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1. Introduction     

An electric drive consists of an electric machine, which converts electrical power to 
mechanical power, power electronics to operate the machine and a unit to control the 
motion of the drive. These are the components of the drive. Parts of each of these 
components could fail and give rise to specific failure scenarios. The drive types 
investigated in this chapter are limited to asynchronous induction machine and permanent 
magnet synchronous machines, since these are the most common machine types in modern 
electric drive applications. Faults of power electronics are not discussed since most failures 
lead to the outage of the drive as the power electronics usually show no symptoms before 
failure.  
The task of identifying and classifying drive failures from certain measured quantities is 
called fault detection. Under some conditions, fault detection may require certain safety 
protection actions. Example: A turn to turn short circuit in the stator winding of the machine 
is one example for a safety critical issue. If the short remains for a certain time, parts of the 
winding will be destroyed. This in turn could cause winding failures that lead to a larger 
short circuit current which may result in the failure and outage of the entire drive. In this 
sense, a safety critical issue is a time critical issue. If the failure cannot be detected within a 
certain time, the drive will be damaged and fails. It is thus highly demanded to accurately 
detect safety critical faults and to protect the drive (and the application) in this case. 

 
1.1 Classification of Methods 
Condition monitoring of electric drives is motivated by different intentions. According to 
these intentions methods can be classified:   

 The operating conditions of the drive are stored in a specific format. From the 
reported state a maintenance action or a warning for the operator can be triggered. 
Such methods are condition monitoring methods. 

 Some state quantities of the drive can be monitored to be fed back to the operating 
strategy of the drive. Therefore, these classes of methods may be called condition 
based control methods. An estimated operating temperature of, e.g., the winding of 
the stator or rotor of the machine can be used to control the machine such way that 
a certain temperature limit of the windings is not exceeded.  
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 A fault indicator can be used to trigger a protection switch to disconnect the drive 
from the power supply (Farag et al., 1996). In this case the purpose of the condition 
monitoring method is to protect the drive and the method is called a protection 
method. 

Condition monitoring and fault detection of electric drives are very important tasks in order 
to maintain the reliability and safety of the drive. Additionally unexpected failures and 
expensive repair and downtime costs can be avoided or limited this way.  
From a technical point of view condition monitoring and fault detection methods can be 
classified as passive (non-invasive) and active methods.  

 Passive methods utilize measured quantities and derive certain fault or condition 
indicators. These methods are usually applied to mains supplied machines and 
have to no way of influencing the actual operating condition of the drive.  

 Active methods do need any kind of actuator to control the condition of the drive. 
Such an actuator may be either the inverter of the drive or an additional power 
electronics device, connected in series to the feeder cables of the machine.  

Another classification refers to physical domain for where the measured signals are 
acquired from.  

 Electrical monitoring evaluates only electrical signals such as the currents, voltages, 
and – in some cases – the mechanical angle between the rotor and stator by means 
of encoder. For the detection of faults with electrical origin, usually, it is 
advantageous to evaluate electrical signals.  

 Magnetic monitoring assesses the signatures determined from measurement coils. 
Such coils may either be embedded into the stator slots of the machine or are 
located externally as Rogowki coils (Henao et al., 2003). 

 Vibrational monitoring is based on the evaluation of vibrational acceleration or 
velocity.  Mechanical imbalances and faults are difficult to detect by electrical 
quantities. It is thus more reasonable to elaborate vibrational signals for the 
detection of faults with mechanical origin. 

 For thermal monitoring the desired temperature can either be measured directly or 
estimated from state observers or models (Gao et al., 2008a; Kral et al., 2004a).  

 Acoustic monitoring is based on the condition specific sound emissions of a drive 
(Gaylard et al., 1995). The quality of acoustic monitoring, however, is very much 
dependent on the background noise of the environment, the machine is operated 
at. It is therefore very difficult to implement such methods in a real industrial 
environment. 

 For mixed physical domain monitoring methods signals from different domains are 
evaluate and processed.  

In this chapter only electrical monitoring methods are investigated and discussed.  

 
1.2 Structure of Monitoring Methods 
Monitoring methods are usually based on the processing blocks illustrated in Fig. 1. In the 
first processing block the signals are measured. For currents and voltages usually current 
and voltage transducers are used. The rotor speed and the rotor angle, respectively, are 
either retrieved by an encoder or determined from the slotting harmonics of the currents in 
the frequency or time domain (Hurst & Habetler 1996; Kral et al., 2006). Alternative 

monitoring methods may measure other quantities such as temperatures, the vibrations of 
the housing, acoustic emissions or the flux in internal or external coils. 
 

 
Fig. 1. Block diagram of methods for the detection of machine conditions and faults 
 
Signal conditioning includes some initial processing of the measured quantities. Such 
processing includes the calculation of the phase voltages and the currents from the 
measured quantities, depending on whether the connection of the machine is either wye or 
delta. Additionally, for some methods the space phasors  
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are determined from the phase voltages 1v , 2v , 3v  and phase currents 1i , 2i , 3i . 
The evaluation method incorporates knowledge on the computation of internal machine 
quantities or fault signatures from the measured signals. An internal quantity could be, e.g., 
the stator or rotor temperature of the machine. An example of a fault signature is the 
harmonic component of the current that indicates an electrical asymmetry of the squirrel 
cage of an induction machine. In this sense, physical or empirical models or practical 
findings are applied to indicate the condition of the machine.  
If a sound knowledge based on the physical context of certain conditions exists, the 
assessment of the condition is straight forward. Example: The stator temperature of a 
machine is estimated by means of condition monitoring technique. The insulation of the 
stator winding is specified for a specific insulation class and maximum operating 
temperature. In this context it is clear that if the maximum operating temperature is 
exceeded, the machine may be damaged. If the stator temperature is integrated into the 
control of the load of the machine, the set values for the load can be modified such way, that 
maximum operating temperature is not exceeded. In another application one wants to 
predict how long the machine can be operated if it is operated above the maximum 
temperature. Even if the manufacturer of insulation materials provide life cycle curves 
which assess the total life time as a function of the operating temperature, it may still be 
difficult to forecast the remaining life time in an application. From this example the reader 
can suspect that it is very difficult the give a precise answer to the question: How long is it 
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 A fault indicator can be used to trigger a protection switch to disconnect the drive 
from the power supply (Farag et al., 1996). In this case the purpose of the condition 
monitoring method is to protect the drive and the method is called a protection 
method. 

Condition monitoring and fault detection of electric drives are very important tasks in order 
to maintain the reliability and safety of the drive. Additionally unexpected failures and 
expensive repair and downtime costs can be avoided or limited this way.  
From a technical point of view condition monitoring and fault detection methods can be 
classified as passive (non-invasive) and active methods.  

 Passive methods utilize measured quantities and derive certain fault or condition 
indicators. These methods are usually applied to mains supplied machines and 
have to no way of influencing the actual operating condition of the drive.  

 Active methods do need any kind of actuator to control the condition of the drive. 
Such an actuator may be either the inverter of the drive or an additional power 
electronics device, connected in series to the feeder cables of the machine.  

Another classification refers to physical domain for where the measured signals are 
acquired from.  

 Electrical monitoring evaluates only electrical signals such as the currents, voltages, 
and – in some cases – the mechanical angle between the rotor and stator by means 
of encoder. For the detection of faults with electrical origin, usually, it is 
advantageous to evaluate electrical signals.  

 Magnetic monitoring assesses the signatures determined from measurement coils. 
Such coils may either be embedded into the stator slots of the machine or are 
located externally as Rogowki coils (Henao et al., 2003). 

 Vibrational monitoring is based on the evaluation of vibrational acceleration or 
velocity.  Mechanical imbalances and faults are difficult to detect by electrical 
quantities. It is thus more reasonable to elaborate vibrational signals for the 
detection of faults with mechanical origin. 

 For thermal monitoring the desired temperature can either be measured directly or 
estimated from state observers or models (Gao et al., 2008a; Kral et al., 2004a).  

 Acoustic monitoring is based on the condition specific sound emissions of a drive 
(Gaylard et al., 1995). The quality of acoustic monitoring, however, is very much 
dependent on the background noise of the environment, the machine is operated 
at. It is therefore very difficult to implement such methods in a real industrial 
environment. 

 For mixed physical domain monitoring methods signals from different domains are 
evaluate and processed.  

In this chapter only electrical monitoring methods are investigated and discussed.  

 
1.2 Structure of Monitoring Methods 
Monitoring methods are usually based on the processing blocks illustrated in Fig. 1. In the 
first processing block the signals are measured. For currents and voltages usually current 
and voltage transducers are used. The rotor speed and the rotor angle, respectively, are 
either retrieved by an encoder or determined from the slotting harmonics of the currents in 
the frequency or time domain (Hurst & Habetler 1996; Kral et al., 2006). Alternative 

monitoring methods may measure other quantities such as temperatures, the vibrations of 
the housing, acoustic emissions or the flux in internal or external coils. 
 

