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1. Introduction 
 

Filters that estimate the state variables of a system are important tools for control and signal 
processing applications. Early work in the area assumed that the system dynamics were 
known and external disturbances were white noise with known statistical properties. In 
contrast to traditional Kalman filters, H  filters do not require knowledge of the statistical 
properties of the noise. H  filters are more robust to disturbances and modeling 
uncertainties than Kalman filters. Thus, in practical applications where disturbances may 
not be known exactly and system uncertainties may appear in modeling, the H  technique 
is often used (Fu et al., 1994).  
It is important to consider filter order when fast data processing is necessary. The reduced 
order filter is often desirable because it reduces the filter complexity and real time 
computational burdens in many applications. In (Grigoriadis & Watson, 1997) the reduced 
order H  filtering problem was studied via an LMI (Linear Matrix Inequality) approach, 
but only for a specific linear time invariant plant model without model uncertainties. In 
(Bettayeb & Kavranoglu, 1994) the reduced order filter problem was studied in an H  
setting, but the H  problem was formulated as distance problem.  
Because a wide variety of problems arising in system and control theory can be reduced to 
an optimization problem involving LMIs and LMIs can be solved numerically very 
efficiently, LMIs have been used extensively in the controls field. In (Tuan et al., 2000) the 
robust reduced order filtering problem was studied in an 2H  setting via an LMI approach.  
In this study, the H  approach is used because it is known that H  approach is more 
robust to model uncertainties than 2H (Kim & Watkins, 2006). Less conservative results can 
be achieved, and a computational example is given to show this.  
This filtering technique can be used for fault detection filter design. As science and 
technology develops, the reliability and security of complex systems becomes more 
important. Thus, on-line monitoring of faults as they occur during operation of a dynamic 
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system is necessary. In this study, estimator based fault detection methods will be the focus. 
The key to estimator based fault detection is to generate a fault indicating signal (residual) 
using input and output signals from the monitored system (Chen & Zhang, 1991). However, 
there is always a model-reality mismatch between plant dynamics and the model used for 
the residual generation (Chen & Patton, 1997). The robustness of residual depends on its 
fault sensitivity. The residual should be sensitive to faults but insensitive to modeling 
uncertainties and disturbances (Zhong et al., 2003). To produce the residual signal, an 
observer is usually used. In the fault detection literature this observer is often called a fault 
detection filter to emphasize the relationship with the filtering concept. In this study, robust 
fault detection filter (RFDF) design is formulated as a multi-objective H  optimization for a 
polytopic uncertain system.  
In (Casavola et al., 2005a), RFDF design was formulated as a multi-objective H  
optimization only for the full order case. In (Casavola et al., 2005b), RFDF was formulated as 
a quasi-LMI only for the full order case. In this study, the order of the RFDF is reduced 
using LMI techniques and the detection performance is compared with the full order filter 
(Kim & Watkins, 2007).  
This paper is organized as follows: In Section 2, notations are introduced. In Section 3, the 
preliminary and main results for the H  filter design are given. In Section 4, the preliminary 
and main results for the fault detection filter design are given. Numerical examples of H  
filter design and the fault detection filter design are shown in Section 5. Concluding remarks 
can be found in Section 6. 

 
2. Notation 
 

The notation that is used here is quite standard. R  is the field of real numbers, nR  is a real 
vector with dimension n  and m nR  is a real matrix with dimensions m n .  RH  is the 
subspace of L  with real and rational functions that are analytic and bounded in the open 
right-half plane, where L  is the set of functions bounded on j -axis including    .  
TB is the transpose of matrix B.  Symbol, *, stands for terms that are induced by symmetry, 

e.g.,  
 

(*) * T T
T TS S S M
K K

M Q M Q
   

   
   

 

 

BRL stands for Bounded Real Lemma, which is standard in robust control theory (Gahinet et 
al., 1996). 

 
3. H  Filter design 
 

3.1 Preliminary result 
The general filtering configuration can be depicted as in Figure 1 where G is the plant, F is 
the filter that will be designed, d is an uncertain disturbance that includes process and 
measurement noise, z is the signal to be estimated, zF is the estimate of z, e is the estimation 
error, and y is the measured output.  

 
Fig. 1. General filtering configuration 

 
A linear time invariant plant (G) described by 
 

                                                    
( ) ( ) ( )

: ( ) ( ) ( )
( ) ( )

x t Ax t Bd t
G y t Cx t Dd t

z t Lx t

  
   
  


                                                               (1) 

 
will be considered where ( ) nx t R  is the state, ( ) py t R  is the measured output, ( ) qz t R  is 
the estimated output, ( ) md t R  is the disturbance, and ,  ,  ,  A B C D  and L  are of appropriate 
dimensions. To include plant model uncertainties, we formulate them in the form of a 
polytopic model as follows. 
 

