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1. Introduction 
 

While modern control methods were becoming widespread, in addition to demanded 
repeatability and accuracy specifications, reliability and detection and isolation of probable 
faults have become an obligation for automatic control systems. In the early 70’s, first 
studies were appeared on this subject. While the first studies on fault detection and isolation 
(FDI) were implemented for supervisory of chemical processes, following studies were 
extended to systems like air and spacecrafts, automobiles, nuclear reactors, turbines and 
HVACs with high reliability mandatories after especially aircraft accidents with high 
mortality. In 1991, with extending and increasing studies, IFAC SAFEPROCESS comittee 
was founded and in 1993, this comittee issued some definitions about fault types, fault 
detection and isolation, fault diagnosis and fault tolerant control (FTC) (Isermann & Ballé, 
1997). 
Robots are accepted as an assistant subsystem or an individual part of a complex system in 
most applications. In addition to applications like serial product lines in which they can 
work harder, faster and with higher accuracy than humans, they are assigned to missions 
like waste treatment in nuclear reactors, data and sample collection, maintenance in space 
and underwater tasks which can be very risky for humans. As a consequence, a fault in one 
product line may cause a pause in all connected lines even in flexible automation systems or 
a developing and undetected fault may cause abortion of a whole space or underwater 
mission with big money costs, it may even cause harm to humans. With the increase of these 
events in real-life applications and with 90’s, studies on robot reliability and fault detection 
and diagnosis in robotics have become common. In addition to these studies, NASA and US 
Army issued some standards on robots and on the reliability and fault possibilities of 
robotparts (Cavallaro & Walker, 1994).  
This study is focused on model-based FDI schemes, how they can be applied to robot 
manipulators, how soft computing techniques can be used in these schemes and three 
different FDI schemes are proposed. Soft computing techniques which can overcome the 
difficulties of schemes using analytical methods for nonlinear systems are used as 
modelling, fault isolator and fault function approximator tools in the proposed schemes. In 
the following section, a literature overview on FDI for nonlinear systems and robot 
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manipulators is given. In Section 3, defined faults and their physical causes are explained. In 
Section 4, 5 and 6, the proposed schemes are introduced and explained. Soft computing tools 
used in these schemes are introduced; furthermore, how they work and what their duties 
are in these schemes are explained in details. In Section 7, simulation implementations and 
results of these schemes for a two-link robot are given. In the last section, a comparison of 
these schemes according to some FDI specifications and future studies on these schemes are 
given. 
Most studies in the literature are interested in sensor faults and locked and free-swinging 
joint (actuator) faults. This study is interested in abrupt partial actuator faults defined in 
Section 3 to contribute model-based FDI studies for robot manipulators. Furthermore, most 
studies using soft computing techniques for FDI are interested in how the parameters in 
their soft computing tools can be defined in terms of faults and how they can be updated 
according to faults like adaptive learning. In this study, these tools are used directly and 
without any modification to give appropriate outputs for appropriate inputs. From this 
point of view, this study can be accepted as a bridge between model-based FDI and data-
based FDI methods. Furthermore, in this study, in addtion to soft computing tools, a hybrid 
soft computing tool M-ANFIS (multiple-ANFIS) which combines and utilizes benefits of 
neural network (NN) and fuzzy logic (FL) is used for modelling and function 
approximation. The two-link robot manipulator used in the simulations can be seen simple 
but accepted as a test platform for most studies. Besides, it has sufficient specifications for 
implementation of newly proposed schemes. 

