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1. Introduction 
 

The problem of changes detection in dynamical properties of signals and systems appears 
in many problems of signal processing, navigation and control (Basseville & Benveniste, 
1986; Benveniste et al., 1987; Gadzhiev, 1992; Chen & Patton, 1999; Chan et al., 1999; 
Hajiyev & Caliskan, 2003; Vaswani, 2004; Tykierko, 2008; Li & Jaimoukha, 2009). 
Abnormal measurements, sudden shifts appearing in the measuring channel, faultiness of 
measuring devices, changes in statistical characteristics of noises of an object or of 
measurements, malfunctions in the computer, and also a sharp change in the trajectory of 
a monitoring process, etc. should be enumerated among these changes. In real situations 
of exploiting an object, the problem occurs of operative detection of such changes in order 
to subsequently correct estimators or to make timely decisions on the necessity and 
character of control actions with respect to the process of technical exploitation of the 
object. Under this process, different methods of control and diagnostics are used. 
Many fault detection methods have been developed to detect and identify sensor and 
actuator faults by using analytical redundancy (Zhang & Li, 1997; Rago et al., 1998; 
Maybeck, 1999; Larson et al., 2002; Lee & Lyou, 2002). In (Larson et al., 2002) an analytical 
redundancy-based approach for detecting and isolating sensor, actuator, and component 
(i.e., plant) faults in complex dynamical systems, such as aircraft and spacecraft is 
developed. The method is based on the use of constrained Kalman filters, which are able 
to detect and isolate such faults by exploiting functional relationships that exist among 
various subsets of available actuator input and sensor output data.  
A statistical change detection technique based on a modification of the standard 
generalized likelihood ratio (GLR) statistic is used to detect faults in real time. The GLR 
test requires the statistical characteristics of the system to be known before and after the 
fault occurs. As this information is usually not available after the fault, the method has 
limited applications in practice. An integrated robust fault detection and isolation (FDI) 
and fault tolerant control (FTC) scheme for a fault in actuators or sensors of linear 
stochastic systems subjected to unknown inputs (disturbances) is presented in (Lee & 
Lyou, 2002). The FDI modules is constructed using banks of robust two-stage Kalman 
filters, which simultaneously estimate the state and the fault bias, and generate residual 
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sets decoupled from unknown disturbances. All elements of residual sets are evaluated by 
using a hypothesis statistical test, and the fault is declared according to the prepared 
decision logic. In this work it is assumed that single fault occurs at a time and the fault 
treated is of random bias type. The diagnostic method presented in the article is valid only 
for the control surface FDI.  
In (Zhang & Li, 1997; Rago et al., 1998) the algorithms for detection and diagnosis of 
multiple failures in a dynamic system are described. They are based on the Interacting 
Multiple-Model (IMM) estimation algorithm, which is one of the most cost-effective 
adaptive estimation techniques for systems involving structural as well as parametric 
changes. The proposed algorithms provide an integrated framework for fault detection, 
diagnosis, and state estimation. In (Maybeck, 1999) Multiple model adaptive estimation 
(MMAE) methods have been incorporated into the design of a flight control system for the 
variable in-flight stability test aircraft (VISTA) F-16, providing it with the capability to 
detect and compensate for sensor/actuator failures. The algorithm consists of a “front 
end” estimator for the control system, composed of a bank of parallel Kalman filters, each 
matched to a specific hypothesis about the failure status of the system (fully functional or 
a failure in any one sensor or actuator), and a means of blending the filter outputs through 
a probability-weighted average. In methods described in (Zhang & Li, 1997; Rago et al., 
1998; Maybeck, 1999), the faults are assumed to be known, and the Kalman filters are 
designed for the known sensor/actuator faults. As the approach requires several parallel 
Kalman filters, and the faults should be known, it can be used in limited applications. 
In the references (Napolitano et al., 1993; Raza, et al., 1994; Napolitano, et al., 1996; Borairi 
& Wang, 1998; Alessandri, 2003) the neural network based methods to detect 
sensor/actuator failures are developed and discussed. In the reference (Napolitano  et al., 
1993) a neural network is proposed as an approach to the task of failure detection 
following damage to an aerodynamic surface of an aircraft flight control system. This 
structure, used for state estimation purpose, can be designed and trained on line in flight 
and generates a residual signal indicating the damage as soon as it occurs. In (Raza et al., 
1994)  the problem of detecting control surface failures of a high performance aircraft is 
considered. The detection model is developed using a linear dynamic model of an F/A-18 
aircraft. Two parallel models detect the existence of a surface failure, whereas the isolation 
and magnitude of any one of the possible failure modes is estimated by a decision 
algorithm using either neural networks or fuzzy logic. The reference (Napolitano et al., 
1996) describes a study related to the testing and validation of a neural-network based 
approach for the problem of actuator failure detection and identification following battle 
damage to an aircraft control surface. Online learning neural architectures, trained with 
the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in 
the presence of sensor noise. In (Borairi & Wang,1998) an approach for the fault detection 
and diagnosis of the actuators and sensors in non-linear systems is presented. First, a 
known non-linear system is considered, where an adaptive diagnostic model 
incorporating the estimate of the fault is constructed. Further, unknown nonlinear 
systems are studied and a feed forward neural network trained to estimate the system 
under healthy conditions. Genetic algorithms is proposed as a means of optimizing the 
weighting connections of neural network and to assist the diagnosis of the fault. In 
(Alessandri, 2003) a neural network based method to detect faults in nonlinear systems is 
proposed. Fault diagnosis is accomplished by means of a bank of estimators, which 

provide estimates of parameters that describe actuator, plant, and sensor faults. The 
problem of designing such estimators for general nonlinear systems is solved by searching 
for optimal estimation functions. These functions are approximated by feed forward 
neural networks and the problem is reduced to find the optimal neural weights. The 
methods based on artificial neural networks and genetic algorithms do not have physical 
bases. Therefore according to the different data corresponding to the same event the 
model gives different solutions. Thus, the model should continuously be trained by using 
the new data. 
The reference (Perhinschi et al., 2002) focuses on specific issues relative to real-time on-
line estimation of aircraft aerodynamic parameters at nominal and post-actuator failure 
flight conditions. A specific parameter identification (PID) method, based on Fourier 
Transform, has been applied to an approximated mathematical model of the NASA IFCS 
F-15 aircraft. The direct evaluation of stability and control derivatives versus the 
estimation of the coefficients of the state space system matrices evaluation has been 
considered. This method may not produce good results when the number of the stability 
and control derivatives is high. 
In this direction of studies, it is necessary to mention the theory of diagnostics of a 
dynamic system by the innovation sequence of the Kalman filter (Mehra & Peschon, 1971; 
Willsky, 1976; Basseville &  Benveniste, 1986; Gadzhiev, 1992, 1993; Hajiyev & Caliskan, 
2003, 2005). The advantages of these methods are as follows: they provide the monitoring 
of the correctness of the result obtained by current working input actions; they do not 
require a priori information on the values of changes in the statistical characteristics of the 
innovation sequence in the case of fault; they allow one to solve the fault detection 
problem in real time; they require small computational expenditures for their realizations 
since they do not increase, in contrast to the most algorithmic methods, the dimension of 
the initial problem. 
As is known (Mehra & Peschon, 1971), in the case where a system is normally operated, 
the normalized innovation sequence in the Kalman filter compatible with the model of 
dynamics is the white Gaussian noise with zero mean and identity covariance matrix. The 
faults appearing in the system of estimations lead to the changes in these statistical 
characteristics of the normalized innovation sequence. Therefore, in this case, the fault 
detection problem is reduced to the problem of fastest detection of the deviation of these 
characteristics from nominal. 
In (Hajiyev & Caliskan, 2005) the sensor and control surface/actuator failures that affect 
the mean of the innovation sequence have been considered. The methods of testing the 
correspondence between the innovation sequence and the white noise and of revealing 
the change of its expectation are based on the classical statistical methods and are 
considered in detail in the literature (Mehra & Peschon, 1971; Hajiyev & Caliskan, 2003, 
2005) therefore, it shall not be concentrated on testing these characteristics. 
Testing, in real time, the covariance matrix of the innovation sequence of the Kalman filter 
turns out to be very complicated and not well developed, since there are difficulties in the 
determination of the confidence domain for a random matrix. Moreover, the existing 
methods of high-dimensional statistical analysis (Anderson, 1984; Kendall & Stuart, 1969) 
usually lead to asymptotic distributions; this sharply diminishes the operativeness of 
these methods. The method of testing the covariance matrix of the innovation sequence 
proposed in (Gadzhiev, 1992) on the basis of using the statistics of the ratio of two 
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sets decoupled from unknown disturbances. All elements of residual sets are evaluated by 
using a hypothesis statistical test, and the fault is declared according to the prepared 
decision logic. In this work it is assumed that single fault occurs at a time and the fault 
treated is of random bias type. The diagnostic method presented in the article is valid only 
for the control surface FDI.  
In (Zhang & Li, 1997; Rago et al., 1998) the algorithms for detection and diagnosis of 
multiple failures in a dynamic system are described. They are based on the Interacting 
Multiple-Model (IMM) estimation algorithm, which is one of the most cost-effective 
adaptive estimation techniques for systems involving structural as well as parametric 
changes. The proposed algorithms provide an integrated framework for fault detection, 
diagnosis, and state estimation. In (Maybeck, 1999) Multiple model adaptive estimation 
(MMAE) methods have been incorporated into the design of a flight control system for the 
variable in-flight stability test aircraft (VISTA) F-16, providing it with the capability to 
detect and compensate for sensor/actuator failures. The algorithm consists of a “front 
end” estimator for the control system, composed of a bank of parallel Kalman filters, each 
matched to a specific hypothesis about the failure status of the system (fully functional or 
a failure in any one sensor or actuator), and a means of blending the filter outputs through 
a probability-weighted average. In methods described in (Zhang & Li, 1997; Rago et al., 
1998; Maybeck, 1999), the faults are assumed to be known, and the Kalman filters are 
designed for the known sensor/actuator faults. As the approach requires several parallel 
Kalman filters, and the faults should be known, it can be used in limited applications. 
In the references (Napolitano et al., 1993; Raza, et al., 1994; Napolitano, et al., 1996; Borairi 
& Wang, 1998; Alessandri, 2003) the neural network based methods to detect 
sensor/actuator failures are developed and discussed. In the reference (Napolitano  et al., 
1993) a neural network is proposed as an approach to the task of failure detection 
following damage to an aerodynamic surface of an aircraft flight control system. This 
structure, used for state estimation purpose, can be designed and trained on line in flight 
and generates a residual signal indicating the damage as soon as it occurs. In (Raza et al., 
1994)  the problem of detecting control surface failures of a high performance aircraft is 
considered. The detection model is developed using a linear dynamic model of an F/A-18 
aircraft. Two parallel models detect the existence of a surface failure, whereas the isolation 
and magnitude of any one of the possible failure modes is estimated by a decision 
algorithm using either neural networks or fuzzy logic. The reference (Napolitano et al., 
1996) describes a study related to the testing and validation of a neural-network based 
approach for the problem of actuator failure detection and identification following battle 
damage to an aircraft control surface. Online learning neural architectures, trained with 
the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in 
the presence of sensor noise. In (Borairi & Wang,1998) an approach for the fault detection 
and diagnosis of the actuators and sensors in non-linear systems is presented. First, a 
known non-linear system is considered, where an adaptive diagnostic model 
incorporating the estimate of the fault is constructed. Further, unknown nonlinear 
systems are studied and a feed forward neural network trained to estimate the system 
under healthy conditions. Genetic algorithms is proposed as a means of optimizing the 
weighting connections of neural network and to assist the diagnosis of the fault. In 
(Alessandri, 2003) a neural network based method to detect faults in nonlinear systems is 
proposed. Fault diagnosis is accomplished by means of a bank of estimators, which 