 
Fig. 1. Block diagram of methods for the detection of machine conditions and faults 
 
Signal conditioning includes some initial processing of the measured quantities. Such 
processing includes the calculation of the phase voltages and the currents from the 
measured quantities, depending on whether the connection of the machine is either wye or 
delta. Additionally, for some methods the space phasors  
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are determined from the phase voltages 1v , 2v , 3v  and phase currents 1i , 2i , 3i . 
The evaluation method incorporates knowledge on the computation of internal machine 
quantities or fault signatures from the measured signals. An internal quantity could be, e.g., 
the stator or rotor temperature of the machine. An example of a fault signature is the 
harmonic component of the current that indicates an electrical asymmetry of the squirrel 
cage of an induction machine. In this sense, physical or empirical models or practical 
findings are applied to indicate the condition of the machine.  
If a sound knowledge based on the physical context of certain conditions exists, the 
assessment of the condition is straight forward. Example: The stator temperature of a 
machine is estimated by means of condition monitoring technique. The insulation of the 
stator winding is specified for a specific insulation class and maximum operating 
temperature. In this context it is clear that if the maximum operating temperature is 
exceeded, the machine may be damaged. If the stator temperature is integrated into the 
control of the load of the machine, the set values for the load can be modified such way, that 
maximum operating temperature is not exceeded. In another application one wants to 
predict how long the machine can be operated if it is operated above the maximum 
temperature. Even if the manufacturer of insulation materials provide life cycle curves 
which assess the total life time as a function of the operating temperature, it may still be 
difficult to forecast the remaining life time in an application. From this example the reader 
can suspect that it is very difficult the give a precise answer to the question: How long is it 
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possible to operate the machine without failing, considering the given conditions or fault 
condition. The final question in this context is: when does the operator have to schedule 
maintenance for the machine. In the literature mostly condition monitoring and fault 
detection methods are investigated without having the focus on fault assessment (Kral et al., 
2003). Only little effort has been spent on the prediction of the remaining life time of 
machines so far – because the subject is so complex and time and cost intense.  

 
2. Faults in Permanent Magnet Synchronous Machines 

The high power density and high efficiency of the permanent magnet (PM) machine has led 
to the use of this machine in applications in which the high reliability is a key feature, such 
as aerospace/aircraft actuators, automotive auxiliaries and traction, and other industrial and 
stand-by power generation applications.  The switched reluctance motor drives are often 
used for these applications because of their inherent fault tolerance (Mecrow et al., 1996).  
While this is true, the switched reluctance machine has a lower power density compared to 
the PM machine, and therefore is often undesirable.  If PM drives are to be considered for 
these applications, they have to be designed to be very reliable.  Redundancy and 
conservative designs have been used for improving the reliability of these drives against the 
variety of faults that can occur (Bianchi et al., 1996).  As an alternative to these expensive 
solutions, considerable diagnostic strategies and control schemes have been devised to 
ensure a fault tolerant drive. 
Permanent magnet machines can be divided into two types: permanent magnet 
synchronous machines (PMSMs) (which have sinusoidal induced stator voltages), and 
brushless DC machines (BLDCMs) (which have trapezoidal induced stator voltages).  PM 
machines have been very desirable since their torque density and efficiency is higher than 
any other machine type.  However, like all machines, they can fail.  Moreover, due to the 
presence of rotating permanent magnets, damage to the machine can progress even if the 
stator is disconnected from the line.  Fault diagnosis, condition monitoring, and fault 
tolerant operation of PM machines is very important, if not critical.    

 
2.1 Detecting Faults in Permanent Magnets 
Rotor magnet defects can be detected by observing the motor current for the same 
frequencies as given by equation (7) below (Rajagopalan et al., 2004).  They can also be 
detected by estimating the strength of the permanent magnet as demonstrated for PMSMs in 
(Le Roux et al., 2003).  Estimating the instantaneous or RMS back-EMF gives a measure of 
the flux linkages resulting from the rotor excitation, making it possible to estimate the 
magnet strength.  There are some examples in the literature of estimating the back-EMF, for 
example in (Wang et al., 2001). 
One method for detecting magnet problems is by estimating the d-axis magnet flux linking 
the stator windings in the synchronous reference frame (Le Roux et al., 2003).  This method 
is derived in the rotor reference frame. The instantaneous value of the d-axis permanent 
magnet flux linking the stator windings, ( )

r
d pm , is estimated by, (averaging the current over 

an integer number of fundamental periods), 
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strength.  In many applications, the rotor angle might not be available to determine the 
currents and voltages in the rotor rotating reference frame.  For these reasons, the estimation 
is best done in the synchronous reference frame, by averaging ( )
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Fig. 2. Estimated magnet strength for different rotor faults at different operating conditions 
(SL: 640 rpm, 3 Nm; SH: 640 rpm, 6 Nm; FL: 1280 rpm, 4.4 Nm, FH: 1280 rpm, 8.7 Nm) 

 
This method to estimate the magnet strength with (4) was implemented on the 
measurement data of a normal motor case and all the rotor fault cases.  The results of this 
estimation on these motors operating at different speed and loads are shown in Fig. 2. 
For BLDC machines, magnet fault can be found by estimating the mean value of the torque 
constant, Kt (Rajagopalan et al., 2004).  For brushless dc machines (BLDC), this is simply the 
mean value of the added back-EMFs of the two conducting phases in any particular 60-
degree rotor position region. 
The method averages the supply voltage (V) and twice the DC-link current (Idc) multiplied 
by the stator resistance (rs) in every 60-degree region of rotor position during steady-state 
operation.  However, this estimation neglects the variations in stator inductances.  The 
estimation works better when the back-EMF (E) is used directly, but this is not available on a 
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possible to operate the machine without failing, considering the given conditions or fault 
condition. The final question in this context is: when does the operator have to schedule 
maintenance for the machine. In the literature mostly condition monitoring and fault 
detection methods are investigated without having the focus on fault assessment (Kral et al., 
2003). Only little effort has been spent on the prediction of the remaining life time of 
machines so far – because the subject is so complex and time and cost intense.  
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The high power density and high efficiency of the permanent magnet (PM) machine has led 
to the use of this machine in applications in which the high reliability is a key feature, such 
as aerospace/aircraft actuators, automotive auxiliaries and traction, and other industrial and 
stand-by power generation applications.  The switched reluctance motor drives are often 
used for these applications because of their inherent fault tolerance (Mecrow et al., 1996).  
While this is true, the switched reluctance machine has a lower power density compared to 
the PM machine, and therefore is often undesirable.  If PM drives are to be considered for 
these applications, they have to be designed to be very reliable.  Redundancy and 
conservative designs have been used for improving the reliability of these drives against the 
variety of faults that can occur (Bianchi et al., 1996).  As an alternative to these expensive 
solutions, considerable diagnostic strategies and control schemes have been devised to 
ensure a fault tolerant drive. 
Permanent magnet machines can be divided into two types: permanent magnet 
synchronous machines (PMSMs) (which have sinusoidal induced stator voltages), and 
brushless DC machines (BLDCMs) (which have trapezoidal induced stator voltages).  PM 
machines have been very desirable since their torque density and efficiency is higher than 
any other machine type.  However, like all machines, they can fail.  Moreover, due to the 
presence of rotating permanent magnets, damage to the machine can progress even if the 
stator is disconnected from the line.  Fault diagnosis, condition monitoring, and fault 
tolerant operation of PM machines is very important, if not critical.    

 
2.1 Detecting Faults in Permanent Magnets 
Rotor magnet defects can be detected by observing the motor current for the same 
frequencies as given by equation (7) below (Rajagopalan et al., 2004).  They can also be 
detected by estimating the strength of the permanent magnet as demonstrated for PMSMs in 
(Le Roux et al., 2003).  Estimating the instantaneous or RMS back-EMF gives a measure of 
the flux linkages resulting from the rotor excitation, making it possible to estimate the 
magnet strength.  There are some examples in the literature of estimating the back-EMF, for 
example in (Wang et al., 2001). 
One method for detecting magnet problems is by estimating the d-axis magnet flux linking 
the stator windings in the synchronous reference frame (Le Roux et al., 2003).  This method 
is derived in the rotor reference frame. The instantaneous value of the d-axis permanent 
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This method to estimate the magnet strength with (4) was implemented on the 
measurement data of a normal motor case and all the rotor fault cases.  The results of this 
estimation on these motors operating at different speed and loads are shown in Fig. 2. 
For BLDC machines, magnet fault can be found by estimating the mean value of the torque 
constant, Kt (Rajagopalan et al., 2004).  For brushless dc machines (BLDC), this is simply the 
mean value of the added back-EMFs of the two conducting phases in any particular 60-
degree rotor position region. 
The method averages the supply voltage (V) and twice the DC-link current (Idc) multiplied 
by the stator resistance (rs) in every 60-degree region of rotor position during steady-state 
operation.  However, this estimation neglects the variations in stator inductances.  The 
estimation works better when the back-EMF (E) is used directly, but this is not available on a 
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physical machine.  However, the estimated magnet strength is independent of other faults 
such as the dynamic and static eccentricities, implying that this estimation could still be 
used to detect a decrease in the magnet strength.  Thus, the estimation of the magnet 
strength is given by, 
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2.2 Detection of Rotor Eccentricity 
Load unbalance, misalignment, improper mounting, and a bent rotor shaft can all cause 
rotor eccentricities.  These eccentricities can be divided into static and dynamic eccentricities 
(Fig. 3). Static eccentricity is when the rotor is shifted from its normal position at the center 
of the stator and it rotates in that position.  With dynamic eccentricity, the rotor is also 
shifted from the normal position, but now rotates around the center of the stator.  These 
rotor faults cause problems such as vibration and noise due to unbalanced magnetic pull 
(UMP).  It also causes dynamic problems by adding to torque pulsations. 
 