 
2. Literature overview of  model-based FDI  for nonlinear systems  and  robot 
manipulators 
 

Studies and methods on fault detection and isolation can be divided into two main groups: 
model-based methods and data-based methods (Chen & Patton, 1999). Model-based 
methods are based on modelling the system and processing the difference signals between 
the model and the real system named as residuals. Data-based methods are based on 
processing the input and output signals of the system. Proposed schemes in this study are 
based on model-based FDI methods and studies on model-based FDI are examined in 
details. Information and surveys about data-based methods can be found in (Chen & Patton, 
1999; Patton et al., 2000a; Venkatasubramanian et al., 2003). Model-based fault diagnosis 
(detection and isolation) is defined as detection, isolation and characterization of faults in 
components of a system from the comparison of the system’s available measurements, with 
a priori information presented by the system’s mathematical model (Chen & Patton, 1999). 
According to this definition, model-based FDI methods are formed of two steps. The first 
step is generation of difference signals called residuals between real and predicted or 
estimated output signals of the system. Discordance of these real and predicted or estimated 
output signals which means nonzero residual signals indicates a potential fault in the 
system. The second step is isolation of faults using these obtained difference signals 
according to a decision set. 
Model-based FDI methods can be classified according to the method used for residual 
generation and the decision set is defined according to the specifications of each residual 
generation method.  The point of classification can not only be the method but also linearity 
(linear-nonlinear-bilinear) type of the system that will be dealt with. The methods used for 

linear systems can be classified into three main titles. The first and mostly used methods are 
observer based methods. The main idea behind these methods is to estimate the output of 
the system using the measurements with Luenberger observes and deterministic 
adjustments or with Kalman filters and stochastic adjustments (Frank & Ding, 1997). Parity 
vector (relation) methods use definition of parallel or temporal redundancy which is named 
as defining a variable with two or more definitions and which can be obtained from 
measurements or analytical relations (Chow & Willsky, 1984). Parameter estimation 
methods are based on the principle that accepts sudden changes in parameters like friction, 
mass, viscosity, resistance etc. using system identification methods as a sign of faults 
(Isermann & Ballé, 1997; Moseler & Isermann, 2000). In addition to proposing new methods, 
all these methods are investigated for the robustness against disturbances and uncertainties. 
A detailed survey about these methods and studies can be found in (Chen & Patton, 1999; 
Patton et al., 2000; Frank & Ding, 1997). 
Generally, two main approaches are adopted for FDI for nonlinear systems (Chen & Patton, 
1999). First approach linearizes nonlinear models around one or multiple 
equilibrium(working) points and generates residuals insensitive to parameter changes in 
small equilibrium point neighbourhoods using robust techniques. This approach may give 
good and sufficient results only for systems with low level nonlinearities. But this approach 
is not suitable for nonlinear systems having highly nonlinear terms and wide working 
points. Second approach, as proposed for solving this problem, uses multiple nonlinear 
models for each working points. But this approach bring multiple FDI systems for each 
working points and this will be not practical for real-time implementations. 
As mentioned below, to solve these problems, FDI methods which can deal with nonlinear 
systems directly must be proposed and developed. Therefore, most of the methods 
proposed for linear systems are adapted for nonlinear systems. One of the approaches is to 
use analytical or deterministic nonlinear observers (Chen & Patton, 1999; Patton et al. 2000; 
Frank & Ding, 1997; Adjallah et al.,1994; Garcia & Frank, 1997). Model of a nonlinear 
systems is accepted as below: 
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where x(t) is the state vector, y(t) is the output vector, u(t) is the input vector, f(t) is the fault 
vector, d(t) is the disturbance vector and g( . , . , . , . ) and h( . , . , . , .) are nonlinear functions. 
FDI problem is generating residuals using the observer form defined in (2): 
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manipulators is given. In Section 3, defined faults and their physical causes are explained. In 
Section 4, 5 and 6, the proposed schemes are introduced and explained. Soft computing tools 
used in these schemes are introduced; furthermore, how they work and what their duties 
are in these schemes are explained in details. In Section 7, simulation implementations and 
results of these schemes for a two-link robot are given. In the last section, a comparison of 
these schemes according to some FDI specifications and future studies on these schemes are 
given. 
Most studies in the literature are interested in sensor faults and locked and free-swinging 
joint (actuator) faults. This study is interested in abrupt partial actuator faults defined in 
Section 3 to contribute model-based FDI studies for robot manipulators. Furthermore, most 
studies using soft computing techniques for FDI are interested in how the parameters in 
their soft computing tools can be defined in terms of faults and how they can be updated 
according to faults like adaptive learning. In this study, these tools are used directly and 
without any modification to give appropriate outputs for appropriate inputs. From this 
point of view, this study can be accepted as a bridge between model-based FDI and data-
based FDI methods. Furthermore, in this study, in addtion to soft computing tools, a hybrid 
soft computing tool M-ANFIS (multiple-ANFIS) which combines and utilizes benefits of 
neural network (NN) and fuzzy logic (FL) is used for modelling and function 
approximation. The two-link robot manipulator used in the simulations can be seen simple 
but accepted as a test platform for most studies. Besides, it has sufficient specifications for 
implementation of newly proposed schemes. 