1

( ) ( )
( ) ( ) ,

0 ( ) 0 0

i is

i i i
i

i

A B A B A B
C D C D C D
L L L

 
   
 

      
              
            

                                          (2) 

 
where   is a unit simplex such that  
 

1
1

( , , ) : 1, 0
s

s i i
i

   


 
    

 
                                                        (3) 

 
The formulation is a convex combination, so it is suitable for the LMI approach. This convex 
bounded polytopic mathematical description of model uncertainty is sufficiently general to 
include many uncertain systems with practical appeal. The filter F is attached to the system 
as follows: 
 

( ) ( ) ( )
:

( ) ( )
F F F F

F F F

x t A x t B y t
F

z t L x t
  
 
  

 



                                                       (4) 

 
where ( ) k

Fx t R  is the filter state ( )k n  and ,k k k p
F FA R B R    and q k

FL R   are the 
filter matrices that are to be synthesized.  
 
Definition 3.1: 
The 2L  norm of a vector valued function ( )f t  is defined:  
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system is necessary. In this study, estimator based fault detection methods will be the focus. 
The key to estimator based fault detection is to generate a fault indicating signal (residual) 
using input and output signals from the monitored system (Chen & Zhang, 1991). However, 
there is always a model-reality mismatch between plant dynamics and the model used for 
the residual generation (Chen & Patton, 1997). The robustness of residual depends on its 
fault sensitivity. The residual should be sensitive to faults but insensitive to modeling 
uncertainties and disturbances (Zhong et al., 2003). To produce the residual signal, an 
observer is usually used. In the fault detection literature this observer is often called a fault 
detection filter to emphasize the relationship with the filtering concept. In this study, robust 
fault detection filter (RFDF) design is formulated as a multi-objective H  optimization for a 
polytopic uncertain system.  
In (Casavola et al., 2005a), RFDF design was formulated as a multi-objective H  
optimization only for the full order case. In (Casavola et al., 2005b), RFDF was formulated as 
a quasi-LMI only for the full order case. In this study, the order of the RFDF is reduced 
using LMI techniques and the detection performance is compared with the full order filter 
(Kim & Watkins, 2007).  
This paper is organized as follows: In Section 2, notations are introduced. In Section 3, the 
preliminary and main results for the H  filter design are given. In Section 4, the preliminary 
and main results for the fault detection filter design are given. Numerical examples of H  
filter design and the fault detection filter design are shown in Section 5. Concluding remarks 
can be found in Section 6. 

 
2. Notation 
 

The notation that is used here is quite standard. R  is the field of real numbers, nR  is a real 
vector with dimension n  and m nR  is a real matrix with dimensions m n .  RH  is the 
subspace of L  with real and rational functions that are analytic and bounded in the open 
right-half plane, where L  is the set of functions bounded on j -axis including    .  
TB is the transpose of matrix B.  Symbol, *, stands for terms that are induced by symmetry, 

e.g.,  
 

(*) * T T
T TS S S M
K K

M Q M Q
   

   
   

 

 

BRL stands for Bounded Real Lemma, which is standard in robust control theory (Gahinet et 
al., 1996). 

 
3. H  Filter design 
 

3.1 Preliminary result 
The general filtering configuration can be depicted as in Figure 1 where G is the plant, F is 
the filter that will be designed, d is an uncertain disturbance that includes process and 
measurement noise, z is the signal to be estimated, zF is the estimate of z, e is the estimation 
error, and y is the measured output.  

 
Fig. 1. General filtering configuration 
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the estimated output, ( ) md t R  is the disturbance, and ,  ,  ,  A B C D  and L  are of appropriate 
dimensions. To include plant model uncertainties, we formulate them in the form of a 
polytopic model as follows. 
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The formulation is a convex combination, so it is suitable for the LMI approach. This convex 
bounded polytopic mathematical description of model uncertainty is sufficiently general to 
include many uncertain systems with practical appeal. The filter F is attached to the system 
as follows: 
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2
0

( ) ( )T
L

f f t f t dt


                                                                   █ (5) 

 
The goal of the  H  optimal filtering problem is to find a filter F  to minimize the worst 
case estimation error energy 

2L
e over all bounded energy disturbance d, where Fe z z  , 

that is  
 

2

2
2

{0}
min sup L

F d L L

e

d 
                                                                    (6) 

 
Using the induced 2L -gain property of the H  norm, this problem is equivalent to the 
following H  norm minimization problem  
 

min edF
T


                                                                         (7) 

 
where edT  is the transfer function from disturbance d to the estimation error e and the H  
norm is defined as the largest gain over all frequencies such that  
 

max( ) sup ( ( ))ed edT s T j

 


                                                            (8) 

 
where max  denotes maximum singular value of the given function. The  -suboptimal H  
filtering problem is to find a filter F such that  
 

edT 

                                                                          (9) 

 
where   is a given positive scalar.  
To find the transfer function edT , (1) and (4) can be rewritten in augmented form as (10) and 
(11). 
 

cl
F F F F

x Ax Bd
x

x A x B y
   

       





        

= cl cl clA x B d                                                          (10) 

cl F cl cle z z z L x                                                     (11) 
where  

,cl
F

x
x

x
 

  
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0
,cl

F F

A
A

B C A
 

  
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,cl
F

B
B

B D
 

  
 

 and  cl FL L L           (12) 

 
The transfer function of closed system, edT , can be found as: 
 

cl cl cle z L x   
= 1( )cl cl clL sI A B d  edT d                                             (13) 

where                                                          1( )ed cl cl clT L sI A B                                                     (14) 
 
Using the well-known BRL (Gahinet & Apkarian, 1994), the condition in (9) with (14) can be 
described as: 
 

0 0
0

T T
cl cl cl cl
T
cl

cl

PA A P PB L
B P I
L I




 
   
  

                                                  (15) 

 
where ,cl clA B  and clL  are given in (12) and P  is a symmetric positive definite matrix 
variable. Equation (15) satisfies the design requirement as follows: 

a) internal stability: for d=0, the state vector clx  of closed loop system tends to zero as 
time goes to infinity. 

b) performance: The H  norm, edT 
, is less than specified positive scalar  .  

