 km  
        Sampling Interval  25 km 25 km, 12.5 km 
 
* equatorial crossing time at the descending node 

Table 1. Specifications of the European C-band scatterometers 
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includes a number of enhancements and new payload instruments. Both scatterometers 
onboard ERS-1 and ERS-2 are part of an Active Microwave Instrument (AMI) operating in 
C-band (5.3 GHz). The AMI incorporates two separate radar systems; Synthetic Aperture 
Radar (SAR) and scatterometer (SCAT) operating in three different modes. SAR for Image 
and Wave mode operations, and scatterometer for Wind mode operation. The Wind and 
Wave modes are capable of interleaved operation, i.e. so-called Wind/Wave mode, but the 
operation in Image mode excludes the operation of the other two modes (Attema, 1991). 

 
2.2 ASCAT onboard Metop satellites 
The Advanced Scatterometer (ASCAT) is the new generation and successor of the ERS 
SCATs onboard the Meteorological Operational (Metop) series of satellites. Metop-A, 
launched on 19 October 2006, is the first satellite in the series foreseen in EUMETSAT Polar 
System (EPS) program (Klaes et al., 2007). Like SCAT, ASCAT system uses a fan-beam 
antenna technology and transmits vertically polarized pulses at frequency of 5.255 GHz 
with high radiometric stability. Contrary to SCAT it uses two sets of three antennas instead 
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        Launch Mass 2354 kg 2516 kg 4093 kg 
        launcher Ariane 4 Soyuz/ST 
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        Inclination 98.52° 98.7° 
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        Orbit Period 100 minutes 101 minutes 
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Scatterometer Specifications SCAT ASCAT 
        Frequency 5.3 GHz. (C-Band) 5.255 GHz. (C-Band) 
        Polarization VV VV 
        Swath Width 500 km 550 km (double swath) 
        Swath Stand-off 200 km to the right of sub-satellite track 336 km 
        Localization Accuracy 5 km 4.4 km 
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* equatorial crossing time at the descending node 
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radar beam. By combining backscatter measurements from different azimuth angles, the 
near-surface wind vector over the ocean's surface can be determined using a Geophysical 
Model Function (GMF). The first operational GMF used for ERS-1 scatterometer data by 
ESA was a prelaunch transfer function denoted CMOD2, derived from aircraft-mounted 
instrument data (Long, 1985). An improved transfer function, CMOD4 was presented by 
Stoffelen et al. (1997) with full specification. CMOD4 adopted by ESA since March 1993 for 
wind retrieval. The latest C-band GMF used for wind retrieval is CMOD5, which is derived 
on the basis of measurements from the ERS-2 scatterometer. The CMOD5 algorithm corrects 
some shortcomings in the earlier models and result in a better wind retrieval at high wind 
speed and more uniform performance across the scatterometer swath (Hersbach et al., 2007). 
The estimated accuracy of the ASCAT 50-km wind product is 2 m/s RMS difference in wind 
vector components and 0.5 m/s bias in wind speed (ASCAT product guide). The wind 
observations at sea surface are essential to describe the atmospheric flow and therefore have 
many meteorological and oceanographic applications. Wind information is useful for 
weather forecasting, prediction of extreme events, and climate studies. Figure 2 indicates 
two examples of the ASCAT 25- and 12.5-km wind products (Verhoef et al., 2009). 
Processing of the wind product is done in near-real time at EUMETSAT’s processing facility. 
From the sensing time, it takes approximately 2 hours to get the corresponding wind 
product ready at KNMI. The wind data are disseminated through the EUMETCast system 
(EUMETCast). 
 

ASCAT Winds 25km ASCAT Winds 12.5km

13 December 2008, 22:20 UTC

 
Fig. 2. ASCAT wind product over Atlantic Ocean (55°N-65°N, ~15° West, South of Iceland). 
Background image shows the infrared cloud image of the METEOSAT9 geostationary 
satellite. Images are adopted from (Verhoef et al., 2009). 
 