 
2. Literature overview of  model-based FDI  for nonlinear systems  and  robot 
manipulators 
 

Studies and methods on fault detection and isolation can be divided into two main groups: 
model-based methods and data-based methods (Chen & Patton, 1999). Model-based 
methods are based on modelling the system and processing the difference signals between 
the model and the real system named as residuals. Data-based methods are based on 
processing the input and output signals of the system. Proposed schemes in this study are 
based on model-based FDI methods and studies on model-based FDI are examined in 
details. Information and surveys about data-based methods can be found in (Chen & Patton, 
1999; Patton et al., 2000a; Venkatasubramanian et al., 2003). Model-based fault diagnosis 
(detection and isolation) is defined as detection, isolation and characterization of faults in 
components of a system from the comparison of the system’s available measurements, with 
a priori information presented by the system’s mathematical model (Chen & Patton, 1999). 
According to this definition, model-based FDI methods are formed of two steps. The first 
step is generation of difference signals called residuals between real and predicted or 
estimated output signals of the system. Discordance of these real and predicted or estimated 
output signals which means nonzero residual signals indicates a potential fault in the 
system. The second step is isolation of faults using these obtained difference signals 
according to a decision set. 
Model-based FDI methods can be classified according to the method used for residual 
generation and the decision set is defined according to the specifications of each residual 
generation method.  The point of classification can not only be the method but also linearity 
(linear-nonlinear-bilinear) type of the system that will be dealt with. The methods used for 