Statement (a) implies quadratic stability and (b) implies quadratic performance. Remember 
that ,cl clA B  and clL  depend on parameter  . Thus, statement (a) should be replaced by 
quadratic stability in the sense of parameter dependency and statement (b) replaced by 
quadratic performance in the sense of parameter dependency. 
 
Definition 3.2 (Gahinet et al., 1996): 
The system of (10) and (11) is said to have AQS (affine quadratic stability) if there exist a 
positive symmetric affine-parameter dependent Lyapunov matrix  
 

1
( )

s

i i
i

P P 


                                                                   (16) 

 
where , ( 1,2, , )iP i s   are symmetric, such that  

( ) ( ) ( ) ( ) 0,T
cl clA P P A                                              █ (17) 

 
Definition 3.3 (Gahinet et al., 1996): 
The system of (10) and (11) is said to have AQP (affine quadratic H  performance) if there 
exists a positive symmetric affine-parameter dependent Lyapunov matrix (16) such that  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 0

( ) 0

T T
cl cl cl cl

T
cl

cl

A P P A P B L
B P I
L I

      
  

 

 
   
  

                               (18) 

 
that holds for all admissible parameter ( 1,2, , )i i s                                                                 █ 
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a) internal stability: for d=0, the state vector clx  of closed loop system tends to zero as 
time goes to infinity. 

b) performance: The H  norm, edT 
, is less than specified positive scalar  .  

Statement (a) implies quadratic stability and (b) implies quadratic performance. Remember 
that ,cl clA B  and clL  depend on parameter  . Thus, statement (a) should be replaced by 
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that holds for all admissible parameter ( 1,2, , )i i s                                                                 █ 
 

www.intechopen.com



Fault Detection430

3.2 Main result 
 

The reduced-order 2H  filtering problem was studied in (Nagpal et al., 1987), and the 
reduced-order H  filtering problem for discrete time systems was studied in (O’Brien & 
Kiriakidis, 2004), but in this section we will develop an H  filtering approach in LMI 
framework that is applicable and easy to compute. Let’s reconsider (18). The matrix 
inequality in (18) is nonlinear because the terms containing the , clP A  and clB  variables 
multiply the unknown variable P  with the unknowns that are included in clA  and clB . 
Finsler’s Lemma is a standard tool to separate filter variables from the Lyapunov matrix P  
(Tuan et al., 2000). The LMI formulation in Theorem 3.4 is very useful for solving the robust 
filtering problem.   
 
Theorem 3.4 (Tuan et al., 2000): 
The LMI  
 

11 12

12 22
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A P PA PB C
P B P Q Q

C Q Q
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 
 

                                                       (19) 

 
has a feasible decision variable P  if and only if, for any choice of 0  , the following LMI 
is feasible in the decision variables V  and P , 
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  
 
 
  

                                     (20) 

 
Proof: refer to (Tuan et al., 2000)                                                                                                        █ 
 
From Theorem 3.4, (18) can be written as  
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 
  

                                      (21) 

 
The parameter   is omitted. The slack variable V has been introduced to separate the 
variable P from the filter design variables.  
To proceed further, the V and P variables should be partitioned as 
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Because the reduced order case is being considered, the filter order k , will be less than or 
equal to the plant order n . The partitioned sub-matrices in (22) will be dimensionalized as 

11( ),V n n  12( ),V n k  21( ),V k n  and 22( )V k k .  Now, we need to enforce some special 
structure on 21V as  
 

21 21 ( )0k n kV V     
                                                               (24) 

 
where 21V  is a k k matrix. We can replace , , ,cl clV P A B  and clL  in (21) with (12), (22), (23) 
and (24). After that, we perform a congruence transformation with the transformation 
matrix 
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3.2 Main result 
 

The reduced-order 2H  filtering problem was studied in (Nagpal et al., 1987), and the 
reduced-order H  filtering problem for discrete time systems was studied in (O’Brien & 
Kiriakidis, 2004), but in this section we will develop an H  filtering approach in LMI 
framework that is applicable and easy to compute. Let’s reconsider (18). The matrix 
inequality in (18) is nonlinear because the terms containing the , clP A  and clB  variables 
multiply the unknown variable P  with the unknowns that are included in clA  and clB . 
Finsler’s Lemma is a standard tool to separate filter variables from the Lyapunov matrix P  
(Tuan et al., 2000). The LMI formulation in Theorem 3.4 is very useful for solving the robust 
filtering problem.   
 