 

4. Monitoring Seasonal Dynamics of Vegetation 

The intensity of the backscattered signal over land is affected by roughness, vegetation 
structure, vegetation water content, and soil moisture. These factors influence the 
backscattering coefficient 0  on different time scales. At the resolution of the ERS and 
Metop scatterometers, surface roughness can be in general considered as a temporally 
invariant parameter. Surface soil moisture changes rapidly within hours to days, contrary to 
the vegetation canopy and vegetation water content, which vary within several days to 
weeks. Scattering from the vegetated surface is a complex phenomenon and difficult to 
model as the volume scattering contributes in total backscattering. Preliminary studies 
indicated the potential of the C-band scatterometer data for monitoring the seasonal 
variation of vegetation using multi-temporal analysis (Wismann et al., 1994; Mougin et al., 
1995; Frison et al., 1996a; Frison et al., 1996b). Many studies used semi-empirical models to 
model vegetation effect on backscatter (Magagi et al., 1997; Woodhouse et al., 2000; Jarlan et 
al., 2003). There have been several canopy scattering models developed to describe  0  in 
terms of vegetation and soil surface parameters based on a solution of the radiative transfer 
equation (Attema et al., 1978; Ulaby et al., 1990; Karam et al., 1992; Saatchi et al., 1994). 
Radiative transfer theory describes the propagation of radiation through a medium affected 
by absorption, emission and scattering processes (Fung, 1994). But the problem with all 
complex theoretical scattering models is that their input data requirements are very 
challenging and for solving the equations many parameters are needed such as leaf 
diameter, branch length, trunk moisture, and probability functions representing the 
orientational distribution of leaves, branches, and trunks.  
The incidence angle of scatterometer observations varies from acquisition to acquisition. 
Since the intensity of backscatter signal strongly depends on the incidence angle, in the most 
of the multi-temporal vegetation studies using scatterometer data, 0  measurements are 
averaged over longer periods (e.g. one month) to make 0  measurements comparable. But 
the averaging procedure does not allow us to distinguish the impact of the soil moisture and 
vegetation cover on backscatter. Wagner et al. (1999a) used a simple model fitted to 
scatterometer observations to model the incidence angle dependency of backscatter: 
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where the index m stands for the mid-beam and the indices a and  f for the aft and fore beam 
measurements. 
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The backscattered energy received by the scatterometer sensor increases with decreasing 
incidence angle. The rate of backscatter change due to incidence angle variation depends on 
the surface roughness. Bare soil roughness is basically constant in time but vegetation can 
have a seasonal influence on the incidence angle dependency behavior of backscatter. With 
increasing vegetation density, the shape of incidence angle dependency of backscatter 
changes depending on the type and density of vegetation as well as the orientation of 
vegetation elements. Having multi-year scatterometer data, the seasonal variation of slope 
can be extracted for a reference incidence angle (e.g. 40°). Slope function at 40°, )40(   
correlates pretty well with the seasonal vegetation change (Naeimi et al., 2009a). Figure 3-
top shows slope values globally calculated for the mid of July. Figure 3-bottom illustrates 
three examples of )40(   from different regions compared with the Normalized Vegetation 
index (NDVI). The vegetation index data have been derived from a 16-day Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI product (Huete et al., 2002). NDVI  
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Fig. 3. Above: Global slope values in July. Bottom: Comparison of slope function with 
NDVI in three different areas.  
 

 

values are averaged over three years (2000–2002) to estimate the yearly vegetation variation. 
Depending on land cover type there is a time lag between NDVI and )40(   in most 
regions (Doubkova et al., 2009). This implies the fact that the    derived from C-band 
backscatter observations corresponds to vegetation structure development whereas NDVI 
represents only greenness of vegetation canopy.  

 
5. Soil Moisture Change Detection 
 

As it mentioned in section 4, 0  is affected over land by surface roughness, vegetation, and 
soil moisture. The major challenge of extracting soil moisture from scatterometer data is the 
presence of the other additional factors influencing the signal. Most studies have introduced 
physical inversion methods describing scattering process to model roughness and 
vegetation contributions on backscatter signal (Frison et al., 1997; Pulliainen et al., 1998; 
Woodhouse et al., 2000; Magagi et al., 2001; Jarlan et al., 2002; Zine et al., 2005). Although 
theoretical models are useful for understanding and interpreting scattering behavior of 
natural surfaces, the major problems of these retrieval concepts appear to be their 
complexity and physical validity at large scales. A promising solution to the problems of 
physically based inversion models is using change detection method rather than using a 
complex model to describe the full range of parameters influencing the scattering process. 
Availability of several years of backscatter data, multi-viewing capability, and high 
temporal sampling rate of scatterometers make them appropriate instruments for change 
detection methods. The potential of using change detection techniques for active sensors has 
been demonstrated in several studies (Wagner, 1998, Moeremans et al., 1998, Quesney et al., 
2000; Moran et al., 2000; Le Hegarat-Mascle et al., 2002; De Ridder,  2000). 