 
Fig. 3. (a) centric rotor, (b) rotor with static eccentricity, (c) rotor with dynamic eccentricity 
 
Past research in the detection of rotor eccentricities in induction motors has shown that these 
faults affect certain frequency components in the stator current which can be monitored for 
use in diagnosing a fault (see section 3).  These frequency components (Cameron et al., 1986) 
and are given by equation (20) in section 3.4 below.  Setting k, c, and o in (20) to the 
appropriate integers yields the frequencies that have to be monitored to detect dynamic 
eccentricity.  Setting c = 0, yields the principle slot harmonics, which are the frequencies that 
have to be monitored to detect static eccentricity.  However (20) is of little practical use as 
the knowledge of stator slots is not available and BLDC machines do not have rotor slots. 
Dynamic eccentricity in induction motors causes current components at frequencies of, 
(Dorrell et al., 1997), 
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This equation is the same as equation (18) below, except with slip equal to zero.  In (6), fde is 
the dynamic eccentricity frequency, fe is the fundamental frequency, and m is any integer.  In 
the presence of dynamic and static eccentricity, current components at the rotating 
frequency sidebands of fde can be monitored.  This equation can be adapted for use in 
diagnosis of permanent magnet machines too (Le Roux et al., 2002).  In the case of BLDC 
motor drives, there is no rotor slip.  Also, there are no rotor bars or rotor windings and 

therefore there are no rotor slots.  This means that R = 0 and s = 0 in (6).  Thus, the only 
frequencies that can be used to detect dynamic eccentricity are those given in (6) and integer 
multiples of the supply frequency harmonics, thus m.fe.  The only frequencies that are 
influenced by static eccentricity are the integer multiples of the supply frequency harmonics 
(setting R = s = c = 0).  
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Fig. 4. Comparison of good motor current spectrum to a motor with a dynamic eccentricity 
 
The harmonic spectrum of a good 6-pole PMSM and the same machine with a dynamic 
eccentricity are shown in Fig. 4.  Note the presence of the sidebands of the fundamental at 
the rotating frequency. 

 
2.3 Detection of Stator Faults 
The different types of stator turn faults are depicted in Fig. 5.  The first stage is small shorts 
between turns in the same winding. Among the five failure modes, turn-to-turn faults 
(stator turn fault) have been considered the most challenging one since the other types of 
failures are usually the consequence of turn faults.  Furthermore, turn faults are very 
difficult to detect at their initial stages.   
Conventional turn fault detection schemes merely monitor the negative sequence 
component of line currents (or the effective negative sequence impedance) and rely on 
mathematical models for symmetrical induction machines to account for the effect of 
unbalanced supply voltages on the negative sequence current (Kliman, 1996).  However, 
neglecting inherent asymmetries can lead to misdetection, with catastrophic consequences.  
The issue of inherent asymmetries can be addressed by using a neural network-based 
approach (Tallam et al., 2000).  
While this technique has been shown to give very good results for line-connected induction 
machines, it is often not suitable to PM synchronous machine applications since the current 
controller in the drive attempt to regulate the current to track the reference value.  Since the 
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physical machine.  However, the estimated magnet strength is independent of other faults 
such as the dynamic and static eccentricities, implying that this estimation could still be 
used to detect a decrease in the magnet strength.  Thus, the estimation of the magnet 
strength is given by, 
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Past research in the detection of rotor eccentricities in induction motors has shown that these 
faults affect certain frequency components in the stator current which can be monitored for 
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and are given by equation (20) in section 3.4 below.  Setting k, c, and o in (20) to the 
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frequency sidebands of fde can be monitored.  This equation can be adapted for use in 
diagnosis of permanent magnet machines too (Le Roux et al., 2002).  In the case of BLDC 
motor drives, there is no rotor slip.  Also, there are no rotor bars or rotor windings and 

therefore there are no rotor slots.  This means that R = 0 and s = 0 in (6).  Thus, the only 
frequencies that can be used to detect dynamic eccentricity are those given in (6) and integer 
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Fig. 4. Comparison of good motor current spectrum to a motor with a dynamic eccentricity 
 
The harmonic spectrum of a good 6-pole PMSM and the same machine with a dynamic 
eccentricity are shown in Fig. 4.  Note the presence of the sidebands of the fundamental at 
the rotating frequency. 

 
2.3 Detection of Stator Faults 
The different types of stator turn faults are depicted in Fig. 5.  The first stage is small shorts 
between turns in the same winding. Among the five failure modes, turn-to-turn faults 
(stator turn fault) have been considered the most challenging one since the other types of 
failures are usually the consequence of turn faults.  Furthermore, turn faults are very 
difficult to detect at their initial stages.   
Conventional turn fault detection schemes merely monitor the negative sequence 
component of line currents (or the effective negative sequence impedance) and rely on 
mathematical models for symmetrical induction machines to account for the effect of 
unbalanced supply voltages on the negative sequence current (Kliman, 1996).  However, 
neglecting inherent asymmetries can lead to misdetection, with catastrophic consequences.  
The issue of inherent asymmetries can be addressed by using a neural network-based 
approach (Tallam et al., 2000).  
While this technique has been shown to give very good results for line-connected induction 
machines, it is often not suitable to PM synchronous machine applications since the current 
controller in the drive attempt to regulate the current to track the reference value.  Since the 
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current is regulated, the effect of the asymmetry from the fault is now reflected in the motor 
voltage. For this reason, voltage-based turn fault detection methods have been proposed, 
but require additional voltage sensors and cables. 
 

Open Circuit
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Line-to-Line

Line-to-ground  
Fig. 5. Possible failure modes in wye-connected stator windings 
 
By modeling a machine with a turn fault, it can be concluded that a bolted turn fault reduces 
the positive sequence components of the machine impedances and back-emf voltages, while 
increasing the negative sequence and coupling terms in the impedance matrix at the same 
time.  The positive sequence current slightly increases under a stator turn fault condition in 
a mains-fed application where the power supply is a fixed voltage source (Lee et al., 2002).  
In a Current Controlled Voltage Sourced Inverter (CCVSI)-driven application, the inverter 
controls the line currents so as to follow their references by introducing negative sequence 
voltage and reducing positive sequence voltage under a stator turn fault condition (Lee et 
al., 2007).  Since the inverter output voltages are produced according to the voltage 
references that are generated through the current controllers, the variations in the machine 
parameters will be reflected into the voltage references.  This implies that for a given 
rotating speed and current references (or alternatively torque reference), the presence of a 
stator turn fault results in a reduced positive sequence component and an increased 
negative sequence component of the voltage references as compared to a machine without a 
turn fault.  Thus, it can be concluded that the differences in positive and negative sequence 
components of the voltage references, for a given torque reference and rotating speed, under 
a stator turn fault and fault-free conditions can indicate the occurrence of a stator turn fault.  
The voltage references in the rotating and stationary reference frame until fault and no-fault 
conditions are shown in Fig. 6. 
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Fig. 6. Voltage references under fault-free and turn fault conditions 

 
2.4 Fault Tolerant Operation 
Turn faults are particularly problematic in Interior Permanent Magnet Synchronous 
Machine (IPMSM) drives in safety-critical applications.  This is due to the fact that the 
rotating magnet can often not be stopped when a fault occurs, and therefore the fault 
current is allowed to flow until catastrophic or dangerous thermal damage is done to the 
machine.  Therefore, PM machines not only require a reliable turn fault detection method, 
but also imperatively require a proper remedial action that can maintain the drive’s 
uninterrupted operation.   
The most desirable characteristic of a remedial action is to maintain the drive’s 
uninterrupted operation without any degradation in the performance characteristics of the 
drive in the presence of a stator turn fault.  Unfortunately, this is very difficult to achieve, 
and only redundancy-based approaches can solve this difficulty.  But these approaches can 
be justified in specific applications.  In transit applications such as traction drives, an 
uninterrupted operation during a short period of time, even with a limp operation, can 
prevent injury or death.   
A simple stator turn fault-tolerant strategy for IPMSM drives that does not require any 
hardware modification to the standard drive configuration has been proposed (Lee et al., 
2006).  This strategy does not result in the complete loss of availability of the drive.  
Generally, the asymmetry in the stator voltages resulting from a stator turn fault has only a 
small effect on the overall stator voltage.  Therefore the amplitude of the faulty phase 

voltage is almost the same as that of the complex stator voltage vector ( e
sv ) in the 