linear systems can be classified into three main titles. The first and mostly used methods are 
observer based methods. The main idea behind these methods is to estimate the output of 
the system using the measurements with Luenberger observes and deterministic 
adjustments or with Kalman filters and stochastic adjustments (Frank & Ding, 1997). Parity 
vector (relation) methods use definition of parallel or temporal redundancy which is named 
as defining a variable with two or more definitions and which can be obtained from 
measurements or analytical relations (Chow & Willsky, 1984). Parameter estimation 
methods are based on the principle that accepts sudden changes in parameters like friction, 
mass, viscosity, resistance etc. using system identification methods as a sign of faults 
(Isermann & Ballé, 1997; Moseler & Isermann, 2000). In addition to proposing new methods, 
all these methods are investigated for the robustness against disturbances and uncertainties. 
A detailed survey about these methods and studies can be found in (Chen & Patton, 1999; 
Patton et al., 2000; Frank & Ding, 1997). 
Generally, two main approaches are adopted for FDI for nonlinear systems (Chen & Patton, 
1999). First approach linearizes nonlinear models around one or multiple 
equilibrium(working) points and generates residuals insensitive to parameter changes in 
small equilibrium point neighbourhoods using robust techniques. This approach may give 
good and sufficient results only for systems with low level nonlinearities. But this approach 
is not suitable for nonlinear systems having highly nonlinear terms and wide working 
points. Second approach, as proposed for solving this problem, uses multiple nonlinear 
models for each working points. But this approach bring multiple FDI systems for each 
working points and this will be not practical for real-time implementations. 
As mentioned below, to solve these problems, FDI methods which can deal with nonlinear 
systems directly must be proposed and developed. Therefore, most of the methods 
proposed for linear systems are adapted for nonlinear systems. One of the approaches is to 
use analytical or deterministic nonlinear observers (Chen & Patton, 1999; Patton et al. 2000; 
Frank & Ding, 1997; Adjallah et al.,1994; Garcia & Frank, 1997). Model of a nonlinear 
systems is accepted as below: 
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where x(t) is the state vector, y(t) is the output vector, u(t) is the input vector, f(t) is the fault 
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FDI problem is generating residuals using the observer form defined in (2): 
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estimator  (Garcia & Frank, 1997). In the literature, there are some nonlinear observer desing  
approaches defined for certain type nonlinear systems (Frank & Ding, 1997; Adjallah et al., 
1994; Garcia & Frank, 1997; Seliger & Frank, 1991; Yang & Saif, 1995; Kinnaert, 1999).  
All approaches mentioned below use analytical methods but it is hard to obtain analytical 
models which nonlinear observers are based on. To overcome this problem, “universal 
approximator” soft computing modelling tools which can model nonlinear systems are 
preferred. Soft computing techniques involves NN, FL and genetic algorithms (GA). NN can 
be used to model multiple-input-multiple-output (MIMO) nonlinear systems by using 
nonlinear mapping capabilities in its hidden black-box structure (Haykin, 1999). Residual 
generation is implemented by comparing the real system outputs and estimated outputs by 
NN. Furthermore NNs are superior to analytical techniques on classification and a second 
NN can be used to isolate faults by evaluating (classifying) the residuals (Patton et al., 
2000b; Marcu et al., 1998). Model-based FDI scheme with NNs is shown in Fig. 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Model based fault detection and isolation with two neural networks 
 
In addition to these NN approaches, there are some approaches named online approaches 
using adaptive learning and defining NN parameters in terms of input signals anf fault 
functions (Zhang et al., 2002; Polycarpou & Helmicki, 1995; Polycarpou & Trunov, 2000) 
NNs with self learning capabilities can be thought convenient for FDI but, as a black-box 
structure, keeping user experiences and interferences away from modelling is not a desired 
feature. To overcome this disadvantage, FL is used as modelling, observer, adaptive residual 
threshold selector tools for FDI for nonlinear systems (Dexter, 1995; Patton et al., 1998; Ballé, 
1998). The main idea behind fuzzy observers is to define a nonlinear system using a set of 
locally linearized observers with Takagi-Sugeno fuzzy models. Local region definitions are 
generated using working points. Furthermore, FL is used for residual evaluation. The most 
important problem in residual evaluation is to set residual threshold. An adaptive threshold 
can prevent the FDI system from false and missed alarms and FL can be used as the 
adaptive threshold selector tool (Schneider & Frank, 1996). 
FDI studies on robots continue on most of the robot types (mobile, flexible, kinematically 
redundant, parallel, mobile manipulator, humanoid, bipedal and multi-legged etc.). This 
study deals with the most common used serial, open chained and rigid robot manipulator 
and only a detailed review on this type of robots is given here. Studies on other type robots 