 
5.1 TUWien change detection method 
Wagner et al., (1999b) presented a change detection method for soil moisture retrieval from 
ERS scatterometers. A processing algorithm for soil moisture retrieval based on change 
detection technique has been developed at the Institute of Photogrammetry and Remote 
Sensing (IPF) of the Vienna University of Technology (TUWien) which will further be 
referred to as the TUWien method. In the TUWien method soil moisture dynamics are 
extracted after modeling the behavior of 0  with respect to the surface roughness and the 
local variability of vegetation and eventually subtracting them from the backscatter signal. 
In the retrieval algorithm, multi-looking direction ability of scatterometer is used to describe 
the incidence angle behavior of the backscatter signal as a seasonal function, )(  . The 
incidence angle dependency of backscatter can be described by the derivatives of 0  at a 
reference incidence angle (set to 40°) according to the Taylor series expansion: 
 

)40)(40()40()(    (3) 
 

)40(   and )40(  , called slope and curvature at 40°, are calculated by fitting a regression 
line to the obtained local slope values in equation-2 during a certain period of the year. After 
determination of slope and curvature for each day of year and using the following second-
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vegetation elements. Having multi-year scatterometer data, the seasonal variation of slope 
can be extracted for a reference incidence angle (e.g. 40°). Slope function at 40°, )40(   
correlates pretty well with the seasonal vegetation change (Naeimi et al., 2009a). Figure 3-
top shows slope values globally calculated for the mid of July. Figure 3-bottom illustrates 
three examples of )40(   from different regions compared with the Normalized Vegetation 
index (NDVI). The vegetation index data have been derived from a 16-day Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI product (Huete et al., 2002). NDVI  
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5.1 TUWien change detection method 
Wagner et al., (1999b) presented a change detection method for soil moisture retrieval from 
ERS scatterometers. A processing algorithm for soil moisture retrieval based on change 
detection technique has been developed at the Institute of Photogrammetry and Remote 
Sensing (IPF) of the Vienna University of Technology (TUWien) which will further be 
referred to as the TUWien method. In the TUWien method soil moisture dynamics are 
extracted after modeling the behavior of 0  with respect to the surface roughness and the 
local variability of vegetation and eventually subtracting them from the backscatter signal. 
In the retrieval algorithm, multi-looking direction ability of scatterometer is used to describe 
the incidence angle behavior of the backscatter signal as a seasonal function, )(  . The 
incidence angle dependency of backscatter can be described by the derivatives of 0  at a 
reference incidence angle (set to 40°) according to the Taylor series expansion: 
 

)40)(40()40()(    (3) 
 

)40(   and )40(  , called slope and curvature at 40°, are calculated by fitting a regression 
line to the obtained local slope values in equation-2 during a certain period of the year. After 
determination of slope and curvature for each day of year and using the following second-
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order polynomial equation based on Taylor series, )(0   measurements are extrapolated to 
40° incidence angle: 
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s  corresponds to the normalized volumetric water content at topmost 2 cm soil surface 

ranging between 0% and 100% with presumption of linear relationship between )40(0  
and the surface soil moisture (Ulaby et al., 1982). In addition the TUWien retrieval algorithm 
includes processing modules for vegetation correction, wet reference correction and soil 
moisture uncertainty analysis (Naeimi et al., 2009a). An operational processing system 
based on the TUWien retrieval algorithm is implemented at EUMETSAT to provide near-
real time ASCAT soil moisture data (Hasenauer et al., 2006). The data have been made 
available through the EUMETCast system (EUMETCast). Figure 4 shows SCAT/ASCAT soil 
moisture time series compared with precipitation data at a grid point located in Lower 
Austria. An example of global distribution of the mean soil moisture values retrieved from 
long-term SCAT time series is shown in Figure 5. The spatial variability of the estimated 
mean of soil moisture is connected to atmospheric-forcing related soil moisture signal. Soil 
moisture retrieval from scatterometer data has also limitations when the soil is frozen or 
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Fig. 4. Soil moisture time series retrieved from SCAT and ASCAT data compared with 
precipitation data in lower Austria. 