Theorem 3.4 (Tuan et al., 2000): 
The LMI  
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Proof: refer to (Tuan et al., 2000)                                                                                                        █ 
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The parameter   is omitted. The slack variable V has been introduced to separate the 
variable P from the filter design variables.  
To proceed further, the V and P variables should be partitioned as 
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Because the reduced order case is being considered, the filter order k , will be less than or 
equal to the plant order n . The partitioned sub-matrices in (22) will be dimensionalized as 

11( ),V n n  12( ),V n k  21( ),V k n  and 22( )V k k .  Now, we need to enforce some special 
structure on 21V as  
 

21 21 ( )0k n kV V     
                                                               (24) 

 
where 21V  is a k k matrix. We can replace , , ,cl clV P A B  and clL  in (21) with (12), (22), (23) 
and (24). After that, we perform a congruence transformation with the transformation 
matrix 
 

1 1 1
22 21 22 21 22 21diag I V V I V V I I I V V    
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This yields (26)  
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 where 
 

1 21 22 21
T TS V V V                                                                         (27) 

1 1 ( )0k n kS S     
                                                                    (28) 

2 21 22 12
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                                                                         (31) 
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1
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ˆ T TP V V PV V                                                                    (33) 

1
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1
21 22 21

ˆ T
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Remark 3.5: 
The H  filtering solvability condition in (18) is reformulated as the feasibility problem of 

(26) with respect to 1 2 11
ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  ,  F F FA B L S S V P  and   where ˆ 0P  .                                            █ 

 
Remark 3.6: 
The filter matrices ,F FA B  and FL  can be derived by means of the following procedure. 

(i) Compute 22V  and 21V  by solving the factorization problem  
1

1 21 22 21
TS V V V                                                                    (39) 

(ii) Compute ,F FA B  and FL  
1

21 21 22
ˆT

F FA V A V V                                                                 (40) 

21
ˆT

F FB V B                                                                    (41) 
1

21 22
ˆ

F FL L V V                                                                █ (42) 
 
Now, we need to remember that we had a polytopic uncertain system. As explained in 
(Tuan et al., 2000), a parameter dependent Lyapunov matrix ( )P  , such as 
 

1
( ) ( ),

s

i i
i

P P   


                                                            (43) 

 
is symmetric positive definite for all admissible values of  , if and only, if this holds for 
each iP . Therefore, we need to check the solvability of (18) only at the vertices, 1,2, ,i s  . 
This gives us the final form (44) of the LMI (26).  
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 (44) 

 
Consequently, the minimum upper bound   for the reduced order H  filter can be found 
by solving the LMI optimization problem 
 

 
11 1 2

ˆ ˆ ˆ ˆ, , , , , , ,
min : (44)
F F F iV S S A B L P

                                                          (45) 

 
In summary, the  -suboptimal H  reduced order filter for polytopic uncertain 

system can be solved if and only if (44) holds for all vertices, 1,2, ,i s   and the minimum 
value can be found from (45). Also, the triple ( , , )F F FA B L  defining the thk  order filter is 
obtained from (i) and (ii) in Remark 3.6.  

 
4. Fault detection filter design 
 

4.1 Preliminary result 
Let’s consider the following uncertain continuous time linear system described by  
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:

( ) ( ) ( ) ( ) ( )
u f d
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x t Ax t B u t B f t B d t
y t Cx t D u t D f t D d t

            


                                             (46) 

 
where ( ) nx t R  is the state, ( ) my t R  is the measured output, ( ) fnf t R  is the fault, 

( ) dnd t R is the bounded disturbance, and ( ) unu t R is the control signal. Actuator and 
component faults are modeled by ( )fB f t , and sensor faults are modeled by ( )fD f t . Plant 
model uncertainties are modeled in the form of a polytopic model as follows 
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Remark 3.5: 
The H  filtering solvability condition in (18) is reformulated as the feasibility problem of 

(26) with respect to 1 2 11
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Remark 3.6: 
The filter matrices ,F FA B  and FL  can be derived by means of the following procedure. 

(i) Compute 22V  and 21V  by solving the factorization problem  
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Now, we need to remember that we had a polytopic uncertain system. As explained in 
(Tuan et al., 2000), a parameter dependent Lyapunov matrix ( )P  , such as 
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is symmetric positive definite for all admissible values of  , if and only, if this holds for 
each iP . Therefore, we need to check the solvability of (18) only at the vertices, 1,2, ,i s  . 
This gives us the final form (44) of the LMI (26).  
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Consequently, the minimum upper bound   for the reduced order H  filter can be found 
by solving the LMI optimization problem 
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In summary, the  -suboptimal H  reduced order filter for polytopic uncertain 

system can be solved if and only if (44) holds for all vertices, 1,2, ,i s   and the minimum 
value can be found from (45). Also, the triple ( , , )F F FA B L  defining the thk  order filter is 
obtained from (i) and (ii) in Remark 3.6.  