can be found in (Goel et al., 2000; Tinós & Terra, 2002). Most studies on FDI for robot 
manipulators are based on nonlinear observer approaches. Caccavale and Walker tried to 
adapt robot dynamics to a certain kind of nonlinear systems and used nonlinear observers 
which are convenient for these systems (Caccavale & Walker, 1997). Similarly, Schneider 
and Frank used a robust observer designed for nonlinear systems for robot dynamics and 
fuzzy logic for residual evaluation/fault isolation (Schneider & Frank, 1996). Leuschen et al. 
transferred analytical redundancy from linear to nonlinear systems, they defined nonlinear 
analytical redundancy term and they implemented these redundancies and FDI studies on a 
hydraulic robot manipulator platform and on a two-link IMI robot manipulator (Leuschen 
et al., 2005). De Luca and Mattone resembled robot dynamics to generalized notation of 
adaptive controllers and proposed an adaptive FDI scheme (De Luca & Mattone, 2004). 
Dixon et al. proposed a filter, they passed torque signals applied to a robot manipulator 
through this filter and they proposed an FDI technique robust to parametric uncertainties 
using the difference signals between these filtered signals and their predictions (Dixon et al. 
2000). Abdul and Liu proposed an analytical method for the prediction of position and 
velocity signals of modular type robots and designed a fault tolerant controller using these 
predictions (Abdul & Liu, 2008). Brambilla et al. generated residuals using inverse robot 
model, proposed a sliding mode observer and isolated sensor faults using this observer 
(Brambilla, 2008). Chen and Saif resembled robot dynamics to systems with unknown 
inputs in state-space and implemented fault detection using output observers (Chen & Saif, 
2008). 
NNs as an approved tool for FDI for nonlinear systems are also used for robot manipulators. 
Naughton et al. used nonlinear observer proposed by Adjallah et al. for residual generation 
and NN for residual evaluation (Adjallah et al., 1994; Naughton et al., 1996). Vemuri and 
Polycarpou considered fault as a component of robot model function and used adaptive 
learning strategy of NNs to approximate fault function (Vemuri & Polycarpou, 1997). Terra 
and Tinós used some different types of NN structures for both residual generation and 
evaluation (Terra & Tinós, 2001). Lee et al. tried to use parameter identification methods for 
fault detection and ART type NNs for fault isolation on component and sensor type faults 
(Lee et al., 2003). Datta et al. tried to classify coefficients obtained from discrete wavelet 
transform (DWT) using a NN (Datta et al., 2007). 

 
3. Faults defined for robot manipulators  
 

Faults can be classified according to the part of the system, according to modelling or 
according to time characteristics (Chen & Patton, 1999). In this section, how faults defined 
for robot manipulators are classified according to the part of the system (Fantuzzi et al., 
2003). 
Generalized dynamics of robot manipulators are defined in (4) : 

    )()(),()( qFqGqqVqqM         (4) 

In (4), n as the number of links,                               are in order angular position, velocity and 
accelerations of each link,                      is the positive defined inertia matrix,                      is the 
Coriolis  and  centripedal  vector,                    is  the  gravity  vector,                 is  the  friction 
vector and               is  the  vector of applied torques to joints. If  the  nonlinear  terms  in (4) 
except  terms   having   angular  acceleration  are  expressed as                                                   , )()(),(),( qFqGqqVqqN  
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estimator  (Garcia & Frank, 1997). In the literature, there are some nonlinear observer desing  
approaches defined for certain type nonlinear systems (Frank & Ding, 1997; Adjallah et al., 
1994; Garcia & Frank, 1997; Seliger & Frank, 1991; Yang & Saif, 1995; Kinnaert, 1999).  
All approaches mentioned below use analytical methods but it is hard to obtain analytical 
models which nonlinear observers are based on. To overcome this problem, “universal 
approximator” soft computing modelling tools which can model nonlinear systems are 
preferred. Soft computing techniques involves NN, FL and genetic algorithms (GA). NN can 
be used to model multiple-input-multiple-output (MIMO) nonlinear systems by using 
nonlinear mapping capabilities in its hidden black-box structure (Haykin, 1999). Residual 
generation is implemented by comparing the real system outputs and estimated outputs by 
NN. Furthermore NNs are superior to analytical techniques on classification and a second 
NN can be used to isolate faults by evaluating (classifying) the residuals (Patton et al., 
2000b; Marcu et al., 1998). Model-based FDI scheme with NNs is shown in Fig. 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Model based fault detection and isolation with two neural networks 
 