 

covered with snow. As soon as the soil freezes the dielectric constant of the soil drops 
drastically and results in low backscatter. Therefore the backscattering behaviors of dry and 
frozen soil are similar. The scattering behavior of snow is more complex and depends on the 
dielectric properties of the ice particles and on their distribution and density. Furthermore, 
land cover has also impacts on the quality of soil moisture retrieval from scatterometer data. 
There is a strong response of the azimuthal noise level of backscatter to different land cover 
types like rainforests, lakes, rivers, floodplains, coastal areas, urban areas, and sand deserts 
as well as areas with complex topography (Naeimi et al., 2008). An uncertainty analysis 
module using Monte Carlo error propagation (Naeimi, 2009b) is implemented within the 
TUWien algorithm which identifies such problematic areas for soil moisture retrieval from 
scatterometer data. 
 

 

 
 

Fig. 5. Mean of surface soil moisture retrieved from long-term SCAT time series. 

 
5.2 Surface soil moisture anomalies 
Anomalies of soil moisture, precipitation, temperature, and vegetation indices are 
parameters that are used as indicator of extreme weather conditions. Scatterometer soil 
moisture anomalies can be calculated by comparing the current values with mean and 
standard deviation values in the same time of year over the long-term ERS/Metop 
scatterometer time series. Figure 6 illustrates monthly anomalies of ASCAT soil moisture 
compared with the NDVI anomaly images derived from MODIS data (NASA-EO). The 
extremely dry conditions are visible in parts of Europe during July 2007 (Figure 6-a). As 
reported by the authorities the 2007 drought in Moldova was the most severe in living 
memory. The World Food Program compared its severity to the drought of 1946 during 
which many Moldovans starved. The Cereal production at that year was down by 63% 
compared to the year before, and was about 70% lower than the average of the five years 
before (FAO news). Figure 6-b shows another example of extreme condition, which is 
evident in ASCAT soil moisture anomalies. The anomalous wet soil in March 2008 in parts 
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covered with snow. As soon as the soil freezes the dielectric constant of the soil drops 
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frozen soil are similar. The scattering behavior of snow is more complex and depends on the 
dielectric properties of the ice particles and on their distribution and density. Furthermore, 
land cover has also impacts on the quality of soil moisture retrieval from scatterometer data. 
There is a strong response of the azimuthal noise level of backscatter to different land cover 
types like rainforests, lakes, rivers, floodplains, coastal areas, urban areas, and sand deserts 
as well as areas with complex topography (Naeimi et al., 2008). An uncertainty analysis 
module using Monte Carlo error propagation (Naeimi, 2009b) is implemented within the 
TUWien algorithm which identifies such problematic areas for soil moisture retrieval from 
scatterometer data. 
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Fig. 5. Mean of surface soil moisture retrieved from long-term SCAT time series. 

 
5.2 Surface soil moisture anomalies 
Anomalies of soil moisture, precipitation, temperature, and vegetation indices are 
parameters that are used as indicator of extreme weather conditions. Scatterometer soil 
moisture anomalies can be calculated by comparing the current values with mean and 
standard deviation values in the same time of year over the long-term ERS/Metop 
scatterometer time series. Figure 6 illustrates monthly anomalies of ASCAT soil moisture 
compared with the NDVI anomaly images derived from MODIS data (NASA-EO). The 
extremely dry conditions are visible in parts of Europe during July 2007 (Figure 6-a). As 
reported by the authorities the 2007 drought in Moldova was the most severe in living 
memory. The World Food Program compared its severity to the drought of 1946 during 
which many Moldovans starved. The Cereal production at that year was down by 63% 
compared to the year before, and was about 70% lower than the average of the five years 
before (FAO news). Figure 6-b shows another example of extreme condition, which is 
evident in ASCAT soil moisture anomalies. The anomalous wet soil in March 2008 in parts 

www.intechopen.com



Geoscience and Remote Sensing, New Achievements238

 

of India provided a suitable condition for vegetation growth. By early April 2008, plants 
throughout the country were responding to the plentiful water supply that led to record of 
harvest yield in April (NASA-EO). 

 
5.3 Soil Water index (SWI) 
The C-band scatterometer derived soil moisture represent only top few centimeter of soil. 
Nevertheless, thanks to the high temporal sampling of scatterometers (about 80% global 
daily coverage for ASCAT), soil moisture in plant root zone can be estimated by using an 
infiltration model. Wagner et al. (1999b) proposed a simple two-layer water balance model 
to estimate profile soil moisture. The remotely sensed topsoil represents the first layer and 
the second layer extends downwards from the bottom of the surface layer. In this model, the 
water content of the reservoir layer is described in terms of a Soil Water Index (SWI), which 
is controlled only by the past soil moisture conditions in the surface layer in a way that the 
influence of measurements decreases by increasing the time: 
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Fig. 6. Examples of the ASCAT soil moisture anomalies showing extreme dry (top) and 
wet conditions (bottom) compared with NDVI anomalies extracted from MODIS data. 
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)( is t  is the surface soil moisture measured at time it  and T  is the characteristic time 