provide estimates of parameters that describe actuator, plant, and sensor faults. The 
problem of designing such estimators for general nonlinear systems is solved by searching 
for optimal estimation functions. These functions are approximated by feed forward 
neural networks and the problem is reduced to find the optimal neural weights. The 
methods based on artificial neural networks and genetic algorithms do not have physical 
bases. Therefore according to the different data corresponding to the same event the 
model gives different solutions. Thus, the model should continuously be trained by using 
the new data. 
The reference (Perhinschi et al., 2002) focuses on specific issues relative to real-time on-
line estimation of aircraft aerodynamic parameters at nominal and post-actuator failure 
flight conditions. A specific parameter identification (PID) method, based on Fourier 
Transform, has been applied to an approximated mathematical model of the NASA IFCS 
F-15 aircraft. The direct evaluation of stability and control derivatives versus the 
estimation of the coefficients of the state space system matrices evaluation has been 
considered. This method may not produce good results when the number of the stability 
and control derivatives is high. 
In this direction of studies, it is necessary to mention the theory of diagnostics of a 
dynamic system by the innovation sequence of the Kalman filter (Mehra & Peschon, 1971; 
Willsky, 1976; Basseville &  Benveniste, 1986; Gadzhiev, 1992, 1993; Hajiyev & Caliskan, 
2003, 2005). The advantages of these methods are as follows: they provide the monitoring 
of the correctness of the result obtained by current working input actions; they do not 
require a priori information on the values of changes in the statistical characteristics of the 
innovation sequence in the case of fault; they allow one to solve the fault detection 
problem in real time; they require small computational expenditures for their realizations 
since they do not increase, in contrast to the most algorithmic methods, the dimension of 
the initial problem. 
As is known (Mehra & Peschon, 1971), in the case where a system is normally operated, 
the normalized innovation sequence in the Kalman filter compatible with the model of 
dynamics is the white Gaussian noise with zero mean and identity covariance matrix. The 
faults appearing in the system of estimations lead to the changes in these statistical 
characteristics of the normalized innovation sequence. Therefore, in this case, the fault 
detection problem is reduced to the problem of fastest detection of the deviation of these 
characteristics from nominal. 
In (Hajiyev & Caliskan, 2005) the sensor and control surface/actuator failures that affect 
the mean of the innovation sequence have been considered. The methods of testing the 
correspondence between the innovation sequence and the white noise and of revealing 
the change of its expectation are based on the classical statistical methods and are 
considered in detail in the literature (Mehra & Peschon, 1971; Hajiyev & Caliskan, 2003, 
2005) therefore, it shall not be concentrated on testing these characteristics. 
Testing, in real time, the covariance matrix of the innovation sequence of the Kalman filter 
turns out to be very complicated and not well developed, since there are difficulties in the 
determination of the confidence domain for a random matrix. Moreover, the existing 
methods of high-dimensional statistical analysis (Anderson, 1984; Kendall & Stuart, 1969) 
usually lead to asymptotic distributions; this sharply diminishes the operativeness of 
these methods. The method of testing the covariance matrix of the innovation sequence 
proposed in (Gadzhiev, 1992) on the basis of using the statistics of the ratio of two 
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quadratic forms, whose matrices are reversed sample and theoretical covariance matrices, 
is free from the above-mentioned shortcoming. Nevertheless, the results obtained in 
(Gadzhiev, 1992)  are valid only in the case where the reversed matrices which enter the 
expression of the monitoring statistics are nonsingular. 
In practice, therefore, one makes use of  a scalar measure of this matrix such as the trace, 
sum of the matrix elements, generalized variance (determinant), eigenvalues of a matrix, 
etc., each characterizing one or another geometrical parameter of the correlation ellipsoid.  
The algorithm for testing the trace of the covariance matrix of the innovation sequence is 
presented in (Mehra & Peschon, 1971).  But the trace testing algorithm ignores the off-
diagonal elements of the covariance matrix. Therefore this algorithm cannot detect very 
small changes, in the measurement channel (Hajiyev & Caliskan, 2003). 
In (Gadzhiev, 1993) a confidence range has been constructed for the generalized variance 
of the Wishart matrix using Chebyshev inequality. However as it is known (Krinetsky et 
al., 1979), the Chebyshev inequality gives the extended confidence range for the random 
variables. Therefore in this case the miss-failure probability increases.   
Most of fault detection tests are based on the statistical properties of the eigenvalues of 
the sample covariance matrix (Bienvenu & Kopp, 1983; Wax & Kailath, 1985). In (Wu et al., 
1995) an algorithm based on the geometrical location of these eigenvalues has been 
proposed. In (Grouffaud et al., 1996) a new kind of test based on an analytic expression of 
the ordered eigenvalues profile, obtained under noise only hypothesis. Strategy in this 
work consists in looking for a break in profile by comparing observed profile and noise 
only one. The decision is taken by comparing the error of prediction with the threshold, 
which is obtained by solving the integral equation. Unfortunately, the distributions 
entering in this equation are not analytically known, hence it is difficult to determine the 
threshold and perform the proposed algorithm. 
There exists some interesting results on the distribution of eigenvalues, characteristic 
function of eigenvalues, and distribution and moments of the smallest eigenvalue of 
Wishart distributed matrices (Malik, 2003; Zanella et al., 2008; Edelman, 1991; Everson & 
Stephen, 2000). But application of mentioned works to fault detection problem of 
multidimensional dynamic systems turns out to be very complicated since there are 
difficulties in determining the confidence domain (or intervals) for the eigenvalues of 
random matrix. 
In this study, an approach to detect the aircraft sensor and actuator/surface failures based 
on the spectral norm of an innovation matrix is proposed. A real-time detection of sensor 
and actuator/surface failures affecting the mean and variance of the innovation process 
applied to F-16 fighter flight dynamic is examined. A decision approach to isolate the 
sensor and actuator/surface failures based on the Adaptive Extended Kalman Filter 
insensitive to sensor failures is proposed. 
The structure of this chapter is as follow. In Section 2, the failure detection problem in 
multidimensional dynamic systems using spectral norm of the innovation matrix of the 
Kalman filter is formulated. The upper confidence bound of the spectral norm of a 
Gaussian random matrix that consists of normally distributed random variables with zero 
mean is found and a new failure detection approach based on the properties of the 
spectral norm of the innovation matrix is proposed in this Section. In Section 3 the 
AFTI/F-16 aircraft model description is given and the Extended Kalman filter (EKF) for 
the F-16 nonlinear dynamic model estimation is designed. In Section 4 an adaptive EKF 

for the F-16 aircraft state estimation which is insensitive to sensor failures is designed and 
a decision approach to isolate the sensor and actuator/surface failure is proposed. In 
Section 5 some simulations are carried out for the sensor and actuator/surface failure 
detection problem in the AFTI/F-16 aircraft flight control system. The changes that affect 
the mathematical expectation and variance of the innovation sequence have been 
considered. Simulation results of adaptive EKF insensitive to sensor failures are given in 
this section too. Section 6 gives a brief summary of the obtained results and conclusions. 