 
4. Fault detection filter design 
 

4.1 Preliminary result 
Let’s consider the following uncertain continuous time linear system described by  
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where ( ) nx t R  is the state, ( ) my t R  is the measured output, ( ) fnf t R  is the fault, 

( ) dnd t R is the bounded disturbance, and ( ) unu t R is the control signal. Actuator and 
component faults are modeled by ( )fB f t , and sensor faults are modeled by ( )fD f t . Plant 
model uncertainties are modeled in the form of a polytopic model as follows 
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where   is a unit simplex such that  
 

1
1

( , , ) : 1, 0
s

s i i
i
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

 
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 
                                        (48) 

 
Because this formulation is a convex combination, it is suitable for an LMI approach.  
Here we assume that the above polytopic system possesses the affine quadratic stability that 
was introduced earlier. Other assumptions that are made for our purpose are that (C, A) is 

detectable and d

d

A j I B
C D
 

 
 

 has full rank for all  . The assumption that (C, A) is 

detectable is standard. The assumption that d

d
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 
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 has full row rank for all   

ensures that d
yd

d

A B
G

C D
 

  
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 has no zeros on the j -axis.  

The proposed fault detection filter (FDF) will have the form  
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The residual ( )r t  is defined as ( ) ( ) ( )r t z t y t  . Thus, the RFDF design problem can be 
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the RFDF problem as an H  model–matching problem (Casavola et al., 2003). However, this 
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where ( )W s  is called reference model (Frisk, 2001) and the transfer matrices, ,rfT  ruT  and 
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The reference model, ( )W s , is an RH  transfer matrix (Chen & Patton, 1999). The idea of a 
reference model has successfully been used to describe signal behavior in other fields like 
controller design and adaptive control. As discussed in (Frisk, 2001), the main function of 
the reference model is to describe the desired behavior of the residual vector r  with respect 
to the faults f . For example, if we want to detect faults in the frequency range between 0 
and 2 radians/s with a -20dB/decade roll-off at the higher frequencies, the reference model, 

( )W s  is given as 2
2s 

. Using the approach in (Casavola et al., 2005a), ( )W s  in (50) is placed 

between the plant and the filter so that the filter can track faults with its specific feature. 
This can increase the robustness of the filter to the specific faults, if the designer can choose 

( )W s  suitably. Thus, the block diagram for the residual error, ( )r t , with tracking filter ( )W s  
is shown in Figure 2. 
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where   is a unit simplex such that  
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Definition 4.1: 
Given positive scalars ,d f   and u , the RFDF design problem using multi-objective H  
optimization is defined as finding ( )F s  that satisfies  
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min( )d d f f u uF s
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The positive scalars ( , ,d f u   ) are used to weight the relative importance of tracking and 
filtering performance. 

 
4.2 Main result 
In this section, LMIs will be used to solve the problem formulated in Section 4.1 for an RFDF. 
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Here, we note that the order of filter is 2F wn n n  , where Fn  is the filter order, wn  is the 
tracking filter order, and n  is the plant order.  
 To simplify (52), we let 
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Using (53), (52) can be rewritten as  
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(54) 
 
Applying the BRL to (51) results in  
 

0 0
0

0
* 0

*

T T
Fd
T
FF F F F

d F

d

LA A BP P P
LB C A B C A

I H
I
I





       
               
 

        
  
 
  

  
 

 

0 0
0

0
* 0

*

T T
Ff
T
FF F F F

f F

f

LA A B
P P P

LB C A B C A

I H
I
I





       
               
 

        
  
 
  

  
 

 

0 0
0

0
* 0

*

T u T
F
T

F FF F F F

u F

u

B
LA A

P P P
B LB C A B C A

I

I H
I
I





  
       

                     
  
    
  
   
 
 
  


  
 

 

(55) 
 
where P  is 2 2F Fn n  Lyapunov function matrix and 0.P   Using the same procedure as in 
(Kim & Watkins, 2006), the matrix inequalities in (55) can be rewritten as (56)  
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(54) 
 
Applying the BRL to (51) results in  
 

0 0
0

0
* 0

*

T T
Fd
T
FF F F F

d F

d

LA A BP P P
LB C A B C A

I H
I
I





       
               
 

        
  
 
  

  
 

 

0 0
0

0
* 0

*

T T
Ff
T
FF F F F

f F

f

LA A B
P P P

LB C A B C A

I H
I
I





       
               
 

        
  
 
  

  
 

 

0 0
0

0
* 0

*

T u T
F
T

F FF F F F

u F

u

B
LA A

P P P
B LB C A B C A

I

I H
I
I





  
       

                     
  
    
  
   
 
 
  


  
 

 

(55) 
 
where P  is 2 2F Fn n  Lyapunov function matrix and 0.P   Using the same procedure as in 
(Kim & Watkins, 2006), the matrix inequalities in (55) can be rewritten as (56)  
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where  
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To reduce the filter order, we’ll need partitions of the V  and P  variables as in (Kim & 
Watkins, 2007),  
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Using the same method as in (Kim & Watkins, 2007), we can solve for the reduced-order 
filter whose filter order is ( )Fk k n . The partitioned sub-matrices in (57) will be 
dimensionalized as 11( ),F FV n n  12 ( ),FV n k  21( ),FV k n  and 22 ( )V k k . We need to enforce 
some special structure on 21V as  
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                                                               (58) 

 
where 21V  is a k k  matrix. Finally, we get three LMIs for the reduced-order RFDF with 
order k  as (59)  
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(59) 
where  
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 
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(56) 
 
where  
 

1 21 22 21
T TS V V V , 2 21 22 12

T T TS V V V , 21
ˆ T
F FB V B , 1 1P̂ P , 1

2 21 22 2 22 21
ˆ T TP V V PV V  , 1

3 3 22 21
ˆT TP P V V , 

1
21 22 21

ˆ T
F FA V A V V , 1

22 21
ˆ
F FL L V V  and 1 3

3 2

ˆ ˆ
ˆ

ˆ ˆ

TP P
P

P P

 
  
  

. 