length connected to the depth of reservoir which describes the linkage between the surface 
layer and the reservoir by: 
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where L  is the depth of the reservoir layer and C  is a pseudo-diffusivity coefficient that 
depends on soil properties. s  and r  are the volumetric moisture content of the surface 
and reservoir respectively.  
Daily images of SWI calculated at five different T  values (10, 20, 40, 60, 100) retrieved from 
ASCAT-25km observations using a near-real time recursive processor will be available 
through the geoland project (geoland-II). Figure 7 indicates the global ASCAT-50km SWI 
image calculated for T=10 as an example. 

 
6. Monitoring Cryosphere 
 

The cryosphere consists of the parts of the Earth’s surface where water exists in solid form, 
including snow cover, frozen ground, glacier, see ice, ice sheets and any other form of ice on 
land or in ocean. The cryosphere plays an important role in the global climate system and 

 

 
Fig. 7. ASCAT-50km Soil Water Index (SWI) at T=10. 
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of India provided a suitable condition for vegetation growth. By early April 2008, plants 
throughout the country were responding to the plentiful water supply that led to record of 
harvest yield in April (NASA-EO). 
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water content of the reservoir layer is described in terms of a Soil Water Index (SWI), which 
is controlled only by the past soil moisture conditions in the surface layer in a way that the 
influence of measurements decreases by increasing the time: 
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depends on soil properties. s  and r  are the volumetric moisture content of the surface 
and reservoir respectively.  
Daily images of SWI calculated at five different T  values (10, 20, 40, 60, 100) retrieved from 
ASCAT-25km observations using a near-real time recursive processor will be available 
through the geoland project (geoland-II). Figure 7 indicates the global ASCAT-50km SWI 
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Fig. 7. ASCAT-50km Soil Water Index (SWI) at T=10. 
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therefore impacts significantly human life. More than about 70% of the Earth’s freshwater is 
frozen in ocean ice sheets, glaciers or permafrost areas (UNESCO report, 2006). Permafrost 
regions are of major interest in climate studies as several hundred gigatons of carbon are 
stored in frozen soils in high latitudes. Thawing of permafrost could supercharge the global 
warming process. There is also a major concern about the possibility of shrinking the Earth’s 
ice sheets due to the global warming which could raise the global sea level by several 
meters. There are many cryosphere-climate feedback mechanisms in the global climate 
system over a wide range of spatial and temporal scales. Snow and ice have a remarkable 
effect on climate as they modulate energy exchanges between the surface and the 
atmosphere because of their physical properties. One of the most important properties is the 
surface reflectance (albedo). Non-melting snow and ice can reflect between ~80-90% of 
incident solar energy whereas vegetation and soil surface reflect as little as 20-30%. The 
reflected sunlight into space does not get absorbed by the Earth as heat. Therefore the high 
albedo plays as a cooling factor in the global climate system. The thermal properties of 
cryospheric elements have also major consequences for the climate and hydrological cycle. 
Snow and ice have much lower thermal diffusivities than air and build an insulating layer 
over land and ocean surfaces decoupling the surface-atmosphere interface with respect to 
both heat and moisture fluxes. High latent heat is another thermal property of snow and ice 
that act to moderate temperature in warm seasons because of the large amount of energy 
required to melt ice.  
Scatterometry has been proven to be useful for monitoring and understanding the 
cryosphere. Several studies have investigated the applicability of scatterometer data in 
various cryosphere research areas for instance; mapping snowmelt extent (Wismann et al., 
1997; Wismann, 2000), snow accumulation in Greenland (Drinkwater et al., 2001), snow 
cover over the Northern Hemisphere (Nghiem et al., 2001), frozen terrain in Alaska (Kimball 
et al., 2001). Other studies have used scatterometer data for determination of freeze/thaw 
cycles in Northern Latitudes (Bartsch et al., 2007), spatial and temporal variability of sea ice 
(Drinkwater et al., 2000), classification of sea ice in Polar Regions (Remund et al., 2000), 
deriving the surface wind-induced patterns over Antarctica by measuring the azimuthal 
modulation of backscatter (Long et al., 2000). 
In winter when soil surface freezes, dielectric properties of the soil changes significantly 
which results in low backscatter values. As snow begins to fall and accumulates over the 
surface, due to volume scattering, backscatter signals increase depending on microwave 
frequency. The response of dry snow volume to microwaves is rather complex and depends 
on snow properties like snow depth, density, and average grain size as well as the age of 
snowpack. With increasing temperature in spring, snow begins to melt and water covers the 
surface of snow pack which causes a sudden drop in backscatter. After snow melting 
period, soil and vegetation begin to thaw and consequently backscatter arise again. Figure 8 
shows a typical example of freeze/thaw process as described above observable in ASCAT 
normalized backscatter at 40°. High diurnal difference of backscatter (green bars) implies 
frozen condition in the morning and thawing in the evening which can be used as an 
indicator of the transition between different phases. 
 