 
2. Failure Detection Using Spectral Norm of the Innovation Matrix 

In diagnosing some dynamic systems, of special interest now are the methods of dynamic 
diagnosis that take into account influence of failures on system dynamics, in particular, 
revealing failures based on the analysis of the innovation sequence. Let us consider the 
linear dynamic system described by the equation of state 
 

)k(w)k,1k(G)k(x)k,1k()1k(x                                        (1) 
 
and the equation of measurements 
 

)k(V)k(x)k(H)k(z  ,                                                 (2) 
 
where )k(x  is an N - dimensional vector of system state;  )k,1k   is the NN  
transition matrix of the system; )k(w  is a random N - dimensional vector of disturbances 
(system noise);  k,1kG   is the NN  transition matrix of system noise; )k(z  is the n - 
dimensional vector of measurements; )k(H is the Nn   matrix of measurements of the 
system; and )k(V  is a random n - dimensional vector of measurement noise. Assume that 
random vectors )k(w  and )k(V  are a Gaussian white noise. Their mean values and 
covariance are determined by the expressions 
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Here E  is the operator of statistical averaging; T  is the sign of transposition; and  kj   is 
the Kronecker delta symbol. Note that  )k(w  and  )k(V  are assumed mutually 
uncorrelated. 
Estimate of the state vector  )k/k(x̂   and covariance matrix of estimation errors )k/k(P   
can be found using the optimum linear discrete Kalman filter (Sage and Melsa, 1971): 
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quadratic forms, whose matrices are reversed sample and theoretical covariance matrices, 
is free from the above-mentioned shortcoming. Nevertheless, the results obtained in 
(Gadzhiev, 1992)  are valid only in the case where the reversed matrices which enter the 
expression of the monitoring statistics are nonsingular. 
In practice, therefore, one makes use of  a scalar measure of this matrix such as the trace, 
sum of the matrix elements, generalized variance (determinant), eigenvalues of a matrix, 
etc., each characterizing one or another geometrical parameter of the correlation ellipsoid.  
The algorithm for testing the trace of the covariance matrix of the innovation sequence is 
presented in (Mehra & Peschon, 1971).  But the trace testing algorithm ignores the off-
diagonal elements of the covariance matrix. Therefore this algorithm cannot detect very 
small changes, in the measurement channel (Hajiyev & Caliskan, 2003). 
In (Gadzhiev, 1993) a confidence range has been constructed for the generalized variance 
of the Wishart matrix using Chebyshev inequality. However as it is known (Krinetsky et 
al., 1979), the Chebyshev inequality gives the extended confidence range for the random 
variables. Therefore in this case the miss-failure probability increases.   
Most of fault detection tests are based on the statistical properties of the eigenvalues of 
the sample covariance matrix (Bienvenu & Kopp, 1983; Wax & Kailath, 1985). In (Wu et al., 
1995) an algorithm based on the geometrical location of these eigenvalues has been 
proposed. In (Grouffaud et al., 1996) a new kind of test based on an analytic expression of 
the ordered eigenvalues profile, obtained under noise only hypothesis. Strategy in this 
work consists in looking for a break in profile by comparing observed profile and noise 
only one. The decision is taken by comparing the error of prediction with the threshold, 
which is obtained by solving the integral equation. Unfortunately, the distributions 
entering in this equation are not analytically known, hence it is difficult to determine the 
threshold and perform the proposed algorithm. 
There exists some interesting results on the distribution of eigenvalues, characteristic 
function of eigenvalues, and distribution and moments of the smallest eigenvalue of 
Wishart distributed matrices (Malik, 2003; Zanella et al., 2008; Edelman, 1991; Everson & 
Stephen, 2000). But application of mentioned works to fault detection problem of 
multidimensional dynamic systems turns out to be very complicated since there are 
difficulties in determining the confidence domain (or intervals) for the eigenvalues of 
random matrix. 
In this study, an approach to detect the aircraft sensor and actuator/surface failures based 
on the spectral norm of an innovation matrix is proposed. A real-time detection of sensor 
and actuator/surface failures affecting the mean and variance of the innovation process 
applied to F-16 fighter flight dynamic is examined. A decision approach to isolate the 
sensor and actuator/surface failures based on the Adaptive Extended Kalman Filter 
insensitive to sensor failures is proposed. 
The structure of this chapter is as follow. In Section 2, the failure detection problem in 
multidimensional dynamic systems using spectral norm of the innovation matrix of the 
Kalman filter is formulated. The upper confidence bound of the spectral norm of a 
Gaussian random matrix that consists of normally distributed random variables with zero 
mean is found and a new failure detection approach based on the properties of the 
spectral norm of the innovation matrix is proposed in this Section. In Section 3 the 
AFTI/F-16 aircraft model description is given and the Extended Kalman filter (EKF) for 
the F-16 nonlinear dynamic model estimation is designed. In Section 4 an adaptive EKF 

for the F-16 aircraft state estimation which is insensitive to sensor failures is designed and 
a decision approach to isolate the sensor and actuator/surface failure is proposed. In 
Section 5 some simulations are carried out for the sensor and actuator/surface failure 
detection problem in the AFTI/F-16 aircraft flight control system. The changes that affect 
the mathematical expectation and variance of the innovation sequence have been 
considered. Simulation results of adaptive EKF insensitive to sensor failures are given in 
this section too. Section 6 gives a brief summary of the obtained results and conclusions. 

 
2. Failure Detection Using Spectral Norm of the Innovation Matrix 

In diagnosing some dynamic systems, of special interest now are the methods of dynamic 
diagnosis that take into account influence of failures on system dynamics, in particular, 
revealing failures based on the analysis of the innovation sequence. Let us consider the 
linear dynamic system described by the equation of state 
 

)k(w)k,1k(G)k(x)k,1k()1k(x                                        (1) 
 
and the equation of measurements 
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where )k(x  is an N - dimensional vector of system state;  )k,1k   is the NN  
transition matrix of the system; )k(w  is a random N - dimensional vector of disturbances 
(system noise);  k,1kG   is the NN  transition matrix of system noise; )k(z  is the n - 
dimensional vector of measurements; )k(H is the Nn   matrix of measurements of the 
system; and )k(V  is a random n - dimensional vector of measurement noise. Assume that 
random vectors )k(w  and )k(V  are a Gaussian white noise. Their mean values and 
covariance are determined by the expressions 
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Here E  is the operator of statistical averaging; T  is the sign of transposition; and  kj   is 
the Kronecker delta symbol. Note that  )k(w  and  )k(V  are assumed mutually 
uncorrelated. 
Estimate of the state vector  )k/k(x̂   and covariance matrix of estimation errors )k/k(P   
can be found using the optimum linear discrete Kalman filter (Sage and Melsa, 1971): 
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Here )k(K  is the gain matrix of the Kalman filter; )k(  is the innovation sequence; I is a 
unit matrix; )1k/k(P    is the covariance matrix of extrapolation errors  and 

)1k/1k(P   is the covariance matrix of estimation errors at the previous step. 
If there are no faults in the estimation system, then the normalized innovation sequence 
 

  ),k()k(R)k(H)1k/k(P)k(H)k(~ 2/1T 


                                  (5) 

 
in the Kalman filter (4) coordinated with the model dynamics is a Gaussian white noise 
with zero mean and a unit covariance matrix (Mehra and Peschon, 1971) 
 

    ).kj(IP)j(~)k(~E;0)k(~E ~T                                             (6) 
 
Failures that change system dynamics due to abrupt changes or shifts in components of 
the state vector, faults in computer, abnormal measurements, sudden shifts appearing in 
the channel of measurement, divergence of the estimation algorithm, and also such faults 
as a decrease in device accuracy, noise increase, etc. will result in changes of the above 
characteristics of the sequence of  )k(~ . Of interest is development of an on-line method 
of a simultaneous check of mathematical expectation and variance of the normalized 
innovation sequence (5) that does not require a priori information on the values of their 
changes in case of failure and allows one to detect on-line faults in the estimation system. 
To do this, two hypotheses are introduced:  
 

0  : the Kalman filter operates normally; 
                                           1  : a failure takes place. 
 
To reveal a failure, let us construct a matrix whose columns are vectors of innovation of 
the Kalman filter (Hajiyev, 2007). The following definitions are introduced. 

Definition 1. By the innovation matrix of the Kalman filter a rectangular mn   matrix ( n  
is the dimension of the innovation vector; 2m;2n  ) is mentioned, whose columns are 
the innovation vectors  )k(  that correspond to m  different instants of time. 

Definition 2. The innovation matrix composed of the normalized innovation vectors )k(~  
is referred as the normalized innovation matrix of the Kalman filter. 

Hereinafter, to check the innovation sequence, the normalized innovation matrices A  that 
consist of a finite number of normalized innovation vectors will be used. For a real-time 
check, it is expedient, at the instant of time )mk(k  , to construct the matrix )k(A  from a 
finite number m )2m(   of sequential innovation vectors: 
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To verify the hypothesis 0  and 1 , a spectral norm of the matrix (7) below will be used.  

 
2.1 Deriving the Upper Confidence Bound of the Spectral Norm of a Random Matrix 
As is generally known (Horn and Jonson, 1986), the spectral norm 2.  of a real matrix  
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(parentheses designate here a scalar product), the singular values are real and positive. 
For the same reasons, computation of singular values and, consequently, also of spectral 
norm, is more simpler than deriving eigenvalues for an arbitrary matrix. This explains the 
choice of spectral norm of matrices as a controllable scalar measure in solving some 
diagnosis problems. Of interest is here deriving the upper bound of the spectral norm of 
random matrices. 
In the present study, based on the calculation of a respective vector and matrix norms, an 
analytical expression is found for the upper bound of spectral norm of a random matrix 

mnR)k(A   composed of normally distributed random variables with zero mathematical 
expectation. The results of the above analysis are applied to the case of dynamic diagnosis 
of the Kalman filter in innovation sequence. 
Let the Euclidean norm (or the 2-norm) of the vector nRx  and the spectral norm (or the 
2-norm) of the matrix  mnR)k(A    be determined by the expressions 
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where  .max  and  .max  are the maximum eigenvalue and maximum singular value of 
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The Frobenius norm of the matrix    mn
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where  )(tr  is the trace of the matrix. The Frobenius norm and the 2-norm are related as 
follows (Chan  et al.,1999): 
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where  mnR)k(A   and   mRx . Since 0x  ,  let us present expression (12) in the 
equivalent form 
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Inequality (13) is true for all  mnR)k(A  , mRx , 0x  , including the maximum value 
of the left-hand side of the inequality, i.e., 
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As is generally known (Horn and Jonson, 1986), the matrix norm associated with the 
respective vector norm is the relation 
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If the Euclidean norm 2x  is selected as the vector norm, then the respective matrix norm 
is the maximum singular value of the matrix A, i.e., 
 

 AA max .                                                     (16) 
 

Regarding (14) – (16), the following inequality can be written, 
 

  Fmax2 AAA  .                                              (17) 
 
Let the matrix  mnR)k(A   be composed of normally distributed random variables with 
zero mathematical expectation and the mean-square deviation , i.e., 
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 will have the 2 -distribution with 

1nmk   degrees of freedom (Rao, 1965).  It is easy to establish a relation between  
 Amax  and  2 : 
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where    2
FA  . 