synchronous rotating reference frame.  Consequently, current in the faulted winding is 
given by, 
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current is regulated, the effect of the asymmetry from the fault is now reflected in the motor 
voltage. For this reason, voltage-based turn fault detection methods have been proposed, 
but require additional voltage sensors and cables. 
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Fig. 5. Possible failure modes in wye-connected stator windings 
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negative sequence component of the voltage references as compared to a machine without a 
turn fault.  Thus, it can be concluded that the differences in positive and negative sequence 
components of the voltage references, for a given torque reference and rotating speed, under 
a stator turn fault and fault-free conditions can indicate the occurrence of a stator turn fault.  
The voltage references in the rotating and stationary reference frame until fault and no-fault 
conditions are shown in Fig. 6. 
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Fig. 6. Voltage references under fault-free and turn fault conditions 
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Machine (IPMSM) drives in safety-critical applications.  This is due to the fact that the 
rotating magnet can often not be stopped when a fault occurs, and therefore the fault 
current is allowed to flow until catastrophic or dangerous thermal damage is done to the 
machine.  Therefore, PM machines not only require a reliable turn fault detection method, 
but also imperatively require a proper remedial action that can maintain the drive’s 
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The most desirable characteristic of a remedial action is to maintain the drive’s 
uninterrupted operation without any degradation in the performance characteristics of the 
drive in the presence of a stator turn fault.  Unfortunately, this is very difficult to achieve, 
and only redundancy-based approaches can solve this difficulty.  But these approaches can 
be justified in specific applications.  In transit applications such as traction drives, an 
uninterrupted operation during a short period of time, even with a limp operation, can 
prevent injury or death.   
A simple stator turn fault-tolerant strategy for IPMSM drives that does not require any 
hardware modification to the standard drive configuration has been proposed (Lee et al., 
2006).  This strategy does not result in the complete loss of availability of the drive.  
Generally, the asymmetry in the stator voltages resulting from a stator turn fault has only a 
small effect on the overall stator voltage.  Therefore the amplitude of the faulty phase 

voltage is almost the same as that of the complex stator voltage vector ( e
sv ) in the 
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Where Rf is the resistance of shorted section of the winding,  is the fraction of the winding 
that is shorted, Lls is the leakage inductance, and L1 is the average self inductance of the 
winding, and L2 is the first harmonic magnitude of the self inductance.  This equation 
implies that an appropriate selection of q- and d-axis current combination for a given 
operating condition can reduce the stator voltage significantly; consequently, a significant 
reduction in fi is achievable while maintaining the given operating condition.   

 
2.5 Fault Detection under Non-Stationary Conditions (Rajagopalan et al., 2005) 
Operating conditions of an electric motor usually change rapidly over time.  Diagnostics of 
motor faults in such conditions is a challenging problem due to the need for application of 
sophisticated signal processing techniques that can process non-stationary signals.  While 
some research has been reported in the detection of faults in induction motors operating 
under very slowly varying speed and load conditions (Yazici et al., 1999 and Kim et al., 
2002), no research has been reported in the diagnosis of faults in motors operating under 
rapidly varying operating conditions. 
The classical technique for characterizing the time evolution of non-stationary signals is the 
short-time Fourier transform (STFT), a linear time frequency representation (TFR) analysis 
technique.  Though simple and rugged, the STFT still assumes that the non-stationary signal 
is slowly changing in the chosen time window.  This and the choice of window length 
impair the use of STFT at low frequencies or when the signal is changing very fast 
dynamically.  Beginning with the Wigner-Ville distribution a plethora of quadratic TFR 
techniques have been introduced in an attempt to improve the time-frequency detail over 
that achievable with the STFT (Marple et al., 1998).  They have been extensively used in the 
area of mechanical engineering for detection of gear faults.   
The use of quadratic TFRs has been presented as a solution for the diagnostics of rotor faults 
in electric motors operating under non-stationary load and speed conditions.  Although the 
method could be applied to any motor, its application is limited in this discussion to BLDC 
motors.  Four time-frequency representations have been considered – Wigner-Ville 
distribution (WVD) (Cohen, 1989), Choi-Williams Distribution (CWD) (Choi et al., 1989), 
and the Zhao-Atlas Marks Distribution (ZAM) (Zaho et al., 1990).  The use of time-frequency 
distributions has proven suitable for detection of rotor faults in electric motors operating 
under continuous non-stationary conditions.  However, the need to provide high frequency 
resolution along with good cross-term suppression leads to complicated kernels requiring 
large amounts of processing power.  
Some of the commonly used TFRs have been implemented on a DSP platform to study their 
computational loads.  It is observed that quadratic TFRs such as WVD and CWD are 
computationally more intensive than linear TFRs such as the spectrogram.  The quadratic 
TFRs however provide much better frequency resolution and localization of energy with the 
ZAM distribution exhibiting the best performance.  The CWD in particular is a good trade-
off between the excellent frequency resolution of the WVD and the high cross-term 
suppression of the ZAM distribution.  These distributions also do not depend on the size 
and type of the window as in the spectrogram.  The increased computational load is the 
price paid if a better frequency resolution and good localization of energy is needed.  In 
spite of the increased complexity involved, the computation time of a CWD is still in the 
order of a few tens of micro-seconds and hence is amenable to implementation in real-time. 
This computational time can be further decreased by paralleling several micro-programmed 

systems and using more optimized software routines.  The results of Fig. 7 show that the 
fault frequency magnitudes can be clearly seen even in the case of a time-varying 
fundamental frequency for the machine. 
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Fig. 7. CWD of a simulated BLDCM rotor fault. 

 
3. Faults in Induction Machines 

Many fault statistics have been published for induction machines, e.g., (Bell et al., 1985). In 
these statistics the failure causes are classified. In most statistics the majority of failures are 
due to bearing and stator faults. Since these statistics mostly refer to industrial applications 
the statistics may look different for, e.g., railway traction drives. Additionally, any statistic is 
inherently incomplete, since it very much depends on the boundary conditions and the 
integrity of the determined data. However, induction machine conditions are usually 
classified as: 

 Stator faults are electrical faults in the stator winding of the machine. Stator faults 
may be turn to turn faults, interturn faults, phase to phase faults, and phase to 
ground faults.  

 Rotor faults refer to electrical faults of the rotor of an induction machines. Since 
most machines have a squirrel cage rotor, these faults are also called cage faults. 

 The determination of the stator and rotor temperature is of particular interest for the 
conditional monitoring and control of the machine. The temperature does not 
directly indicate a fault, but may be an indicator of disadvantageous operating 
conditions or severe stress to the machine.   

 Eccentricity faults are caused by mechanical imbalances, misalignments, bent shafts, 
or non-uniform air gaps. These eccentricities may be caused by the machine, the 
mechanical coupling or the mechanical load or any combinations of these. To a 
certain extent eccentricity faults can be detected by means of electrical 
measurements over the reaction of magnetic field air gap on the stator currents.  
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Where Rf is the resistance of shorted section of the winding,  is the fraction of the winding 
that is shorted, Lls is the leakage inductance, and L1 is the average self inductance of the 
winding, and L2 is the first harmonic magnitude of the self inductance.  This equation 
implies that an appropriate selection of q- and d-axis current combination for a given 
operating condition can reduce the stator voltage significantly; consequently, a significant 
reduction in fi is achievable while maintaining the given operating condition.   
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Operating conditions of an electric motor usually change rapidly over time.  Diagnostics of 
motor faults in such conditions is a challenging problem due to the need for application of 
sophisticated signal processing techniques that can process non-stationary signals.  While 
some research has been reported in the detection of faults in induction motors operating 
under very slowly varying speed and load conditions (Yazici et al., 1999 and Kim et al., 
2002), no research has been reported in the diagnosis of faults in motors operating under 
rapidly varying operating conditions. 
The classical technique for characterizing the time evolution of non-stationary signals is the 
short-time Fourier transform (STFT), a linear time frequency representation (TFR) analysis 
technique.  Though simple and rugged, the STFT still assumes that the non-stationary signal 
is slowly changing in the chosen time window.  This and the choice of window length 
impair the use of STFT at low frequencies or when the signal is changing very fast 
dynamically.  Beginning with the Wigner-Ville distribution a plethora of quadratic TFR 
techniques have been introduced in an attempt to improve the time-frequency detail over 
that achievable with the STFT (Marple et al., 1998).  They have been extensively used in the 
area of mechanical engineering for detection of gear faults.   
The use of quadratic TFRs has been presented as a solution for the diagnostics of rotor faults 
in electric motors operating under non-stationary load and speed conditions.  Although the 
method could be applied to any motor, its application is limited in this discussion to BLDC 
motors.  Four time-frequency representations have been considered – Wigner-Ville 
distribution (WVD) (Cohen, 1989), Choi-Williams Distribution (CWD) (Choi et al., 1989), 
and the Zhao-Atlas Marks Distribution (ZAM) (Zaho et al., 1990).  The use of time-frequency 
distributions has proven suitable for detection of rotor faults in electric motors operating 
under continuous non-stationary conditions.  However, the need to provide high frequency 
resolution along with good cross-term suppression leads to complicated kernels requiring 
large amounts of processing power.  
Some of the commonly used TFRs have been implemented on a DSP platform to study their 
computational loads.  It is observed that quadratic TFRs such as WVD and CWD are 
computationally more intensive than linear TFRs such as the spectrogram.  The quadratic 
TFRs however provide much better frequency resolution and localization of energy with the 
ZAM distribution exhibiting the best performance.  The CWD in particular is a good trade-
off between the excellent frequency resolution of the WVD and the high cross-term 
suppression of the ZAM distribution.  These distributions also do not depend on the size 
and type of the window as in the spectrogram.  The increased computational load is the 
price paid if a better frequency resolution and good localization of energy is needed.  In 
spite of the increased complexity involved, the computation time of a CWD is still in the 
order of a few tens of micro-seconds and hence is amenable to implementation in real-time. 
This computational time can be further decreased by paralleling several micro-programmed 

systems and using more optimized software routines.  The results of Fig. 7 show that the 
fault frequency magnitudes can be clearly seen even in the case of a time-varying 
fundamental frequency for the machine. 
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Fig. 7. CWD of a simulated BLDCM rotor fault. 