 
To reduce the filter order, we’ll need partitions of the V  and P  variables as in (Kim & 
Watkins, 2007),  
 

11 12

21 22

V V
V

V V
 

  
 

, 1 3

3 2

TP P
P

P P
 

  
 

                                                        (57) 

 
Using the same method as in (Kim & Watkins, 2007), we can solve for the reduced-order 
filter whose filter order is ( )Fk k n . The partitioned sub-matrices in (57) will be 
dimensionalized as 11( ),F FV n n  12 ( ),FV n k  21( ),FV k n  and 22 ( )V k k . We need to enforce 
some special structure on 21V as  
 

21 21 ( )0
Fk n kV V     

                                                               (58) 

 
where 21V  is a k k  matrix. Finally, we get three LMIs for the reduced-order RFDF with 
order k  as (59)  
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(59) 
where  
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Remark 4.2: 
The filter matrices ( , , )F F FA B L  can be derived by the following procedure:  

(i) Compute 22 21,V V  by solving the factorization problem 1 21 22 21
T TS V V V    with the Schur 

decomposition,  
(ii) Compute , ,F F FA B L : 1

21` 21 22
ˆT

F FA V A V V   
21

ˆT
F FB V B  , 1

21 22
ˆ

F FL L V V                             █ 
 
Now, we need to remember that we had a polytopic uncertain system.  As explained earlier, 

the parameter dependent Lyapunov matrix ( )P  , 
1

( ) ( ),
s

i i
i

P P   


   is symmetric 

positive definite for all admissible values of  , if and only if, all the 'iP s  are positive 
definite. Therefore, we need to check (59) only at the vertices, 1,2, ,i s  . This gives us the 
final form (60) 
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(60) 
 
Theorem 4.3: 
The reduced-order RFDF can be obtained by solving  

 
11 1 2

ˆ ˆ ˆ ˆ, , , , , , , , , ,
min : (60)

F F F F d f u i
d d f f u u

V S S A B L H P  
                                                  (61) 

where ˆ 0P   and ,  ,  and d f u    are given as positive scalars.                                                    █ 
 
In summary, the reduced order RFDF filter in the multi-objective H  formulation for 
polytopic uncertain system can be solved if and only if (60) holds for all vertices, 1,2, ,i s  . 
The minimum value can be found from (61). Also, the filter realization 
( , , , )F F F FA B L H defining the thk  order filter is obtained from (i) and (ii) in Remark 4.2 and 
(61).  
Another important task for fault detection is the evaluation of the generated residual. An 
adaptive threshold will be used in this work. The disadvantage of a fixed threshold is that if 
we fix the threshold too low, it can increase the rate of false alarms. Thus, the optimal choice 
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1 21 22 21
T TS V V V   , 1 1 ( )0
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Remark 4.2: 
The filter matrices ( , , )F F FA B L  can be derived by the following procedure:  

(i) Compute 22 21,V V  by solving the factorization problem 1 21 22 21
T TS V V V    with the Schur 

decomposition,  
(ii) Compute , ,F F FA B L : 1
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F FA V A V V   
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ˆT
F FB V B  , 1

21 22
ˆ

F FL L V V                             █ 
 
Now, we need to remember that we had a polytopic uncertain system.  As explained earlier, 

the parameter dependent Lyapunov matrix ( )P  , 
1

( ) ( ),
s

i i
i

P P   


   is symmetric 

positive definite for all admissible values of  , if and only if, all the 'iP s  are positive 
definite. Therefore, we need to check (59) only at the vertices, 1,2, ,i s  . This gives us the 
final form (60) 
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Theorem 4.3: 
The reduced-order RFDF can be obtained by solving  
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where ˆ 0P   and ,  ,  and d f u    are given as positive scalars.                                                    █ 
 
In summary, the reduced order RFDF filter in the multi-objective H  formulation for 
polytopic uncertain system can be solved if and only if (60) holds for all vertices, 1,2, ,i s  . 
The minimum value can be found from (61). Also, the filter realization 
( , , , )F F F FA B L H defining the thk  order filter is obtained from (i) and (ii) in Remark 4.2 and 
(61).  
Another important task for fault detection is the evaluation of the generated residual. An 
adaptive threshold will be used in this work. The disadvantage of a fixed threshold is that if 
we fix the threshold too low, it can increase the rate of false alarms. Thus, the optimal choice 
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of the magnitude of the threshold depends upon the nature of the system uncertainties and 
varies with the system input. That is called an adaptive threshold. The first step of residual 
evaluation is to choose an evaluation function and to determine the corresponding threshold. 
Among a number of residual evaluation functions, the so-called time windowed root mean 
square (RMS) is often used. The time windowed RMS is represented as  
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where T is the length of the finite time window. Since an evaluation of the residual signal 
over the whole time range is impractical, the time windowed RMS evaluation method is 
used in practice to detect faults as early as possible.  
After selecting the evaluation function, we are able to determine the threshold. A major 
requirement on the fault detection is to reduce or prevent false alarms. Thus, in the absence 
of any faults, 
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Under fault-free conditions, (63) can be described as  
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From Parseval’s Theorem (Zhou et al., 1996) and the RMS norm relationship (Boyd & Barratt, 
1991), the threshold thJ  can be found as follows 
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where u and d come from the optimization problem in (61) and 