Specifying the significance level , the following condition can be used 
 

   
2
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where   1  is the confidence probability, and tables of the  2 -distribution to derive 

2
)1nm(,  , which is a confidence boundary (quantile) of the  2 -distribution with  1nm    

degrees of freedom. Substituting  2
)1nm(,   into (19), it is obtained finally 

 

  2
)1nm(,max A  .                                            (21) 

 
Formula (21) determines the upper confidence bound for spectral norm of a random 
matrix A. Thus, an analytical expression, convenient for practical calculations, is found for 
the upper bound of spectral norm of a random matrix, composed from normally 
distributed random variables with zero mathematical expectation. The obtained result 
may be used in applied statistical problems, in particular, to check statistical compatibility 
of data of statistical simulation with the results of field tests, and in health monitoring and 
diagnosis of multidimensional technical systems. 
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2.2 Failure Detection Using Spectral Norm of the Innovation Matrix   
Since the random normalized innovation matrix (7) consists of normally distributed 
stochastic elements with zero mathematical expectation and a finite variance  1,0Naij  ,  

inequality (21) may be used for solution of the above diagnosis problem. Expression (21) 
characterizes the relation between the mean-square value    of the elements of a random 
matrix  A  and its spectral norm and may be used to derive the upper confidence 
boundary of the spectral norm of matrix (7). In this case, one may state that if elements ija  

of the controlled normalized innovation matrix of the Kalman filter obey the distribution 
 1,0N , then inequality (21) should be fulfilled. Non-fulfillment of inequality (21) points 

to the shift of zero mean of the elements ija , a change of the unit variance or to difference 

of  ija  from white noise. If the case  1  is considered, then inequality (21) can be 

written in a more simple form: 
 

  2
)1nm(,max A   .                                                    (22) 

 
As is seen from expression (22), in the case being considered, the upper confidence 
boundary of the spectral norm of the normalized innovation matrix of the Kalman filter is 
determined by the dimension of the innovation vector (or dimension of the measurement 
vector), the number of sequential innovation vectors used, and the confidence probability 
selected. 
In view of that stated above, in solving the diagnosis problem posed, the decision rule 
concerning the hypotheses introduced has the form 
   

                                                    2
)1nm(,max0 A:   ,  km;   

                              A,mk: max1   2
)1nm(,  .                                             (23) 

 
The boundary for the spectral norm of the normalized innovation matrix found is quite 
simple and allows one to check on-line simultaneously mathematical expectation and 
variance of the innovation sequence. Under operating conditions, the algorithm proposed 
can be reduced to the following sequence of calculations performed at each step of 
measurements. 

       1. Using expressions (4), calculate the Kalman estimate for the vector of system state 
and the value of the vector of the normalized innovation sequence at the current step k . 
       2. Compose the normalized innovation matrix for the Kalman filter according to (7) 
for the given 2m,2n   and  mk  .   

       3. Determine eigenvalues of the matrix )k(A)k(AT  as solutions of the equation  
  0IAdet   and the spectral norm  

 
    2/1T

imax2 ))k(A)k(A(max)k(A)k(A  .                           (24) 

       4. Check realization of inequality (22) and make decision on detection of a failure in 
the Kalman filter based on the decision rule (23). 
       5. Repeat the sequence of calculations, beginning with step 1, for the next instant of 
time 1k  . 

Qualitative characteristics of the proposed algorithm of failure revealing are probabilities 
of a correct detection and a false alarm. These characteristics are calculated in a usual way 
with the use of the table of the 2 -distribution (Grishin and Kazarinov, 1985). Deriving 
the required characteristics involves a large volume of mathematical simulation for a 
justified choice of m number of innovation vectors )k( , that correspond to m  different 
instants of time, from which the matrix of innovation  A  is composed. A too large m  
smoothes effects caused by the system failure, and a too small m , increases probability of 
a false alarm. 

 
3. Design of the EKF for the F-16 Aircraft State Estimation 

3.1 F-16 Aircraft  Model  Description 
The technique for failure detection is applied to an unstable multi-input multi-output model 
of an AFTI/F-16 fighter. The fighter is stabilized by means of a linear quadratic optimal 
controller. The control gain brings all the eigenvalues that are outside the unit circle, inside 
the unit circle. It also keeps the mechanical limits on the deflections of control surfaces. The 
model of the fighter is as follows (Lyshevski, 1997): 
 

)k(Gw+))k(x(F+)k(Bu+)k(Ax=)1+k(x                                       (25) 
 

where )k(x  is the 9-dimensional state vector of the aircraft, A is the transition matrix of 
order 9x9 of the aircraft, B is the control distribution matrix of order 9x6 of the aircraft, 

)k(u is the 6-dimensional control input vector, ))k(x(F  is the 9-dimensional vector of 
nonlinear elements of system, )k(w  is the random 9-dimensional vector of system noises 

with zero mean and  the covariance matrix    )kj()k(Q)j(w)k(wE T  , G is the transition 
matrix of the system noises. 
The aircraft state variables are: 
 

 T,,r,p,,,q,,vx  , 
 
where, v is the forward velocity,   is the angle of attack,  q is the pitch rate,   is the pitch 
angle,   is the side-slip angle, p  is the roll rate, r  is the yaw rate,   is the roll angle, and 
  is the yaw angle. 
The fighter has six control surfaces and hence six control inputs are: 
 

 RCFLFRHLHR ,,,,,u  , 
 

www.intechopen.com



Sensor and Actuator/Surface Failure Detection Based  
on the Spectral Norm of an Innovation Matrix 205

2.2 Failure Detection Using Spectral Norm of the Innovation Matrix   
Since the random normalized innovation matrix (7) consists of normally distributed 
stochastic elements with zero mathematical expectation and a finite variance  1,0Naij  ,  

inequality (21) may be used for solution of the above diagnosis problem. Expression (21) 
characterizes the relation between the mean-square value    of the elements of a random 
matrix  A  and its spectral norm and may be used to derive the upper confidence 
boundary of the spectral norm of matrix (7). In this case, one may state that if elements ija  

of the controlled normalized innovation matrix of the Kalman filter obey the distribution 
 1,0N , then inequality (21) should be fulfilled. Non-fulfillment of inequality (21) points 

to the shift of zero mean of the elements ija , a change of the unit variance or to difference 

of  ija  from white noise. If the case  1  is considered, then inequality (21) can be 

written in a more simple form: 
 

  2
)1nm(,max A   .                                                    (22) 

 
As is seen from expression (22), in the case being considered, the upper confidence 
boundary of the spectral norm of the normalized innovation matrix of the Kalman filter is 
determined by the dimension of the innovation vector (or dimension of the measurement 
vector), the number of sequential innovation vectors used, and the confidence probability 
selected. 
In view of that stated above, in solving the diagnosis problem posed, the decision rule 
concerning the hypotheses introduced has the form 
   

                                                    2
)1nm(,max0 A:   ,  km;   

                              A,mk: max1   2
)1nm(,  .                                             (23) 

 
The boundary for the spectral norm of the normalized innovation matrix found is quite 
simple and allows one to check on-line simultaneously mathematical expectation and 
variance of the innovation sequence. Under operating conditions, the algorithm proposed 
can be reduced to the following sequence of calculations performed at each step of 
measurements. 

       1. Using expressions (4), calculate the Kalman estimate for the vector of system state 
and the value of the vector of the normalized innovation sequence at the current step k . 
       2. Compose the normalized innovation matrix for the Kalman filter according to (7) 
for the given 2m,2n   and  mk  .   

       3. Determine eigenvalues of the matrix )k(A)k(AT  as solutions of the equation  
  0IAdet   and the spectral norm  

 
    2/1T

imax2 ))k(A)k(A(max)k(A)k(A  .                           (24) 

       4. Check realization of inequality (22) and make decision on detection of a failure in 
the Kalman filter based on the decision rule (23). 
       5. Repeat the sequence of calculations, beginning with step 1, for the next instant of 
time 1k  . 

Qualitative characteristics of the proposed algorithm of failure revealing are probabilities 
of a correct detection and a false alarm. These characteristics are calculated in a usual way 
with the use of the table of the 2 -distribution (Grishin and Kazarinov, 1985). Deriving 
the required characteristics involves a large volume of mathematical simulation for a 
justified choice of m number of innovation vectors )k( , that correspond to m  different 
instants of time, from which the matrix of innovation  A  is composed. A too large m  
smoothes effects caused by the system failure, and a too small m , increases probability of 
a false alarm. 