 
3. Faults in Induction Machines 

Many fault statistics have been published for induction machines, e.g., (Bell et al., 1985). In 
these statistics the failure causes are classified. In most statistics the majority of failures are 
due to bearing and stator faults. Since these statistics mostly refer to industrial applications 
the statistics may look different for, e.g., railway traction drives. Additionally, any statistic is 
inherently incomplete, since it very much depends on the boundary conditions and the 
integrity of the determined data. However, induction machine conditions are usually 
classified as: 

 Stator faults are electrical faults in the stator winding of the machine. Stator faults 
may be turn to turn faults, interturn faults, phase to phase faults, and phase to 
ground faults.  

 Rotor faults refer to electrical faults of the rotor of an induction machines. Since 
most machines have a squirrel cage rotor, these faults are also called cage faults. 

 The determination of the stator and rotor temperature is of particular interest for the 
conditional monitoring and control of the machine. The temperature does not 
directly indicate a fault, but may be an indicator of disadvantageous operating 
conditions or severe stress to the machine.   

 Eccentricity faults are caused by mechanical imbalances, misalignments, bent shafts, 
or non-uniform air gaps. These eccentricities may be caused by the machine, the 
mechanical coupling or the mechanical load or any combinations of these. To a 
certain extent eccentricity faults can be detected by means of electrical 
measurements over the reaction of magnetic field air gap on the stator currents.  
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 Bearing faults are due the failure of one of the bearings of the machine. The causes 
of failures are manifold and detection of the origin is very difficult. Particularly, the 
detection of bearing faults by means of electrical signals is a real challenge (Stack et 
al., 2006).  

 
3.1 Detection of Stator Faults 
In the case of a fully symmetric stator winding the stator magneto motive force (MMF) can 
be synthesized as a Fourier series, i.e., a fundamental and higher harmonic waves. A 
symmetric winding gives rise to a constant magnitude of the fundamental MMF wave. A 
fault of the stator winding leads to asymmetry of the stator magneto motive force (MMF) 
caused by the stator winding. This asymmetry causes the magnitude of the stator MMF not 
be constant any more. In this case the fundamental wave can be decomposed into a forward 
and backward traveling wave with constant magnitudes. The forward traveling wave is 
represented by the positive sequence component of the stator current spi  and the additional 

backward traveling wave due to the stator fault is reflected by the negative sequence 
component of the stator current sni . The sequence components are computed from the 
phase voltages and currents, however.  
A negative sequence current could also be caused by a negative sequence voltage which is 
due to a supply asymmetry. For the reliable detection of stator turn and winding faults it is 
important not to confuse these faults with supply voltage imbalances. Nevertheless, the 
measured negative sequence current and voltage component are used to identify stator turn 
and winding faults (Tallam et al., 2007; Lee et al., 2003). Additionally, inherent winding 
asymmetries have to be taken into account for stator fault detection techniques.  
The negative sequence voltage, snv  is coupled to the positive and negative sequence current 
through impedances, 
 
 snsnnspsnpsn iZiZv  . (8) 

 
In order to compensate inherent winding asymmetries the impedances snpZ  and snnZ  have 
to be identified. These impedances are (slightly) dependent on the operating conditions of 
the machine. The identification of the impedances may therefore be performed by means of 
neural networks or functional approximations (Tallam et al., 2000). This way supply voltage 
imbalances and inherent winding asymmetries are properly taken into account. For less 
sensitive methods, the impedances are assumed to be constant quantities (Kral et al., 2007). 
After a learning stage, where impedances are identified, the fault detection method can be 
applied in the regular operation of the machine.  
For the identification of the impedances snpZ  and snnZ  a negative sequence voltage is 
required, since a symmetric voltage supply does not give rise to negative sequence currents 
in case of a symmetric machine. The negative sequence voltage can be generated by means 
of a single phase ohmic resistor which leads to asymmetric line to line voltages. If it is not 
possible to introduce a negative sequence voltage, the impedances cannot be indentified – 
except for inherent voltage asymmetries caused by asymmetric loads.  
From the measured positive and negative sequence current, the computed negative 
sequence voltage (8) can be compared with the measured negative sequence voltage. 

Alternatively the computed negative sequence current according to (8), incorporating the 
measured positive sequence current and the measured negative sequence voltage, can be 
compared with the measured negative sequence current. Any deviation of the computed 
from the measured value then indicates a stator fault. 
In closed loop inverters the identification of the negative sequence component could be 
contained in the machine voltages and currents (Tallam et al., 2003). It is thus important to 
take both, the negative sequence voltage and current for the fault detection into account. 
Nevertheless, the artificially generation of negative sequence currents for the determination 
of the impedances applied in (8) is much easier since the reference currents can be 
superimposed with a negative sequence reference quantity.  
An alternative method for the detection of stator faults in inverter fed drives is based on the 
statistical evaluation of the switching behavior of the current controller which is caused by 
an electrical asymmetry of the stator winding (Wolbank et al., 2003). The advantage of this 
method is that it easy to implement on an existing dive, since statistical evaluation has to be 
implemented by means of additional software routines.  
 

(a)   (b)  
Fig. 8. The squirrel cage rotor of an induction machine consists of (a) rotor bars and end 
rings and (b) sheet iron 

 
3.2 Detecting Faults in the Squirrel Cage 
The squirrel cage of induction machine consists of R  rotor bars and end rings on both ends 
which are placed in the sheet iron of the rotor as depicted in Fig. 8. The bars and end rings 
of small machines are usually die casted of aluminum or copper. For larger machines, the 
copper bars are insulated and manually fitted into the sheet iron. In this case the bars and 
end rings are either welded or hard-soldered.  
In the symmetric cage of a squirrel cage induction machine the root mean square (RMS) 
values of the bar currents are equal – except for inherent asymmetries. Therefore, also end 
ring currents on both sides are equal. In case of a faulty rotor bar, which is physically 
reflected in an increase of the respective bar resistance, the current flow of this bar is 
diminished.  
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 Bearing faults are due the failure of one of the bearings of the machine. The causes 
of failures are manifold and detection of the origin is very difficult. Particularly, the 
detection of bearing faults by means of electrical signals is a real challenge (Stack et 
al., 2006).  

 
3.1 Detection of Stator Faults 
In the case of a fully symmetric stator winding the stator magneto motive force (MMF) can 
be synthesized as a Fourier series, i.e., a fundamental and higher harmonic waves. A 
symmetric winding gives rise to a constant magnitude of the fundamental MMF wave. A 
fault of the stator winding leads to asymmetry of the stator magneto motive force (MMF) 
caused by the stator winding. This asymmetry causes the magnitude of the stator MMF not 
be constant any more. In this case the fundamental wave can be decomposed into a forward 
and backward traveling wave with constant magnitudes. The forward traveling wave is 
represented by the positive sequence component of the stator current spi  and the additional 

backward traveling wave due to the stator fault is reflected by the negative sequence 
component of the stator current sni . The sequence components are computed from the 
phase voltages and currents, however.  
A negative sequence current could also be caused by a negative sequence voltage which is 
due to a supply asymmetry. For the reliable detection of stator turn and winding faults it is 
important not to confuse these faults with supply voltage imbalances. Nevertheless, the 
measured negative sequence current and voltage component are used to identify stator turn 
and winding faults (Tallam et al., 2007; Lee et al., 2003). Additionally, inherent winding 
asymmetries have to be taken into account for stator fault detection techniques.  
The negative sequence voltage, snv  is coupled to the positive and negative sequence current 
through impedances, 
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Alternatively the computed negative sequence current according to (8), incorporating the 
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compared with the measured negative sequence current. Any deviation of the computed 
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In closed loop inverters the identification of the negative sequence component could be 
contained in the machine voltages and currents (Tallam et al., 2003). It is thus important to 
take both, the negative sequence voltage and current for the fault detection into account. 
Nevertheless, the artificially generation of negative sequence currents for the determination 
of the impedances applied in (8) is much easier since the reference currents can be 
superimposed with a negative sequence reference quantity.  
An alternative method for the detection of stator faults in inverter fed drives is based on the 
statistical evaluation of the switching behavior of the current controller which is caused by 
an electrical asymmetry of the stator winding (Wolbank et al., 2003). The advantage of this 
method is that it easy to implement on an existing dive, since statistical evaluation has to be 
implemented by means of additional software routines.  
 