In addition to these NN approaches, there are some approaches named online approaches 
using adaptive learning and defining NN parameters in terms of input signals anf fault 
functions (Zhang et al., 2002; Polycarpou & Helmicki, 1995; Polycarpou & Trunov, 2000) 
NNs with self learning capabilities can be thought convenient for FDI but, as a black-box 
structure, keeping user experiences and interferences away from modelling is not a desired 
feature. To overcome this disadvantage, FL is used as modelling, observer, adaptive residual 
threshold selector tools for FDI for nonlinear systems (Dexter, 1995; Patton et al., 1998; Ballé, 
1998). The main idea behind fuzzy observers is to define a nonlinear system using a set of 
locally linearized observers with Takagi-Sugeno fuzzy models. Local region definitions are 
generated using working points. Furthermore, FL is used for residual evaluation. The most 
important problem in residual evaluation is to set residual threshold. An adaptive threshold 
can prevent the FDI system from false and missed alarms and FL can be used as the 
adaptive threshold selector tool (Schneider & Frank, 1996). 
FDI studies on robots continue on most of the robot types (mobile, flexible, kinematically 
redundant, parallel, mobile manipulator, humanoid, bipedal and multi-legged etc.). This 
study deals with the most common used serial, open chained and rigid robot manipulator 
and only a detailed review on this type of robots is given here. Studies on other type robots 

can be found in (Goel et al., 2000; Tinós & Terra, 2002). Most studies on FDI for robot 
manipulators are based on nonlinear observer approaches. Caccavale and Walker tried to 
adapt robot dynamics to a certain kind of nonlinear systems and used nonlinear observers 
which are convenient for these systems (Caccavale & Walker, 1997). Similarly, Schneider 
and Frank used a robust observer designed for nonlinear systems for robot dynamics and 
fuzzy logic for residual evaluation/fault isolation (Schneider & Frank, 1996). Leuschen et al. 
transferred analytical redundancy from linear to nonlinear systems, they defined nonlinear 
analytical redundancy term and they implemented these redundancies and FDI studies on a 
hydraulic robot manipulator platform and on a two-link IMI robot manipulator (Leuschen 
et al., 2005). De Luca and Mattone resembled robot dynamics to generalized notation of 
adaptive controllers and proposed an adaptive FDI scheme (De Luca & Mattone, 2004). 
Dixon et al. proposed a filter, they passed torque signals applied to a robot manipulator 
through this filter and they proposed an FDI technique robust to parametric uncertainties 
using the difference signals between these filtered signals and their predictions (Dixon et al. 
2000). Abdul and Liu proposed an analytical method for the prediction of position and 
velocity signals of modular type robots and designed a fault tolerant controller using these 
predictions (Abdul & Liu, 2008). Brambilla et al. generated residuals using inverse robot 
model, proposed a sliding mode observer and isolated sensor faults using this observer 
(Brambilla, 2008). Chen and Saif resembled robot dynamics to systems with unknown 
inputs in state-space and implemented fault detection using output observers (Chen & Saif, 
2008). 
NNs as an approved tool for FDI for nonlinear systems are also used for robot manipulators. 
Naughton et al. used nonlinear observer proposed by Adjallah et al. for residual generation 
and NN for residual evaluation (Adjallah et al., 1994; Naughton et al., 1996). Vemuri and 
Polycarpou considered fault as a component of robot model function and used adaptive 
learning strategy of NNs to approximate fault function (Vemuri & Polycarpou, 1997). Terra 
and Tinós used some different types of NN structures for both residual generation and 
evaluation (Terra & Tinós, 2001). Lee et al. tried to use parameter identification methods for 
fault detection and ART type NNs for fault isolation on component and sensor type faults 
(Lee et al., 2003). Datta et al. tried to classify coefficients obtained from discrete wavelet 
transform (DWT) using a NN (Datta et al., 2007). 