 
3. Design of the EKF for the F-16 Aircraft State Estimation 

3.1 F-16 Aircraft  Model  Description 
The technique for failure detection is applied to an unstable multi-input multi-output model 
of an AFTI/F-16 fighter. The fighter is stabilized by means of a linear quadratic optimal 
controller. The control gain brings all the eigenvalues that are outside the unit circle, inside 
the unit circle. It also keeps the mechanical limits on the deflections of control surfaces. The 
model of the fighter is as follows (Lyshevski, 1997): 
 

)k(Gw+))k(x(F+)k(Bu+)k(Ax=)1+k(x                                       (25) 
 

where )k(x  is the 9-dimensional state vector of the aircraft, A is the transition matrix of 
order 9x9 of the aircraft, B is the control distribution matrix of order 9x6 of the aircraft, 

)k(u is the 6-dimensional control input vector, ))k(x(F  is the 9-dimensional vector of 
nonlinear elements of system, )k(w  is the random 9-dimensional vector of system noises 

with zero mean and  the covariance matrix    )kj()k(Q)j(w)k(wE T  , G is the transition 
matrix of the system noises. 
The aircraft state variables are: 
 

 T,,r,p,,,q,,vx  , 
 
where, v is the forward velocity,   is the angle of attack,  q is the pitch rate,   is the pitch 
angle,   is the side-slip angle, p  is the roll rate, r  is the yaw rate,   is the roll angle, and 
  is the yaw angle. 
The fighter has six control surfaces and hence six control inputs are: 
 

 RCFLFRHLHR ,,,,,u  , 
 

www.intechopen.com



Fault Detection206

where HR  and HL are the deflections of the right and left horizontal stabilizers, FR  and  

FL  are the deflections of the right and left flaps, C  and  R  are the canard and rudder 
deflections. The following hard bounds (mechanical limits) on the deflections of control 
surfaces are assumed: 44.0, HLHR  rad, 35.0, FLFR  rad, 47.0C  rad and 

52.0R  rad.  B,A and )x(F  for the sampling period of 0.03 s. are: 
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Below the Extended Kalman Filter (EKF) to estimate the F-16 aircraft motion is designed.       

 
 

3.2 Deriving  of  the EKF     
Let us define the estimated vector as: 
 

 )k(),k(),k(r),k(p),k(),k(),k(q),k(),k()k(xT   

 
and apply the Kalman filter to estimate this vector. The nonlinear mathematic model for 
the longitudinal and lateral F-16 aircraft motion is given in (25). 
The measurement equations can be written as:  
 

)k(V+)k(Hx=)k(z ,                                                             (26) 
 

where H  is the measurement matrix, which is 99 unit matrix, )k(V is the measurement 
noise and its mean and correlation matrix respectively are: 
 
                                               [ ] [ ] )kj(δ)k(R=)j(V)k(VE;0=)k(VE T . 
 
By using quasi-linearization method let us linearize the equation (25): 

                         
[ ]

[ ] [ ] )1k(Gw+)1k(û)1k(uB+)1k(x̂)1k(x)1k(F
+)1k(x̂)1k(xA+))1k(x̂(F+)1k(ûB+)1k(x̂A=)k(x

x --------
------

                (27)   
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)1k(x̂
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Among the procedures of estimation theory, the Bayes procedure has the most accuracy 
because it is based on both the experimental data in likelihood function and a priori data 
expressed by a priori density of the estimated parameters. The more data, the more 
accuracy yields. Moreover, the Bayes procedure does not require the system to be linear 
and stationary, and produces a solution for the filtering when the initial conditions of the 
state vector are unknown (Gadzhiev, 1996). Therefore, the Bayes procedure to filter the 
state vector of the aircraft motion is preferred. A posteriori distribution density of the 
state vector is given by the Bayes formula: 
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)k(z ,                 (28)                        

 
where Zk=z(1),z(2),z(3),.....,z(k);   Zk-1= z(1),z(2),.........,z(k-1).               
When the probability density functions in (28) are substituted and the conditional 
mathematical expectation of the a posteriori probability density function is taken as the 
optimum estimation value, the following recursive EKF algorithm for the state vector 
estimation of the F-16 aircraft motion is obtained as (Caliskan and Hajiyev, 2003):  
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surfaces are assumed: 44.0, HLHR  rad, 35.0, FLFR  rad, 47.0C  rad and 

52.0R  rad.  B,A and )x(F  for the sampling period of 0.03 s. are: 
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Below the Extended Kalman Filter (EKF) to estimate the F-16 aircraft motion is designed.       

 
 

3.2 Deriving  of  the EKF     
Let us define the estimated vector as: 
 

 )k(),k(),k(r),k(p),k(),k(),k(q),k(),k()k(xT   

 
and apply the Kalman filter to estimate this vector. The nonlinear mathematic model for 
the longitudinal and lateral F-16 aircraft motion is given in (25). 
The measurement equations can be written as:  
 

)k(V+)k(Hx=)k(z ,                                                             (26) 
 

where H  is the measurement matrix, which is 99 unit matrix, )k(V is the measurement 
noise and its mean and correlation matrix respectively are: 
 
                                               [ ] [ ] )kj(δ)k(R=)j(V)k(VE;0=)k(VE T . 
 
By using quasi-linearization method let us linearize the equation (25): 
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 where  
)1k(x̂

x x
FF










 . 

Among the procedures of estimation theory, the Bayes procedure has the most accuracy 
because it is based on both the experimental data in likelihood function and a priori data 
expressed by a priori density of the estimated parameters. The more data, the more 
accuracy yields. Moreover, the Bayes procedure does not require the system to be linear 
and stationary, and produces a solution for the filtering when the initial conditions of the 
state vector are unknown (Gadzhiev, 1996). Therefore, the Bayes procedure to filter the 
state vector of the aircraft motion is preferred. A posteriori distribution density of the 
state vector is given by the Bayes formula: 
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where Zk=z(1),z(2),z(3),.....,z(k);   Zk-1= z(1),z(2),.........,z(k-1).               
When the probability density functions in (28) are substituted and the conditional 
mathematical expectation of the a posteriori probability density function is taken as the 
optimum estimation value, the following recursive EKF algorithm for the state vector 
estimation of the F-16 aircraft motion is obtained as (Caliskan and Hajiyev, 2003):  
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       Equation of   the estimation value 
  )k(ν)k(K+)1k/k(x̂=)k(x̂ -                                          (29) 

 
       Equation of  the  extrapolation value  
 

  ))1k(x̂(F+)1k(ûB+)1k(x̂A=)1k/k(x̂ ----                                 (30) 
 

       The  innovation sequence    

               [ ]))1k(x̂(F+)1k(ûB+)1k(x̂AH)k(z=)k(ν ----                            (31) 
  

       The   gain matrix  of filter    
 

 ( ) ( ) ( ) )k(RkHkP=kK 1T -                                             (32) 
 

       The covariance matrix of estimation errors        
      

  [ ] )k(HM)k(R+H)k(HMH)k(M)k(M=)k(P 1TT --                        (33) 
 

       The covariance matrix of extrapolation errors 
                     

TT
xx

T
u

T

G)1k(GQ)1k(F)1k(P)1k(F

B)1k(BDA)1k(AP)k(M




                              (34) 

 
where  Du is the covariance matrix of the control input error, )1k(Q -  is the covariance 
matrix of  system noise.  

 
4. Adaptive EKF Insensitive to Sensor Failures 
An adaptive EKF for the F-16 aircraft state estimation may be designed in order to isolate 
the detected sensor and actuator/surface failures. The following approach for the solution 
of the filtration problem is proposed for this case (Hajiyev, 2006). In the case of normal 
operation of measurement system, the filter works according to the conventional EKF 
algorithm (29)-(34). But if the condition of the operation of the measurement system does 
not correspond to the models, used in the synthesis of the filter, then the gain coefficient 
(32) of the discrepancy automatically changes due to the change in the covariance matrix 
of the innovation sequence according to the rule 
 

                   )k(R)k(S+H)k(HM=)k(P T
ν                                                (35) 

 
in which weight coefficient )k(S is calculated from the discrepancy (31) analysis results. In 
this case the filter gain coefficient (32) can be written in the form of 
 

( ) ( ) ( ) ( )[ ] 1TT kR)k(S+HkHMHkM=kK -
                                (36) 

According to the proposed approach the gain coefficient (32) is changed when the 
following condition is valid 
 

{ } [ ]{ }
( )[ ] ( )[ ]{ }

{ })k(R+H)k(HMtr

=)k(v+)1k/k(x̂)k(xH×)k(v+)1k/k(x̂)k(xHEtr

=)k(ν)k(νEtr)k(ν)k(νtr

T

T

TT

----

≥

             (37) 

 
where  (.)tr is the trace of matrix. When a significant change in the conditions of the 
operation of the measurement system occurs, the prediction of observations in (31), 

( )1k/kx̂H - , will considerably differ from the observation results )k(z . Consequently, the 
sum of the discrepancy squares on the left side of (37) will characterize the real filtration 
error, while the right side determines the theoretical accuracy of the innovation sequence, 
obtained on the basis of a priori information. If condition (38) is met, then the real 
filtration error exceeds the theoretical error. Therefore, it is necessary to correct the filter 
gain matrix (32). In this case by substituting (35) in (37) the following equation can be 
obtained; 
 

{ } { } { })k(Rtr)k(S+H)k(HMtr=)k(ν)k(νtr TT                                      (38) 
 
Hence taking the expression { } )k(ν)k(ν=)k(ν)k(νtr TT   into consideration, the following 
formula for the weighting factor )k(S is obtained: 
 

{ }
{ })k(Rtr

H)k(HMtr)k(ν)k(ν
=)k(S

TT -
                                             (39) 

 
Using (35), (36) and (39) in the estimation algorithm (29) -(34) gives the possibility to 
accomplish the adaptation of the filter to the change of measurement system operation 
conditions. If the left side of the expression (37) is greater than the right side, the value of 
coefficient )k(S will increase. This corresponds to the beginning of the adaptation of filter. 
Consequently, both the covariance matrix of innovation sequence )k(Pν  (35) and the filter 
gain matrix )k(K  (32) increase, and that cause to the strengthening of the corrective 
influence of discrepancy in (29) which makes the estimation value )k(x̂ approach to the 
actual value )k(x . This will lead to the decrease of discrepancy )k(ν and coefficient )k(S , 
weakening of the corrective influence of discrepancy, etc.  
The final expressions of the proposed adaptive filtration algorithm with the filter gain 
correction insensitive to measurement faults can be written in the following form: 
 
                                                         )k(ν)k(K+)1k/k(x̂=)k(x̂ -  
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       Equation of   the estimation value 
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       The   gain matrix  of filter    
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       The covariance matrix of estimation errors        
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       The covariance matrix of extrapolation errors 
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where  Du is the covariance matrix of the control input error, )1k(Q -  is the covariance 
matrix of  system noise.  