 
 
 
 

 

 

 
 

Fig. 8. ASCAT normalized backscatter at 40° indicating seasonal freeze/thaw process. 
 
The high temporal sampling of the scatterometers in Polar Regions despite the frequent 
cloud cover and poor sunlight make them valuable instruments for sea ice observations. The 
sea ice imaging is based on the sensitivity of scatterometer to ice roughness and relatively 
high difference between the backscatter from open water and sea ice. 
Long et al. (1999) used a simple linear function to approximate the backscatter at 40° 
(reference incidence angle): 
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where A is the 0  at 40° incidence and B describes the incidence angle dependency of 
backscatter.  
The A and B parameters are calculated after combining the scatterometer observations from 
multiple passes from several days and using the Scatterometer Image Reconstruction (SIR) 
algorithm to enhance the resolution (Early et al., 2001). The A and B images represent the 
backscatter properties of the surface and are related to ice and snow characteristics over the 
imaging period (Long et al., 2001). Figure 9 illustrates examples of the normalized 
backscatter retrieved from ERS-1/2 scatterometer data available through the Scatterometer 
Climate Record Pathfinder (SCP) project (NASA-SCP). 

 
7. Conclusion 
 

C-band scatterometers have demonstrated to be valuable sensors for large-scale observation 
of the Earth’s surface in a variety of disciplines. High temporal sampling in all weather 
conditions, multi-viewing capability and availability of long-term measurements make the 
European C-band scatterometers excellent Earth observation tools. Scatterometer data are 
used to extract geophysical parameters such as wind speed and direction, surface soil 
moisture, seasonal dynamics of vegetation, spatial and temporal variability of frozen train in 
high latitudes, snowmelt and sea ice. Furthermore the scatterometer data are utilized in 
hydrological modeling, observation of extreme events, flood and drought monitoring, and 
also used for climate change studies. The observations of the ERS-1/2 scatterometers 
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Fig. 8. ASCAT normalized backscatter at 40° indicating seasonal freeze/thaw process. 
 
The high temporal sampling of the scatterometers in Polar Regions despite the frequent 
cloud cover and poor sunlight make them valuable instruments for sea ice observations. The 
sea ice imaging is based on the sensitivity of scatterometer to ice roughness and relatively 
high difference between the backscatter from open water and sea ice. 
Long et al. (1999) used a simple linear function to approximate the backscatter at 40° 
(reference incidence angle): 
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The A and B parameters are calculated after combining the scatterometer observations from 
multiple passes from several days and using the Scatterometer Image Reconstruction (SIR) 
algorithm to enhance the resolution (Early et al., 2001). The A and B images represent the 
backscatter properties of the surface and are related to ice and snow characteristics over the 
imaging period (Long et al., 2001). Figure 9 illustrates examples of the normalized 
backscatter retrieved from ERS-1/2 scatterometer data available through the Scatterometer 
Climate Record Pathfinder (SCP) project (NASA-SCP). 

 
7. Conclusion 
 

C-band scatterometers have demonstrated to be valuable sensors for large-scale observation 
of the Earth’s surface in a variety of disciplines. High temporal sampling in all weather 
conditions, multi-viewing capability and availability of long-term measurements make the 
European C-band scatterometers excellent Earth observation tools. Scatterometer data are 
used to extract geophysical parameters such as wind speed and direction, surface soil 
moisture, seasonal dynamics of vegetation, spatial and temporal variability of frozen train in 
high latitudes, snowmelt and sea ice. Furthermore the scatterometer data are utilized in 
hydrological modeling, observation of extreme events, flood and drought monitoring, and 
also used for climate change studies. The observations of the ERS-1/2 scatterometers 
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(SCATs) together with the new series of advanced scatterometers (ASCAT) onboard Metop 
satellites ensure long-term global observation (from 1991 until at least 2020). 
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