,RMS T
d  is calculated or 

bounded by the worst disturbance acting on the plant. Thus in (65), 
,RMS T

d  is evaluated off-

line, while u(t) is assumed to be known and 
,RMS T

u  is calculated on-line. 

 
 
 
 
 
 

5. Example 
 

5.1 H  Filter design 
In this example, we handle two cases, the full order and the reduced order filter design, and 
demonstrate the advantages of this study. We use the example from (Tuan et al., 2000) with 
the plant data  
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where the uncertainty parameters,   and  , have four types of uncertainty sets given by  
 

1, 1                                                                     (67) 

1,                                                                      (68) 

3, 1                                                                     (69) 

3,                                                                      (70) 
 
Table 1 compares results between the filters in (Tuan, 2000, Geromel, 1999, De Souza, 1999) 
and (45) for the four types of uncertainties in (67)-(70).  For the conservative case, a single 
Lyapunov matrix P is used and for the nonconservative case, four different Lyapunov 
matrices P  are used for each vertex. The calculations were done using (Gahinet). An 
arbitrary positive scalar for   should be chosen and the feasibility of the formulation 
should be checked.  If it is feasible, the minimum value of (45) can be found.  

 

Type Filter 
order 

(Gero-
mel, 
1999): 

2edT  

(De 
Souza, 
1999): 

2edT  

(Tuan, 2000): 
2edT  (45): edT 

 

Non 
Conser- 
vative 

Conser- 
vative 

Non 
Conser- 
vative 

Conser- 
vative 

1, 1  

 

full 5.728 4.867 2.382 5.7495 2.965 3.346 
reduced  4.946 3.001 5.8467 3.179 4.304 

1,   

 

full 4.819 4.373 2.382 4.8841 2.948 3.165 
reduced  4.556 3.079 5.0704 3.163 4.023 

3, 1  

 

full     93.365 +  29.106 +  
reduced   106.493 +  29.679 +  

3,   

 

full     100.963 +  28.808 +  
reduced   106.517 +  29.732 +  

Table 1. Performance comparison according to each uncertainty type 
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of the magnitude of the threshold depends upon the nature of the system uncertainties and 
varies with the system input. That is called an adaptive threshold. The first step of residual 
evaluation is to choose an evaluation function and to determine the corresponding threshold. 
Among a number of residual evaluation functions, the so-called time windowed root mean 
square (RMS) is often used. The time windowed RMS is represented as  
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where T is the length of the finite time window. Since an evaluation of the residual signal 
over the whole time range is impractical, the time windowed RMS evaluation method is 
used in practice to detect faults as early as possible.  
After selecting the evaluation function, we are able to determine the threshold. A major 
requirement on the fault detection is to reduce or prevent false alarms. Thus, in the absence 
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where u and d come from the optimization problem in (61) and 
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where the uncertainty parameters,   and  , have four types of uncertainty sets given by  
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Table 1 compares results between the filters in (Tuan, 2000, Geromel, 1999, De Souza, 1999) 
and (45) for the four types of uncertainties in (67)-(70).  For the conservative case, a single 
Lyapunov matrix P is used and for the nonconservative case, four different Lyapunov 
matrices P  are used for each vertex. The calculations were done using (Gahinet). An 
arbitrary positive scalar for   should be chosen and the feasibility of the formulation 
should be checked.  If it is feasible, the minimum value of (45) can be found.  
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The feasibility must be checked because the product term of   and Lyapunov variable P is 
nonlinear. We need to tune   until the LMI solver returns a feasible solution. For any 
choice of 0  , if solvable, it gives a unique solution because of the convexity. For case (67), 
we found that when 7   (45) results in 2.965   for the full order case, and 
when 1.451   (45) results in  3.179   for the reduced order case. From Table 1, we can 
see that the optimization in (45) using parameter-dependent Lyapunov functions does not 
fail in the uncertainty cases of (69) and (70), but the conservative approaches in (De Souza, 
1999, Gahinet) failed for the same cases. In the uncertainty cases of (69) and (70) cases, we 
also found that the conservative application of (Tuan et al., 2000) and our approach in (45), 
i.e., the usage of a single parameter-independent Lyapunov function, also failed.  
The filter data in the full and reduced order cases in (67) were found from (40)-(42). The 
Schur Decomposition method was used to solve the factorization problem in (40). The result 
is shown in Table 2 for the uncertainty case in (67).  
 