 
3. Faults defined for robot manipulators  
 

Faults can be classified according to the part of the system, according to modelling or 
according to time characteristics (Chen & Patton, 1999). In this section, how faults defined 
for robot manipulators are classified according to the part of the system (Fantuzzi et al., 
2003). 
Generalized dynamics of robot manipulators are defined in (4) : 

    )()(),()( qFqGqqVqqM         (4) 

In (4), n as the number of links,                               are in order angular position, velocity and 
accelerations of each link,                      is the positive defined inertia matrix,                      is the 
Coriolis  and  centripedal  vector,                    is  the  gravity  vector,                 is  the  friction 
vector and               is  the  vector of applied torques to joints. If  the  nonlinear  terms  in (4) 
except  terms   having   angular  acceleration  are  expressed as                                                   , )()(),(),( qFqGqqVqqN  
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(4) becomes  
 
     ),()( qqNqqM                      (5) 
 
Faults are defined in (5) as follows: 
a) Actuator faults: Motors and power transmission tools are charged as actuators for 
manipulators and faults occured in these actuators affects the ability of movement. These 
type of faults change dynamics as follows: 
 

    )()(),()( tfTtuqqNqqM                (6) 
 
• Locked joint faults: These faults occur when the magnetic brake of the motor connected to 

a joint  is locked and doesn’t allow any movements (τ free - qi fixed). 
• Free-swinging joint faults: These faults occur when applied torque of the motor connected 

to a joint is zero because of a disconnected cable (τ zero - qi free and under impact of other 
joints or gravity).  

• Partial actuator faults: These faults occur when applied torque of the motor connected to a 
joint decreases (i.e. %20 decrease etc.) because of a fault at power electronics components.   

b) Component faults: In robot manipulators, broken link, gear corrision or fixed or slipped 
chain can be component faults. Dynamics of the manipulator change as follows: 
 
           )),(()( NfqqNqqM       (7) 
 
c) Sensor faults: Optical encoders for joint positions, tachogenerators for joint velocities and 
tactile sensors for contact forces are the sensors used in robot manipulators. The faults 
defined for all sensors can be seen in these sensors (bias etc.). Dynamics of the manipulator 
change as follows:  
 
   qq

T
nn ftqtqtqtqty  ,11 )]()()()([)(      (8)  

 
In (6), (7) and (8),  u(t-T) is the delayed unit  step function, T is the fault occurence instant,  fN 
is the component fault,           is the sensor fault. 

 
4. FDI scheme with M-ANFIS and NN 
 

The block diagram of the first scheme is shown in Fig. 2. The diagram includes not only the 
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Difficulties in modelling nonlinear systems analytically, robustness obligations to 
uncertainty and disturbance directed researchers to soft computing techniques and 
structures with self, automatic learning and nonlinear mapping capabilities. Soft computing 
techniques involve NNs, FL, GA and hybrid structures of these tools. Despite NNs have lots 
of types and lots of learning algorithms, they behave like a black box due to their self-
learning nature. Alike FL leaves all parametric adjustments to users, users’ experiences 
become a parameter in modelling and performance of adjustments are dependent on the 
users. Jang et al. considered advantages of both structures and they decided to combine 
these advantages and proposed an adaptive network called ANFIS (Adaptive Neuro Fuzzy 
Inference System) which is functionally equivalent to fuzzy inference system (Jang et al., 
1997).  ANFIS has a 5-layered structure and a sample with 2 inputs is shown in Fig. 3. 
Functions of the layers are given below.  
 
 
 
 
 
 
 
 
 
 
 