 
4. Adaptive EKF Insensitive to Sensor Failures 
An adaptive EKF for the F-16 aircraft state estimation may be designed in order to isolate 
the detected sensor and actuator/surface failures. The following approach for the solution 
of the filtration problem is proposed for this case (Hajiyev, 2006). In the case of normal 
operation of measurement system, the filter works according to the conventional EKF 
algorithm (29)-(34). But if the condition of the operation of the measurement system does 
not correspond to the models, used in the synthesis of the filter, then the gain coefficient 
(32) of the discrepancy automatically changes due to the change in the covariance matrix 
of the innovation sequence according to the rule 
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in which weight coefficient )k(S is calculated from the discrepancy (31) analysis results. In 
this case the filter gain coefficient (32) can be written in the form of 
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According to the proposed approach the gain coefficient (32) is changed when the 
following condition is valid 
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where  (.)tr is the trace of matrix. When a significant change in the conditions of the 
operation of the measurement system occurs, the prediction of observations in (31), 

( )1k/kx̂H - , will considerably differ from the observation results )k(z . Consequently, the 
sum of the discrepancy squares on the left side of (37) will characterize the real filtration 
error, while the right side determines the theoretical accuracy of the innovation sequence, 
obtained on the basis of a priori information. If condition (38) is met, then the real 
filtration error exceeds the theoretical error. Therefore, it is necessary to correct the filter 
gain matrix (32). In this case by substituting (35) in (37) the following equation can be 
obtained; 
 

{ } { } { })k(Rtr)k(S+H)k(HMtr=)k(ν)k(νtr TT                                      (38) 
 
Hence taking the expression { } )k(ν)k(ν=)k(ν)k(νtr TT   into consideration, the following 
formula for the weighting factor )k(S is obtained: 
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{ })k(Rtr

H)k(HMtr)k(ν)k(ν
=)k(S

TT -
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Using (35), (36) and (39) in the estimation algorithm (29) -(34) gives the possibility to 
accomplish the adaptation of the filter to the change of measurement system operation 
conditions. If the left side of the expression (37) is greater than the right side, the value of 
coefficient )k(S will increase. This corresponds to the beginning of the adaptation of filter. 
Consequently, both the covariance matrix of innovation sequence )k(Pν  (35) and the filter 
gain matrix )k(K  (32) increase, and that cause to the strengthening of the corrective 
influence of discrepancy in (29) which makes the estimation value )k(x̂ approach to the 
actual value )k(x . This will lead to the decrease of discrepancy )k(ν and coefficient )k(S , 
weakening of the corrective influence of discrepancy, etc.  
The final expressions of the proposed adaptive filtration algorithm with the filter gain 
correction insensitive to measurement faults can be written in the following form: 
 
                                                         )k(ν)k(K+)1k/k(x̂=)k(x̂ -  
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))1k(x̂(F+)1k(ûB+)1k(x̂A=)1k/k(x̂ ----  

[ ]))1k(x̂(F+)1k(ûB+)1k(x̂AH)k(z=)k(ν ----  

( ) ( ) ( )[ ] 1T )k(R)k(SkHkP=kK -  

[ ] )k(HM)k(PH)k(M)k(M=)k(P 1
ν

T --                                  (40) 
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where )k(Pν  is the covariance matrix of the innovation sequence, and )k(S  is the 
weighting factor. The other filter parameters in (40) are same with the ones given in the 
expressions (29)-(34). 
In contrast to the EKF algorithm (29)-(34), in which the filter gain )k(K changes by 
program, in the proposed algorithm the current measurements have larger weight, since 
the coefficients of matrix )k(K are corrected by the results of each observation. This 
algorithm is adapted to the measurement system operation conditions by the 
approximation of the theoretical covariance matrix )k(Pν to the real covariance matrix of 
the innovation sequence, due to the change in the weighting factor )k(S . Mentioned 

change is accomplished because of regarding the matrix )k(ν)k(ν T , which characterizes 
the real filtration error. Proposed adaptive EKF for the F-16 aircraft state estimation will 
ensure the guaranteed adaptation of the filter to the change of the measurement system 
operation conditions, consequently it will become insensitive to sensor failures. 
The  designed adaptive EKF (40) is  not  an  optimum  filter, unlike  the  EKF (29)-(34), 
because  of  the )k(S factor. Even in the absence of a failure, the estimation error could be 
larger than that of the conventional filtration algorithm (29)-(34).  Therefore, adaptive 
algorithm is operated only when the measurements are faulty or in order to isolate the 
detected sensor and actuator/surface failures. In all other cases procedure is run 
optimally with regular EKF (29)-(31). 

 
4. Simulation Results of Failure Detection and Adaptive EKF Algorithms  

The technique for failure detection is applied to multi-input multi-output model of an 
AFTI/F-16 fighter (25). The measurements are processed using Kalman filter (29)-(32) that 
allows us to determine the estimate of the state vector of F-16 aircraft and the covariance 
matrix of the estimate errors at each thk  step. 
If there are no faults in the estimation system, then the normalized innovation sequence  

  ),k()k(RH)k(HM)k(~ 2/1T 


                                        (41) 
 
of the EKF (29)-(32) is a Gaussian white noise with zero mean and a unit covariance 
matrix. Sensor and control surface/actuator failures will result with changes in the above 
characteristics of the sequence of )k(~ .  To verify the hypothesis  0  and 1 , let us use a 
spectral norm of the matrix constructed as (7).  

In the simulations, 997.0=β;9=n;10=m are taken, and the threshold value 2
)1nm(,βχ -   

is found as 11.4. Decisions as to reveal a failure in the system are made based on the rule 
(23). The results of simulations are shown in Figs. 1–16. 

 
4.1 A Sensor Failure (Shift in the Pitch Rate Gyroscope) 
Shift in the pitch rate gyroscope is simulated at iteration 30 as follows;  
  

    3+)k(V+)k(q=)k(z qq , ( )30k≥ .                             (42) 

 
The graph of the spectral norm  Amax  is shown in Figure 1 when a shift occurs in the 
pitch rate gyroscope. 
 As seen in Figure 1, until the sensor failure occurs  Amax  is lower than the threshold. 
When a failure occurs in the pitch rate gyroscope,  Amax  grows rapidly, and after 1 
iteration it exceeds the threshold.  Hence 1  hypothesis is judged to be true. This failure 
causes a change in the mean of the innovation sequence. The innovation sequences in case 
of a shift in the pitch  rate gyroscope are shown in Figures 2-4. 

 
Fig. 1. Behavior of the spectral norm  Amax  in case of a shift in the pitch  rate gyroscope 
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where )k(Pν  is the covariance matrix of the innovation sequence, and )k(S  is the 
weighting factor. The other filter parameters in (40) are same with the ones given in the 
expressions (29)-(34). 
In contrast to the EKF algorithm (29)-(34), in which the filter gain )k(K changes by 
program, in the proposed algorithm the current measurements have larger weight, since 
the coefficients of matrix )k(K are corrected by the results of each observation. This 
algorithm is adapted to the measurement system operation conditions by the 
approximation of the theoretical covariance matrix )k(Pν to the real covariance matrix of 
the innovation sequence, due to the change in the weighting factor )k(S . Mentioned 

change is accomplished because of regarding the matrix )k(ν)k(ν T , which characterizes 
the real filtration error. Proposed adaptive EKF for the F-16 aircraft state estimation will 
ensure the guaranteed adaptation of the filter to the change of the measurement system 
operation conditions, consequently it will become insensitive to sensor failures. 
The  designed adaptive EKF (40) is  not  an  optimum  filter, unlike  the  EKF (29)-(34), 
because  of  the )k(S factor. Even in the absence of a failure, the estimation error could be 
larger than that of the conventional filtration algorithm (29)-(34).  Therefore, adaptive 
algorithm is operated only when the measurements are faulty or in order to isolate the 
detected sensor and actuator/surface failures. In all other cases procedure is run 
optimally with regular EKF (29)-(31). 

 
4. Simulation Results of Failure Detection and Adaptive EKF Algorithms  

The technique for failure detection is applied to multi-input multi-output model of an 
AFTI/F-16 fighter (25). The measurements are processed using Kalman filter (29)-(32) that 
allows us to determine the estimate of the state vector of F-16 aircraft and the covariance 
matrix of the estimate errors at each thk  step. 
If there are no faults in the estimation system, then the normalized innovation sequence  
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of the EKF (29)-(32) is a Gaussian white noise with zero mean and a unit covariance 
matrix. Sensor and control surface/actuator failures will result with changes in the above 
characteristics of the sequence of )k(~ .  To verify the hypothesis  0  and 1 , let us use a 
spectral norm of the matrix constructed as (7).  