(a)   (b)  
Fig. 8. The squirrel cage rotor of an induction machine consists of (a) rotor bars and end 
rings and (b) sheet iron 

 
3.2 Detecting Faults in the Squirrel Cage 
The squirrel cage of induction machine consists of R  rotor bars and end rings on both ends 
which are placed in the sheet iron of the rotor as depicted in Fig. 8. The bars and end rings 
of small machines are usually die casted of aluminum or copper. For larger machines, the 
copper bars are insulated and manually fitted into the sheet iron. In this case the bars and 
end rings are either welded or hard-soldered.  
In the symmetric cage of a squirrel cage induction machine the root mean square (RMS) 
values of the bar currents are equal – except for inherent asymmetries. Therefore, also end 
ring currents on both sides are equal. In case of a faulty rotor bar, which is physically 
reflected in an increase of the respective bar resistance, the current flow of this bar is 
diminished.  
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Fig. 9. RMS values of rotor bar currents for the case of one broken rotor bar (index 1); results 
refer to an 18.5 kW induction machine with 40 rotor bars 
 
In Fig.  9 the RMS rotor bar currents of a squirrel cage with one broken rotor bar are 
depicted. Since bar number 1 is broken, the respective current is zero. Therefore, the bars 
adjacent to the fault location have to carry higher RMS bar currents than the rest of bars. The 
increased currents lead to an increased thermal stress of the respective bars. Due to this 
phenomenon the adjacent bars could also fail. This in turn leads to the spreading out of the 
fault from an initial fault location. Over time, the fault condition of the rotor gets worse and 
worse until the machine fails. 
In a real machine a faulty bar leads to an additional phenomenon. Since the rotor bars are 
usually not insulated from the sheet iron, interbar currents occur. The original bar current is 
thus diverted to the iron parts of the rotor which in turn damages the sheets.  
Apart from broken rotor bars, broken end ring or broken junctions of the bars and end ring 
segments may give also rise to an electrical asymmetry of the rotor. The entirety of these 
faults is also called electrical rotor asymmetries. These faults cause a distortion of the rotor 
MMF which can be interpreted as a forward and a backward traveling rotor MMF wave – 
with respect to the rotor reference frame. The backward traveling rotor MMF wave induces 
voltages in the stator winding at the so called lower side band frequency 
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where m  is a positive integer order number. The index usb  abbreviates the term upper side 
band, however. The entirety of current harmonics is also reflected in low frequency torque 
and instantaneous power pulsations at 
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A typical stator current Fourier spectrum for steady state operation of an induction machine 
is depicted in Fig.  10. The equidistant displaced lower and upper side band currents are 
clearly arising in this figure.  
 

 
Fig. 10. Fourier spectrum of a per unit stator current during steady state operation; results 
refer to a 18.5 kW induction machine with one broken rotor bar out of 40 bars 
 
A rotor fault can only be detected when the rotor currents lead to sufficient reactions on the 
air gap field. The magnitudes of the side band currents of stator current are proportional to 
load torque in steady state. The magnitudes of side band harmonics with low ordinal 
numbers m  are larger than the magnitudes with higher ordinal numbers. When the 
mechanical load of the machine is relieved, slip decreases and the magnitudes of the side 
band currents decrease as well. In this case the side band harmonics merge with the 
fundamental according to (11) and (12). Therefore, a rotor fault cannot be detected when the 
machine is mechanically unloaded in steady state. For the reliable detection of rotor faults a 
minimum load torque of approximately 30% of the nominal torque is required.  
The magnitudes of the lower and upper side band harmonics are also influenced by the total 
inertia of the drive. A large inertia leads to a dominant magnitude of the lower side band 
harmonic component (9) in the stator current, whereas a low inertia gives rise to a decreased 
lower side band and an increased higher side band component (Kral et al., 2008a).  
Most rotor fault detection methods are based on the evaluation of one or more stator current 
signatures and are thus called current signature analysis (CSA) methods. For steady state 
operating conditions a conventional Fourier analysis can be used to identify electrical rotor 
asymmetries. For such applications, it is important to determine the magnitudes of the 
respective current harmonics with high precision. Since low frequency torque fluctuations 
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increased currents lead to an increased thermal stress of the respective bars. Due to this 
phenomenon the adjacent bars could also fail. This in turn leads to the spreading out of the 
fault from an initial fault location. Over time, the fault condition of the rotor gets worse and 
worse until the machine fails. 
In a real machine a faulty bar leads to an additional phenomenon. Since the rotor bars are 
usually not insulated from the sheet iron, interbar currents occur. The original bar current is 
thus diverted to the iron parts of the rotor which in turn damages the sheets.  
Apart from broken rotor bars, broken end ring or broken junctions of the bars and end ring 
segments may give also rise to an electrical asymmetry of the rotor. The entirety of these 
faults is also called electrical rotor asymmetries. These faults cause a distortion of the rotor 
MMF which can be interpreted as a forward and a backward traveling rotor MMF wave – 
with respect to the rotor reference frame. The backward traveling rotor MMF wave induces 
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A typical stator current Fourier spectrum for steady state operation of an induction machine 
is depicted in Fig.  10. The equidistant displaced lower and upper side band currents are 
clearly arising in this figure.  
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A rotor fault can only be detected when the rotor currents lead to sufficient reactions on the 
air gap field. The magnitudes of the side band currents of stator current are proportional to 
load torque in steady state. The magnitudes of side band harmonics with low ordinal 
numbers m  are larger than the magnitudes with higher ordinal numbers. When the 
mechanical load of the machine is relieved, slip decreases and the magnitudes of the side 
band currents decrease as well. In this case the side band harmonics merge with the 
fundamental according to (11) and (12). Therefore, a rotor fault cannot be detected when the 
machine is mechanically unloaded in steady state. For the reliable detection of rotor faults a 
minimum load torque of approximately 30% of the nominal torque is required.  
The magnitudes of the lower and upper side band harmonics are also influenced by the total 
inertia of the drive. A large inertia leads to a dominant magnitude of the lower side band 
harmonic component (9) in the stator current, whereas a low inertia gives rise to a decreased 
lower side band and an increased higher side band component (Kral et al., 2008a).  
Most rotor fault detection methods are based on the evaluation of one or more stator current 
signatures and are thus called current signature analysis (CSA) methods. For steady state 
operating conditions a conventional Fourier analysis can be used to identify electrical rotor 
asymmetries. For such applications, it is important to determine the magnitudes of the 
respective current harmonics with high precision. Since low frequency torque fluctuations 
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can also induce current sidebands as depicted in Fig.  10, it is important to exactly track the 
fault specific frequency components so that they do not get confused with load specific 
harmonics (Kral et al., 2005). From the magnitudes of the side band harmonics the extent of 
the fault can be estimated according to formulas presented in the literature, e.g., (Thomson 
& Ranking 1987; Bellini et al., 2000; Culbert & Rhodes 2007). 
During transient operating conditions, load torque and thus slip are not constant. A 
conventional Fourier analysis is therefore not applicable in this case. The problem of time 
varying load torque can either be solved by means of compensating the modeled load 
torque (Schoen et al., 1995) or by mathematical transformations and algorithms (Wu et al., 
2005). Other approaches use a short time Fourier analysis or multiple signal classification 
(MUSIC) algorithms to overcome the problem of identification of the non-stationary fault 
signatures (Benbouzid & Kliman 2003). The fault detection under transient operating 
conditions can also be performed by means of wavelet transforms (Antonino-Daviu et al., 
2006). 
 

 
Fig. 11. Scheme of the Vienna Monitoring Method: V = voltage model, I = current model; F = 
low pass filter for determining the (average) load torque from the torque of the voltage 
model, C = spatial data clustering technique, D = discrete Fourier analysis 
 
Apart from these methods, electrical rotor asymmetries can be detected by means of the 
Vienna Monitoring Method (VMM). A scheme of this method is depicted in Fig. 11. This 
method is a model based approach which compares the torque signals vT  and iT  of a 
voltage and current model of the machine, resptively; the superscript indicates the model 
reference. Both these mathematical models are the models of a symmetrical machine. The 
voltage model is based on the stator voltage equation in the stator reference frame, whereas 
the current model relies on the rotor voltage in the rotor reference frame. The input 
quantities of the voltage model are the stator voltage and current space phasor (1) and (2). 
Since the current model is utilized in the rotor reference frame the stator current space 
phasor has to be transformed by means of the mechanical angle m  – which is the electrical 
angle of the rotor with respect to the stator. 
Applied to a fully symmetrical machine each model calculates the same torque and thus the 
torque difference  
 
 iv TTT   (14) 

 
is zero. In case of a rotor fault, both models will calculate a double slip harmonic torque 
oscillation – as well as higher harmonics which are, however, not taken into account in the 
VMM. The double slip harmonic torque oscillations computed by the voltage and current 
model show different magnitudes and phase angles, since both models have a different 
model structure and different input signals. It turned out that the magnitude of the torque 

difference is directly proportional to the fault extent and the load torque (Wieser et al., 1999). 
If the torque difference is divided by the estimated load torque – which is determined from, 
e.g., the voltage model – the relative torque difference is obtained,  
 

 
loadT
Tt 

 . (15) 

 
The magnitude of the double slip frequency component of t  is independent of the load 
torque and thus a measure for the electrical asymmetry of the rotor. Nevertheless, the 
frequency of the relative torque difference is depending on slip. In order to eliminate the 
time dependency of the relative torque difference, a spatial data clustering technique is 
applied. This technique investigates the relative torque difference versus the angle of the 
rotor flux space phasor,  ,which is determined by the current model in Fig. 11. Since the 
rotor flux with respect to the rotor reference frame rotates with slip frequency, the double 
slip frequency oscillation of the relative torque difference is mapped into a second harmonic 
component with respect to the rotor circumference. A clustering technique is used to 
average the wave forms of the obtained second harmonic signal. For this purpose, that rotor 
circumference is subdivided into n data segments. The data value of each segment is then 
derived by applying a recursive averaging algorithm. The data values represent an averaged 
and discretized wave of the second harmonic torque difference. After a certain measurement 
period a discrete Fourier analysis is applied to the data values. The magnitude of the second 
harmonic then represents the averaged magnitude of the double slip frequency component 
of the relative torque difference – which in turn serves as fault indicator for the VMM (Kral 
et al., 2008a). 
A great advantage of the VMM is that it reliably detects rotor faults under almost any 
operation and boundary conditions. The VMM works  

 independent of the load torque of the machine, 
 under stationary and transient load conditions, 
 under varying load and speed conditions, 
 independent of the inertia of the drive, 
 for mains supplied and inverter fed machines, independent of the applied control 

technique and structure. 