Type Filter 
order FA  FB  FL  

1, 1  

 

full 
23.5163 0.6242
6.3142 3.0403
 
  
 

0.0006
0.0031

 
  
 

 588.5549 6.1988

 

reduce
d -0.8396 0.0022 4.0742 

Table 2. Filter synthesis 
 
As we already know, the H  approach in (45) is more robust to uncertainties than the 2H  
approach in (Tuan et al., 2000). To illustrate this, we found the filter data from (Tuan et al., 
2000) and (45) and used (18) to calculate edT 

 for the uncertainty case in (67). Table 3 
shows the result. Therefore, we find that for this example our approach is more robust to 
model uncertainty than former approaches, (Tuan et al., 2000, Geromel, 1999, Gahinet) and 
gives a non-conservative result. 
 

Type Filter order ( .,2000)Tuan et al


 (45) 

3, 1    
Full 11.1939 9.8752 
Reduced 11.3486 10.7081 

Table 3. Performance comparison between (Tuan et al., 2000) and (45) 

 
5.2 Fault detection filter design 
In this section, a numerical example is given. Consider the uncertain LTI plant that is 
borrowed from (Nobrega et al., 2000), but is modified to include uncertainties. The plant is 
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where the uncertainty parameters,  and  , have the uncertainty set given by 1, 1   . 

The selected reference model is 2( )
2

W s
s




. The fault signal f is simulated as a pulse of 

unit amplitude that occurs from 20 to 25 seconds and is zero elsewhere. The input u is taken 
as 0.011 te . The unknown input d is assumed to be band-limited white noise with power 
0.0005.  The upper bound of 

,RMS T
d  is given as 0.15. This value is used to calculate thJ  of 

(70).  
With this information, we can get the RFDF data from (66). For the full order case, we 
checked the detection time with weights set at ( 1d f u     ) and ( 1, 100d f u     ). 
The detection time is defined as the time span where the J -residual (time-windowed 
residual RMS value) exceeds the threshold, thJ . The full order FDF is 4(= Fn ). As the order 
k  of the RFDF is reduced from 4 to 1, the effectiveness of the filter is compared by 
monitoring the detection time. The results are shown in Figures 3 and 4 and Table 4. Table 4 
shows a comparison of the results. In this example, we can see that the fault detection time 
does not change much as the order of the RFDF is reduced. 
 

RFDF Order ( k ) Detection 
time 

4Fk n   
(full) 

1d f u      20.705~34.96 
1, 100d f u      22~34.7 

3k  , ( 1d f u     ) 22.99~31.36 
2k  , ( 1d f u     ) 23.115~31.45 
1k  , ( 1d f u     ) 23.58~31.157 

Table 4. Comparison of the detection time as the order of RFDF is reduced 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Full order signals ( 1d f u     ) 
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The feasibility must be checked because the product term of   and Lyapunov variable P is 
nonlinear. We need to tune   until the LMI solver returns a feasible solution. For any 
choice of 0  , if solvable, it gives a unique solution because of the convexity. For case (67), 
we found that when 7   (45) results in 2.965   for the full order case, and 
when 1.451   (45) results in  3.179   for the reduced order case. From Table 1, we can 
see that the optimization in (45) using parameter-dependent Lyapunov functions does not 
fail in the uncertainty cases of (69) and (70), but the conservative approaches in (De Souza, 
1999, Gahinet) failed for the same cases. In the uncertainty cases of (69) and (70) cases, we 
also found that the conservative application of (Tuan et al., 2000) and our approach in (45), 
i.e., the usage of a single parameter-independent Lyapunov function, also failed.  
The filter data in the full and reduced order cases in (67) were found from (40)-(42). The 
Schur Decomposition method was used to solve the factorization problem in (40). The result 
is shown in Table 2 for the uncertainty case in (67).  
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Table 2. Filter synthesis 
 
As we already know, the H  approach in (45) is more robust to uncertainties than the 2H  
approach in (Tuan et al., 2000). To illustrate this, we found the filter data from (Tuan et al., 
2000) and (45) and used (18) to calculate edT 

 for the uncertainty case in (67). Table 3 
shows the result. Therefore, we find that for this example our approach is more robust to 
model uncertainty than former approaches, (Tuan et al., 2000, Geromel, 1999, Gahinet) and 
gives a non-conservative result. 
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where the uncertainty parameters,  and  , have the uncertainty set given by 1, 1   . 
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The detection time is defined as the time span where the J -residual (time-windowed 
residual RMS value) exceeds the threshold, thJ . The full order FDF is 4(= Fn ). As the order 
k  of the RFDF is reduced from 4 to 1, the effectiveness of the filter is compared by 
monitoring the detection time. The results are shown in Figures 3 and 4 and Table 4. Table 4 
shows a comparison of the results. In this example, we can see that the fault detection time 
does not change much as the order of the RFDF is reduced. 
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Fig. 3. Full order signals ( 1d f u     ) 
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Fig. 4. Reduced order ( 1k  ) signals ( 1d f u     ) 

 
6. Conclusion 
 

In this paper, we developed in detail a practical approach for solving the H  reduced filter 
synthesis problem in an LMI framework and its application for fault detection filter design. 
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