In the simulations, 997.0=β;9=n;10=m are taken, and the threshold value 2
)1nm(,βχ -   

is found as 11.4. Decisions as to reveal a failure in the system are made based on the rule 
(23). The results of simulations are shown in Figs. 1–16. 
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The graph of the spectral norm  Amax  is shown in Figure 1 when a shift occurs in the 
pitch rate gyroscope. 
 As seen in Figure 1, until the sensor failure occurs  Amax  is lower than the threshold. 
When a failure occurs in the pitch rate gyroscope,  Amax  grows rapidly, and after 1 
iteration it exceeds the threshold.  Hence 1  hypothesis is judged to be true. This failure 
causes a change in the mean of the innovation sequence. The innovation sequences in case 
of a shift in the pitch  rate gyroscope are shown in Figures 2-4. 
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Fig. 2. Normalized Innovation Sequences )k(~

v , )k(~
 , )k(~

q  in the case of  a shift in the 

pitch rate gyroscope 

 
Fig. 3. Normalized Innovation Sequences )k(~

 , )k(~
 , )k(~

p  in the case of a shift in the 

pitch rate gyroscope 

 
Fig. 4. Normalized Innovation Sequences )k(~

r , )k(~
 , )k(~

   in the case of a shift in the 
pitch rate gyroscope 

 
4.2 A Sensor Failure (the Noise Variance in the Pitch Rate Gyroscope is Changed)  
The noise variance in the pitch rate gyroscope is changed at iteration 30 as follows; 
 

)k(V3+)k(q=)k(z qq , )30k( ≥ .                                                      (43)            

Figure 5 shows that the value of  Amax  sharply increases after the th30 step and 
intersects its admissible bound at the step 42k  . As a result, based on the decision rule 
(23), estimation system failure is noted. This failure causes a change in the variance of the 
innovation sequence. The innovation sequences in case of changes in the noise variance of 
the pitch rate gyroscope are shown in Figures 6-8. 
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intersects its admissible bound at the step 42k  . As a result, based on the decision rule 
(23), estimation system failure is noted. This failure causes a change in the variance of the 
innovation sequence. The innovation sequences in case of changes in the noise variance of 
the pitch rate gyroscope are shown in Figures 6-8. 
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Fig. 5. Behavior  of the spectral norm  Amax  in case of changes in the noise variance of 
the pitch rate gyroscope 
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Fig. 8. Normalized Innovation Sequences  )k(~

r , )k(~
 , )k(~

   in case of  changes in the 
noise variance of the pitch rate gyroscope 

www.intechopen.com



Sensor and Actuator/Surface Failure Detection Based  
on the Spectral Norm of an Innovation Matrix 215
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4.3 The Actuator Motor Failure 
Two kinds of failures can occur in an actuator: actuator motor failure, and control surface 
failure. For simulation of the actuator motor failure, the control input  HR  (deflection of 

the right horizontal stabilizer) has been changed to 1)k()k( HRHR  , )30k(   at 
iteration 30. The graph of the spectral norm  Amax  is shown in Figure 9 when a shift 
occurs in the actuator motor at the step 30. This failure causes a change in the mean of the 
innovation sequence. As seen in Figure 9, until the actuator failure occurs, spectral norm 

 Amax  is lower than the threshold. When a failure occurs in the actuator  Amax  
grows rapidly,  and after 3 steps it exceeds the threshold. Hence 1  hypothesis is judged 
to be true. The innovation sequences in the case of actuator motor failure are shown in 
Figures 10-12. 
 

 
Fig. 9. Behavior  of the spectral norm  Amax  in case of actuator motor failure 

 
Fig. 10. Normalized Innovation Sequences )k(~

v , )k(~
 , )k(~
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Fig. 11. Normalized Innovation Sequences )k(~
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4.3 The Actuator Motor Failure 
Two kinds of failures can occur in an actuator: actuator motor failure, and control surface 
failure. For simulation of the actuator motor failure, the control input  HR  (deflection of 

the right horizontal stabilizer) has been changed to 1)k()k( HRHR  , )30k(   at 
iteration 30. The graph of the spectral norm  Amax  is shown in Figure 9 when a shift 
occurs in the actuator motor at the step 30. This failure causes a change in the mean of the 
innovation sequence. As seen in Figure 9, until the actuator failure occurs, spectral norm 

 Amax  is lower than the threshold. When a failure occurs in the actuator  Amax  
grows rapidly,  and after 3 steps it exceeds the threshold. Hence 1  hypothesis is judged 
to be true. The innovation sequences in the case of actuator motor failure are shown in 
Figures 10-12. 
 

 
Fig. 9. Behavior  of the spectral norm  Amax  in case of actuator motor failure 
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4.4 The Control Surface Failure  
The proposed failure detection algorithm is used below to detect the control surface 
failures. The control derivatives corresponding to the first control surface (right horizontal 
stabilizer) has been changed as follows at iteration 30; 

                                            ;08.0)1,i(B)1,i(B  ,9,1i  )30k(                                     (44) 
 
The graph of the spectral norm  Amax  is shown in Figure 13 when a shift occurs in the 
control surface. As seen in Figure 13, until the control surface failure occurs,  Amax is 
lower than the threshold. When a fault occurs in the control surface  Amax  grows 
rapidly, and after 28 iterations it exceeds the threshold. Hence 1  hypothesis is judged to 
be true. This failure causes a change in the mean of the innovation sequence. The 
innovation sequences in case of control surface failure are shown in Figures 14-16. 
 

 
Fig. 13. Behavior  of the spectral norm  Amax  in case of control surface failure 
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Fig. 16. Normalized Innovation Sequences )k(~
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The simulations show that both sensor and actuator/surface failures affect the spectral 
norm of the normalized innovation matrix. The simulation results justify the obtained 

theoretical calculations and show the practical applicability of the proposed failure 
detection algorithm.  
The introduction of the developed fault detection algorithms does not distort the 
estimation results of the filter and has no influence on their accuracy.  
In real situations of exploiting an object, the proposed algorithm enables operative 
detection of faults such as: abnormal measurements, sudden shifts appearing in the 
measuring channel, faultiness of the measuring devices, changes in the statistical 
characteristics of the noises of an object or of measurements, reduction in the 
actuator/surface effectiveness, friction between moving parts of the control surfaces, 
partial loss of a control surface (break off of a part of control surface), malfunctions in the 
computer, and also a sharp change in the trajectory of a monitoring process, etc in order 
to subsequently correct estimators or to make timely decisions on the necessity and the 
character of the control actions with respect to the process of technical exploitation of the 
object. 

 
4.5 Simulation Results of Adaptive EKF Insensitive to Sensor Failures 
Simulation of the proposed adaptive EKF for the F-16 aircraft state estimation is 
performed. The measurements were processed using adaptive EKF (40) insensitive to 
sensor failures. To verify the hypothesis  0  and 1  in cases of the sensor and control 
surface/actuator failures, the spectral norm of the matrix constructed as (7) is used. 
Decisions as to reveal a failure in the system are made based on the rule (23). The results 
of simulations are shown in Figures 17–21. 
Behavior of the spectral norm [ ]Aσ max  in case of changes in the noise variance of the 
pitch rate gyroscope (sensor failure), when the adaptive EKF is used, is given in Figure 17. 
The noise variance of the pitch rate gyroscope has been changed corresponding to (43) at 
iteration 30. 

 
Fig. 17. Behavior  of the spectral norm [ ]Aσ max  in case of changes in the noise  variance of 
the pitch rate gyroscope (adaptive EKF was used)  
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As seen in Figure 17, in spite of the sensor failure, in all iterations  Amax  is lower than 
the threshold. Consequently, via the decision rule (23) 0γ  hypothesis is judged to be true.  
The normalized innovation sequence )k(ν~q  in case of changes in the noise variance of the 

pitch rate gyroscope, when adaptive EKF is used, is shown in Figure 18. The results 
presented in the Figures 17 and 18 show that the adaptive EKF (40) is insensitive to sensor 
failures. Behavior of the weighting factor )k(S of the adaptive filter is given in Figure 19. 
Behavior of the spectral norm [ ]Aσ max  in case of control surface failure, when adaptive 
EKF insensitive to sensor failures is used, is presented in Figure 20. The control derivatives 
corresponding to the first control surface (right horizontal stabilizer) has been changed 
corresponding to (44) at iteration 30. As seen in Figure 20, until the control surface failure 
occurs,  Amax is lower than the threshold. When a fault occurs in the control surface, 

 Amax  grows rapidly, and after 26 iterations it exceeds the threshold. Hence 1  
hypothesis is judged to be true. The normalized innovation sequence )k(ν~q  in case of 

control surface failure, when adaptive EKF is used, is given in Figure 21.  
 

 
Fig. 18. Normalized Innovation Sequences )k(ν~q  in case of changes in the noise variance 

of the  pitch rate gyroscope ( adaptive EKF was used) 
 

 
Fig. 19. Behavior of the weighting factor )k(S  

 
The obtained simulation results show that the proposed adaptive EKF for the F-16 aircraft 
state estimation can isolate the detected sensor and actuator/surface failures. This filter is 
insensitive to sensor failures but sensitive to actuator/surface failures. When a regular 
EKF is used, the decision statistics changes regardless to the failure in the sensors or in the 
actuators/surfaces. On the other hand if the adaptive EKF insensitive to sensor failures is 
used, it is easy to distinguish the sensor and actuator failures. 
The further fault isolation – finding in which component the fault has occurred 
(determining the location of the fault) - can be performed via the innovation approach 
based fault isolation methods described in (Hajiyev & Caliskan, 2003; Hajiyev & Caliskan, 
2005; Hajiyev, 2009). 

 
Fig. 20. Behavior of the spectral norm [ ]Aσ max  in case of the control surface failure 
(adaptive EKF was used) 

www.intechopen.com



Sensor and Actuator/Surface Failure Detection Based  
on the Spectral Norm of an Innovation Matrix 223
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corresponding to (44) at iteration 30. As seen in Figure 20, until the control surface failure 
occurs,  Amax is lower than the threshold. When a fault occurs in the control surface, 

 Amax  grows rapidly, and after 26 iterations it exceeds the threshold. Hence 1  
hypothesis is judged to be true. The normalized innovation sequence )k(ν~q  in case of 

control surface failure, when adaptive EKF is used, is given in Figure 21.  
 