 
3.3 Monitoring of Stator and Rotor Temperature 
The stator temperature of a machine can be measured by means of sensors which are 
embedded in the winding, the winding heads or the sheet iron of the stator. This is a state of 
the art measurement technology. Measuring the rotor temperatures is much more difficult 
since the rotor is spinning and measuring lines can thus not be used. Even if there exist 
radio frequency (RF) transmission sensors such technology is almost impossible to be 
implemented in an industrial environment, because the machine to be monitored has to be 
dismounted and modified – which is highly undesired. 
In some applications it may be undesired to even measure the stator temperatures. In this 
case it is then required to estimate the temperatures of the stator and rotor, respectively. 
Neither stator nor rotor temperature are precise terms, since temperature is a local quantity. 
Both the stator and the rotor have specific temperature distributions, depending on the 
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can also induce current sidebands as depicted in Fig.  10, it is important to exactly track the 
fault specific frequency components so that they do not get confused with load specific 
harmonics (Kral et al., 2005). From the magnitudes of the side band harmonics the extent of 
the fault can be estimated according to formulas presented in the literature, e.g., (Thomson 
& Ranking 1987; Bellini et al., 2000; Culbert & Rhodes 2007). 
During transient operating conditions, load torque and thus slip are not constant. A 
conventional Fourier analysis is therefore not applicable in this case. The problem of time 
varying load torque can either be solved by means of compensating the modeled load 
torque (Schoen et al., 1995) or by mathematical transformations and algorithms (Wu et al., 
2005). Other approaches use a short time Fourier analysis or multiple signal classification 
(MUSIC) algorithms to overcome the problem of identification of the non-stationary fault 
signatures (Benbouzid & Kliman 2003). The fault detection under transient operating 
conditions can also be performed by means of wavelet transforms (Antonino-Daviu et al., 
2006). 
 

 
Fig. 11. Scheme of the Vienna Monitoring Method: V = voltage model, I = current model; F = 
low pass filter for determining the (average) load torque from the torque of the voltage 
model, C = spatial data clustering technique, D = discrete Fourier analysis 
 
Apart from these methods, electrical rotor asymmetries can be detected by means of the 
Vienna Monitoring Method (VMM). A scheme of this method is depicted in Fig. 11. This 
method is a model based approach which compares the torque signals vT  and iT  of a 
voltage and current model of the machine, resptively; the superscript indicates the model 
reference. Both these mathematical models are the models of a symmetrical machine. The 
voltage model is based on the stator voltage equation in the stator reference frame, whereas 
the current model relies on the rotor voltage in the rotor reference frame. The input 
quantities of the voltage model are the stator voltage and current space phasor (1) and (2). 
Since the current model is utilized in the rotor reference frame the stator current space 
phasor has to be transformed by means of the mechanical angle m  – which is the electrical 
angle of the rotor with respect to the stator. 
Applied to a fully symmetrical machine each model calculates the same torque and thus the 
torque difference  
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is zero. In case of a rotor fault, both models will calculate a double slip harmonic torque 
oscillation – as well as higher harmonics which are, however, not taken into account in the 
VMM. The double slip harmonic torque oscillations computed by the voltage and current 
model show different magnitudes and phase angles, since both models have a different 
model structure and different input signals. It turned out that the magnitude of the torque 

difference is directly proportional to the fault extent and the load torque (Wieser et al., 1999). 
If the torque difference is divided by the estimated load torque – which is determined from, 
e.g., the voltage model – the relative torque difference is obtained,  
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torque and thus a measure for the electrical asymmetry of the rotor. Nevertheless, the 
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rotor flux space phasor,  ,which is determined by the current model in Fig. 11. Since the 
rotor flux with respect to the rotor reference frame rotates with slip frequency, the double 
slip frequency oscillation of the relative torque difference is mapped into a second harmonic 
component with respect to the rotor circumference. A clustering technique is used to 
average the wave forms of the obtained second harmonic signal. For this purpose, that rotor 
circumference is subdivided into n data segments. The data value of each segment is then 
derived by applying a recursive averaging algorithm. The data values represent an averaged 
and discretized wave of the second harmonic torque difference. After a certain measurement 
period a discrete Fourier analysis is applied to the data values. The magnitude of the second 
harmonic then represents the averaged magnitude of the double slip frequency component 
of the relative torque difference – which in turn serves as fault indicator for the VMM (Kral 
et al., 2008a). 
A great advantage of the VMM is that it reliably detects rotor faults under almost any 
operation and boundary conditions. The VMM works  

 independent of the load torque of the machine, 
 under stationary and transient load conditions, 
 under varying load and speed conditions, 
 independent of the inertia of the drive, 
 for mains supplied and inverter fed machines, independent of the applied control 

technique and structure. 

 
3.3 Monitoring of Stator and Rotor Temperature 
The stator temperature of a machine can be measured by means of sensors which are 
embedded in the winding, the winding heads or the sheet iron of the stator. This is a state of 
the art measurement technology. Measuring the rotor temperatures is much more difficult 
since the rotor is spinning and measuring lines can thus not be used. Even if there exist 
radio frequency (RF) transmission sensors such technology is almost impossible to be 
implemented in an industrial environment, because the machine to be monitored has to be 
dismounted and modified – which is highly undesired. 
In some applications it may be undesired to even measure the stator temperatures. In this 
case it is then required to estimate the temperatures of the stator and rotor, respectively. 
Neither stator nor rotor temperature are precise terms, since temperature is a local quantity. 
Both the stator and the rotor have specific temperature distributions, depending on the 
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actual operating conditions. It is for the symmetrical machine (and supply), however, useful 
to assume homogenous or averaged temperatures, for the conductors in the stator slots, 
each winding head as well as each rotor bar and both end rings. By means of a lumped 
parameter thermal model of the machine, these temperatures can be determined (Kral et al., 
2008b) – even online. In order to parameterize such a model all geometric details of the 
stator, rotor, housing and cooling concept have to be known and modeled. A complex 
lumped parameter model is thus not applicable in practice if the only little is known about 
the machine.  
For practical applications simplified lumped thermal parameter models can be used (Gao et 
al., 2008b). These models usually employ only a couple thermal time constants. The thermal 
time constants have to be determined during an identification test or are computed or 
measured in advance before the machine is put into operation. A lumped parameter thermal 
model can also be combined with any other resistance estimation method to a hybrid model 
(Kral et al., 2004a). 
In practice, only the average temperature of the stator winding can be estimated. The 
average stator winding temperature increase is determined by estimating the stator 
resistance, considering the temperature dependence of the conductor according to, 
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where refR  is the resistance at temperature refT , and ref  is the linear temperature 
coefficient at the reference temperature. In this equation T  is the actual temperature and R  
is the respective actual resistance. One class of methods determines the average stator 
winding temperature by means of a direct current (DC) bias. Since a DC current does not 
cause any voltage drop across the stator inductance, the DC voltage represents the voltage 
drop across the stator resistance only. For symmetric machines it can be assumed that the 
winding temperatures are equal in all three phases. Therefore, the DC bias is injected only in 
one phase. For mains fed induction machines the bias could be applied by means of 
different devices: A resistor in parallel with a diode can be used to cause a voltage drop 
across this element which is different with respect to the positive and the negative half-wave 
(Lee & Habetler, 2003b). Other proposals provide the controlled bias by a soft starter, giving 
rise to a similar effect (Zhang et at., 2008), or use a zero sequence voltage to estimate the 
stator resistance of the machine (Jacobina et al., 2000).  
Since the estimation of resistances is required for the tuning the control of inverter drives, 
such methods are often integrated into the digital signal processing (DSP) software of the 
drive. For this class of applications rotor and stator resistances may be focus of interest. In 
this context observers (Jeon et al., 2002), models (Gao et al., 2008a) and neural networks 
(Karanayil et al., 2007) are applied. In variable speed drives also signal injection methods 
can be used to determine the resistances since the inverter can be seen as active voltage 
source (Wu & Gao, 2006).  

 
3.4 Detection of Rotor Eccentricity 
Rotor eccentricities are usually classified by the terms static and dynamic eccentricity. A 
visualization of these classes is depicted in Fig. 3. For static eccentricity the axis of rotation 
of the rotor is displaced from geometric center of the stator. This eccentricity mode can be 

caused by a misalignment of the bearings, the end shields or stator ovality. Since the air gap 
and the air gap field are non-uniform in this case a so called unbalanced magnetic pull arises. 
This pull acts in the direction of the minimum air gap. In the case of dynamic eccentricity 
the axis of rotation of rotor is aligned with center of the stator, but the axis of rotation is 
displaced from the rotor center. Dynamic eccentricity may be caused by a bent shaft, 
mechanical resonances, bearing wear and static eccentricity. An unbalanced magnetic pull is 
also present in this case (Dorrell 1996). In practice always mixed modes of eccentricity occur 
(Faiz & Ojaghi 2008).  
Mixed static and dynamic eccentricity gives rise to harmonic components with frequencies 
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reference to eccentricity related components and ,...]3,2,1[m  is the ordinal number. Due to 
the interaction of current and flux, power and torque specific components arise at  
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The slotting of the rotor also gives rise to additional frequencies  
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in the current, where ]1,0[c  indicates static (zero) or dynamic (one) eccentricity, and o  is 
an odd integer number, ],5,3,1[ o .  
For stationary operated induction machines, supplied by the mains, the eccentricity related 
harmonic components (17)) or (19)) can be determined by means of a conventional Fourier 
analysis (Thomson & Fenger 2001). Oscillating load effects require different approaches 
since a Fourier analysis is not applicable any more. An alternative method utilizes the 
negative sequence fault components of the stator current space phasor which is independent 
of the actual loading of the machine (Wu et al., 2007).  
Another approach strictly avoids time domain frequency analysis and is based on the 
evaluation of (18) applied to instantaneous power (Kral et al., 2004b). A scheme of this 
method is depicted in Fig. 12. In order to evaluate a quantity independent of the actual 
rating of the machine, instantaneous power is divided by a reference power, which is, e.g., 
equal to the nominal power of the machine. A band pass filter extracts the frequency 
components (18) and a phase locked loop (PLL) is used to track the filtered signal. Since 
power is a real quantity, a Hilbert transform is applied to generate a complex phasor. The 
angle   of the quantity associated to the output of the Hilbert transform is then used to 
employ a data clustering technique similar to that one used for the Vienna Monitoring 
Method in subsection 3.2. The data clustering averages the output of the filter in a spatial 
domain to eliminate any frequencies other than the fault frequency.  
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actual operating conditions. It is for the symmetrical machine (and supply), however, useful 
to assume homogenous or averaged temperatures, for the conductors in the stator slots, 
each winding head as well as each rotor bar and both end rings. By means of a lumped 
parameter thermal model of the machine, these temperatures can be determined (Kral et al., 
2008b) – even online. In order to parameterize such a model all geometric details of the 
stator, rotor, housing and cooling concept have to be known and modeled. A complex 
lumped parameter model is thus not applicable in practice if the only little is known about 
the machine.  
For practical applications simplified lumped thermal parameter models can be used (Gao et 
al., 2008b). These models usually employ only a couple thermal time constants. The thermal 
time constants have to be determined during an identification test or are computed or 
measured in advance before the machine is put into operation. A lumped parameter thermal 
model can also be combined with any other resistance estimation method to a hybrid model 
(Kral et al., 2004a). 
In practice, only the average temperature of the stator winding can be estimated. The 
average stator winding temperature increase is determined by estimating the stator 
resistance, considering the temperature dependence of the conductor according to, 
 
 ))(1( refrefref TTRR   , (16) 
 
where refR  is the resistance at temperature refT , and ref  is the linear temperature 
coefficient at the reference temperature. In this equation T  is the actual temperature and R  
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cause any voltage drop across the stator inductance, the DC voltage represents the voltage 
drop across the stator resistance only. For symmetric machines it can be assumed that the 
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different devices: A resistor in parallel with a diode can be used to cause a voltage drop 
across this element which is different with respect to the positive and the negative half-wave 
(Lee & Habetler, 2003b). Other proposals provide the controlled bias by a soft starter, giving 
rise to a similar effect (Zhang et at., 2008), or use a zero sequence voltage to estimate the 
stator resistance of the machine (Jacobina et al., 2000).  
Since the estimation of resistances is required for the tuning the control of inverter drives, 
such methods are often integrated into the digital signal processing (DSP) software of the 
drive. For this class of applications rotor and stator resistances may be focus of interest. In 
this context observers (Jeon et al., 2002), models (Gao et al., 2008a) and neural networks 
(Karanayil et al., 2007) are applied. In variable speed drives also signal injection methods 
can be used to determine the resistances since the inverter can be seen as active voltage 
source (Wu & Gao, 2006).  
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visualization of these classes is depicted in Fig. 3. For static eccentricity the axis of rotation 
of the rotor is displaced from geometric center of the stator. This eccentricity mode can be 

caused by a misalignment of the bearings, the end shields or stator ovality. Since the air gap 
and the air gap field are non-uniform in this case a so called unbalanced magnetic pull arises. 
This pull acts in the direction of the minimum air gap. In the case of dynamic eccentricity 
the axis of rotation of rotor is aligned with center of the stator, but the axis of rotation is 
displaced from the rotor center. Dynamic eccentricity may be caused by a bent shaft, 
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also present in this case (Dorrell 1996). In practice always mixed modes of eccentricity occur 
(Faiz & Ojaghi 2008).  
Mixed static and dynamic eccentricity gives rise to harmonic components with frequencies 
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in the stator currents, where P  is the number of pole pairs and superscript e  indicates the 
reference to eccentricity related components and ,...]3,2,1[m  is the ordinal number. Due to 
the interaction of current and flux, power and torque specific components arise at  
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The slotting of the rotor also gives rise to additional frequencies  
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in the current, where ]1,0[c  indicates static (zero) or dynamic (one) eccentricity, and o  is 
an odd integer number, ],5,3,1[ o .  
For stationary operated induction machines, supplied by the mains, the eccentricity related 
harmonic components (17)) or (19)) can be determined by means of a conventional Fourier 
analysis (Thomson & Fenger 2001). Oscillating load effects require different approaches 
since a Fourier analysis is not applicable any more. An alternative method utilizes the 
negative sequence fault components of the stator current space phasor which is independent 
of the actual loading of the machine (Wu et al., 2007).  
Another approach strictly avoids time domain frequency analysis and is based on the 
evaluation of (18) applied to instantaneous power (Kral et al., 2004b). A scheme of this 
method is depicted in Fig. 12. In order to evaluate a quantity independent of the actual 
rating of the machine, instantaneous power is divided by a reference power, which is, e.g., 
equal to the nominal power of the machine. A band pass filter extracts the frequency 
components (18) and a phase locked loop (PLL) is used to track the filtered signal. Since 
power is a real quantity, a Hilbert transform is applied to generate a complex phasor. The 
angle   of the quantity associated to the output of the Hilbert transform is then used to 
employ a data clustering technique similar to that one used for the Vienna Monitoring 
Method in subsection 3.2. The data clustering averages the output of the filter in a spatial 
domain to eliminate any frequencies other than the fault frequency.  
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Fig. 12. Method for the eccentricity detection based on instantaneous power; F = band pass 
filter, PLL = phase locked loop, H = Hilbert transform, C = clustering technique, DFT = 
discrete Fourier analysis  
 
Eccentricities have mechanical origins and therefore fault detection based on vibration 
signals leads to more direct – without the interaction of the magnetic field and the reaction 
on the stator currents – and thus more significant signatures. A fault signature according to 
(17) and (18) may also be caused by a mechanical mass imbalance of the rotating parts. This 
case was investigated in (Kral et al., 2004c) with a non-rigid mounting of the machine. It 
turned out that it is difficult to detect a mechanical problem by means of current signatures 
whereas vibrational signatures very clearly indicate the issue. The result of this investigation 
thus shows that the detection of mechanical problems by means of electrical signals is 
limited.  

 
4. Conclusions 

In this chapter state of the art fault detection methods for permanent magnet and induction 
machines are presented. The discussed methods rely on the evaluation of measured 
voltages, currents and speed, respectively. Each kind of fault gives rise to a specific fault 
pattern in either of the measured quantities. Advanced signal processing techniques and 
neural network methods are used to isolate and assess the fault severity accordingly.  
The field of rotating electric machine monitoring and diagnostics has seen major 
advancements in the two decades.  As a result of this, simple motor protection devices will 
soon be replaced with sophisticated monitoring devices which will provide early indication 
of impeding faults.  The technology described in this chapter can be used to greatly improve 
factory and process reliability and availability by reducing unscheduled downtime.  The 
potential cost savings are enormous.  All of this can be achieved at little or no cost since all 
the technology here relies only on the use of data from sensors that are all ready installed.  
Virtually everything described here can be implemented with only software changes to 
existing microprocessor-based protection relays.   

The future will be even more exciting as advances are made in sensorless monitoring of 
mechanical systems driven by electrical machines, motor bearings, and a wide variety of 
motor types in a myriad of applications. 
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