 
Fig. 18. Normalized Innovation Sequences )k(ν~q  in case of changes in the noise variance 

of the  pitch rate gyroscope ( adaptive EKF was used) 
 

 
Fig. 19. Behavior of the weighting factor )k(S  

 
The obtained simulation results show that the proposed adaptive EKF for the F-16 aircraft 
state estimation can isolate the detected sensor and actuator/surface failures. This filter is 
insensitive to sensor failures but sensitive to actuator/surface failures. When a regular 
EKF is used, the decision statistics changes regardless to the failure in the sensors or in the 
actuators/surfaces. On the other hand if the adaptive EKF insensitive to sensor failures is 
used, it is easy to distinguish the sensor and actuator failures. 
The further fault isolation – finding in which component the fault has occurred 
(determining the location of the fault) - can be performed via the innovation approach 
based fault isolation methods described in (Hajiyev & Caliskan, 2003; Hajiyev & Caliskan, 
2005; Hajiyev, 2009). 

 
Fig. 20. Behavior of the spectral norm [ ]Aσ max  in case of the control surface failure 
(adaptive EKF was used) 

www.intechopen.com



Fault Detection224

 
Fig. 21. Normalized Innovation Sequence )k(ν~q  in case of  the control surface failure 

(adaptive EKF was used) 

 
4.6 About Choosing the Number of the Innovation Vectors (Samples)  
Note that, in this case, the inertia (the delay) of the failure detection depends on the 
number of the innovation vectors (samples) m , that  correspond to m  different instants 
of time, from which the matrix of innovation  A  is composed and with an increase in this 
number, this characteristic worsens. On the other hand, a very small value of m  leads to 
frequent false faults. Furthermore, the estimates of the eigenvalues of the matrix 

)k(A)k(AT  and consequently, the singular values of the matrix  )k(A  and the spectral 
norm of the matrix  )k(A  will be biased for small sample sizes in general. Less unlikely 
larger number of the samples m causes to the biasness of the estimates. However, larger 
number of the samples reduces the ability of the algorithm to correctly trace high-
frequency changes of the trajectory, e.g. turns (Mohamed & Schwarz, 1999). Therefore, the 
trade-off between the biasness and the frequent false faults on the one hand and the 
tractability of the estimates and bad inertia characteristic of the fault detection on the 
other hand should be taken into account according to the application at hand. In addition, 
the proper choice of the number of innovation vectors m , depends significantly on the 
motional dynamics. Since the number of samples m , is chosen empirically, there is no 
theoretically justified choice of it at present. Deriving the required correct detection and 
the false alarm characteristics involves mathematical simulation for a justified choice of 
the number of innovation vectors m . For this purpose simulations of the failure detection 
algorithm are performed for the different number of samples m . During simulations four 
kinds of scenario are considered: 

1. In the simulations, m , n , and β  are taken as 95.0=β;9=n;6=m , and the 

threshold value 2
)1nm(,βχ -   is found as 8.1.  The noise variance of the pitch rate 

gyroscope is changed at iteration 30. 
2. In the simulations, m , n , and β  are taken as 95.0=β;9=n;13=m , and the 

threshold value  2
)1nm(,βχ -  is found as 11.91. The noise variance of the pitch rate 

gyroscope is changed at iteration 30. 
3. In the simulations, m , n , and β  are taken as 95.0=β;9=n;30=m , and the 

threshold value 2
)1nm(,βχ -   is found as 17.55. The noise variance of the pitch rate 

gyroscope is changed at iteration 60. 

Decisions as to reveal a failure in the system are made based on the rule (23). The results 
of the simulations are shown in Figures 22–24. Graphs show the behavior of the statistic 

[ ]Aσ max  and its admissible bound in case of changes in the noise variance of the pitch 
rate gyroscope. 

 
Fig. 22. Behavior of the spectral norm [ ]Aσ max  in case of changes in the noise  variance of 
the pitch rate gyroscope at iteration 30 ( 6=m ) 

 
As it is seen from Figure 22, in the first scenario ( 6=m ),the value of the statistic [ ]Aσ max  
exceeds its admissible bound until the 30th step and via the decision rule (23) the false 
failure in the system is detected. When a failure occurs in the pitch rate gyroscope at the 
iteration 30,  Amax  grows rapidly, and after 3 iteration (0.09 s  after fault occurs) it 
exceeds the threshold.  Hence 1  hypothesis is judged to be true. Figure 23 show that in 
the second scenario ( 13=m ), [ ]Aσ max is lower than the threshold until the pitch rate 
gyroscope fault occurs. When a fault occurs in the pitch rate gyroscope at the 30th step, 
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Fig. 22. Behavior of the spectral norm [ ]Aσ max  in case of changes in the noise  variance of 
the pitch rate gyroscope at iteration 30 ( 6=m ) 

 
As it is seen from Figure 22, in the first scenario ( 6=m ),the value of the statistic [ ]Aσ max  
exceeds its admissible bound until the 30th step and via the decision rule (23) the false 
failure in the system is detected. When a failure occurs in the pitch rate gyroscope at the 
iteration 30,  Amax  grows rapidly, and after 3 iteration (0.09 s  after fault occurs) it 
exceeds the threshold.  Hence 1  hypothesis is judged to be true. Figure 23 show that in 
the second scenario ( 13=m ), [ ]Aσ max is lower than the threshold until the pitch rate 
gyroscope fault occurs. When a fault occurs in the pitch rate gyroscope at the 30th step, 
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[ ]Aσ max  grows abruptly and at the step 37=τ  (0.21 s after fault occurs) it exceeds its 
admissible bound and the inequality (22) becomes not fulfilled. As a result, on the base of 
decision rule (23) failure in the system is detected. As seen from Figure 24, in the third 
scenario ( 30=m ), the statistic [ ]Aσ max  is lower than the threshold until the pitch rate 
gyroscope fault occurs. After the 60th step (after the fault occurs), the value of the statistic 

[ ]Aσ max increases, and at the step 84=τ  (0.72 s after fault occurs) it exceeds the 
threshold. Hence 1  hypothesis is judged to be true. 
 In the practical implementations the usage of the values between 10 and 20 are 
recommended for the number of samples m .  

 
Fig. 23. Behavior  of the spectral norm [ ]Aσ max  in case of changes in the noise variance of 
the pitch rate gyroscope at iteration 30 ( 13=m ) 

 
Fig. 24. Behaviour  of the spectral norm [ ]Aσ max  in case of changes in noise variance in 
the pitch rate gyroscope at iteration 60 ( 30=m ) 

5. Conclusions and Discussions 

An approach to detect the aircraft sensor and actuator/surface failures based on the 
spectral norm of an innovation matrix is proposed. An upper confidence bound for the 
spectral norm of a random innovation matrix  mnR)k(A    that consists of normally 
distributed random variables with zero mathematical expectation is found. The outlined 
approach allows check of the mathematical expectation and the variance of the innovation 
sequence simultaneously online and does not require a priori information on the 
quantitative changes of its statistical characteristics in case of failure. 
The suggested approach to the failure detection is used for the sensor and 
actuator/surface failure detection problem in the AFTI/F-16 aircraft flight control system. 
An extended Kalman filter has been developed for nonlinear flight dynamic estimation of 
an F-16 fighter. Failures in the sensors and actuators/surfaces affect the characteristics of 
the innovation sequence of the EKF. The failures that affect the mean and the variance of 
the innovation sequence have been considered. The following failures, that affect the 
characteristics of the innovation sequence of the EKF are examined: 

a) Shift in the measurement noise of the pitch rate gyroscope (sensor failure); 
b) Changes in the noise variance of the pitch rate gyroscope (sensor failure); 
c)  Shift in the control input, corresponding to the deflection of the right horizontal 

stabilizer (actuator motor failure); 
d) Changes in the control derivatives corresponding to the right horizontal 

stabilizer (control surface failure). 

The theoretical results are confirmed by the simulations carried out on a nonlinear 
dynamic model of the F-16 aircraft. The obtained simulation results  have confirmed  the 
practical possibility of the diagnostics of the flight control system using the introduced 
spectral norm of the innovation matrix. The introduction of the developed failure 
detection algorithm does not distort the estimation results of the filter and has no 
influence on their accuracy. 
An adaptive EKF for the F-16 aircraft state estimation insensitive to sensor failures is 
designed and a decision approach to isolate the sensor and actuator/surface failure is 
proposed. When a regular EKF is used, the decision statistics changes regardless to the 
failure in the sensors or in the actuators/surfaces. On the other hand, if the adaptive EKF 
insensitive to sensor failures is used, it is easy to distinguish the sensor and actuator 
failures. 
It is shown that the inertia of the fault detection depends on the number of samples m  
and with an increase in this number, this characteristic worsens. On the other hand, a very 
small value of m  leads to frequent false faults. Some recommendations for the choice of 
the number of samples m in the practical implementations are given in this study. 
The presented failure detection method has the following disadvantages: this method is of 
a statistical approach and a particular statistics must be accumulated, and the method has 
no ability to determine the value of the fault (fault identification). 
The future work is to investigate the integrated sensor and actuator/surface failure 
detection, isolation and identification, and reconfigurable control problems together for 
the innovation approach based active fault–tolerant flight control system design.  
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insensitive to sensor failures is used, it is easy to distinguish the sensor and actuator 
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It is shown that the inertia of the fault detection depends on the number of samples m  
and with an increase in this number, this characteristic worsens. On the other hand, a very 
small value of m  leads to frequent false faults. Some recommendations for the choice of 
the number of samples m in the practical implementations are given in this study. 
The presented failure detection method has the following disadvantages: this method is of 
a statistical approach and a particular statistics must be accumulated, and the method has 
no ability to determine the value of the fault (fault identification). 
The future work is to investigate the integrated sensor and actuator/surface failure 
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