 
Layer 1: This layer contains membership functions of inputs as defined in (9) and all inputs 
are applied to these functions. Type and shape of the membership functions are defined by 
the user and generally, these functions are bell-shaped functions defined in (10): 
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(4) becomes  
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Faults are defined in (5) as follows: 
a) Actuator faults: Motors and power transmission tools are charged as actuators for 
manipulators and faults occured in these actuators affects the ability of movement. These 
type of faults change dynamics as follows: 
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where ai is center, ci is width and bi is crossover gradient, (ai, bi, ci) are parameters of defined 
function and named as premise parameters.  
Layer 2: Each function value is multiplied by other values coming from other inputs due to 
defined rule base and the result values are named as firing strength of each rule: 
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Layer 3: Firing strengths are normalized: 
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Layer 4: Normalized firing strengths are multiplied by a first order function of inputs: 
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where (pi, qi, ri) are parameters of a first order function and these parameters are named as 
consequent parameters. 
Layer 5: Values coming from all Layer 4 outputs are summed and output value is obtained. 
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Points that use user experience in ANFIS like in FL are the choices of membership function 
types at Layer 1 and multiplication operation due to rule base arrangement at Layer 2. These 
dependencies are exposed in the demonstration of functional equivalence of ANFIS and 
fuzzy inference system under some circumstances in (Jang et al., 1997). 
It is purposed in all network structures to adapt or update network parameters in order to 
give appropriate outputs against appropriate inputs. From this point of view, ANFIS 
updates its own parameters using learning algorithms like NNs. As a learning algorithm, 
backpropagation or hybrid learning expressed in forward and backward passes can be 
preferred. Table 1 explains hybrid learning. In forward pass, while premise parameters are 
fixed, inputs go forward until Layer 4 and consequent parameters are determined with least 

squares. In backward pass, consequent parameters are fixed, error is backpropagated until 
Layer 1 and premise parameters are determined with gradient descent. 
 
 
 
 
 
 
Table 1. Parameter updates for hybrid learning in two passes 
 
Fig. 3 illustrates the main disadvantage of ANFIS, being multi-input-single-output (MISO). 
To model systems with multiple outputs (MIMO), multiple-ANFIS (M-ANFIS) which has 
independent parameters and outputs is used. A structure that considers correlations 
between outputs and uses some mutual parameters in order to decrease computational load 
coming from increasing parameter number exists and it is named as coactive-ANFIS (C-
ANFIS) (Jang et al., 1997). In this study, M-ANFIS is preferred and M-ANFIS with 2 inputs 
and 2 outputs is illustrated in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Robot model takes instant torque and unit time step delayed position and velocity signals 
belonging to each joint as inputs and generates instant predictions of position and velocity 
signals of each joint using an ANFIS for each signal. Residuals are generated from 
differences between real robot and robot model signals. Residual generation using M-ANFIS 
is shown in Fig. 5. 
 
 
 

 
  

 

 

 

Parameters Forward pass Backward pass 

Premise Fixed Gradient descent 

Consequent LSE Fixed 

Fig. 4. M-ANFIS with 2 inputs-2 outputs 
 

Fig. 5. Residual generation with M-ANFIS 
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function and named as premise parameters.  
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updates its own parameters using learning algorithms like NNs. As a learning algorithm, 
backpropagation or hybrid learning expressed in forward and backward passes can be 
preferred. Table 1 explains hybrid learning. In forward pass, while premise parameters are 
fixed, inputs go forward until Layer 4 and consequent parameters are determined with least 

squares. In backward pass, consequent parameters are fixed, error is backpropagated until 
Layer 1 and premise parameters are determined with gradient descent. 
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independent parameters and outputs is used. A structure that considers correlations 
between outputs and uses some mutual parameters in order to decrease computational load 
coming from increasing parameter number exists and it is named as coactive-ANFIS (C-
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and 2 outputs is illustrated in Fig. 4. 
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If one of the residual signals overshoots the thresholds determined by simulations and 
implementations running under healthy conditions, it informs a fault alarm. In this study, in 
addition to generated residuals, signals called analytical redundancies are used for fault 
detection and isolation. These signals will be outlined in the following section. 

 
4.2 Residual evaluation using NN with resilient propagation and analytical redundant 
signals  
Residual generation is followed by residual evaluation to isolate faults. This operation is 
based on the fact that different types of faults show different residual characteristics and it is 
considered as a classification process. All techniques used for classification and pattern 
recognition can be used for this process. Multilayer feedforward NNs are very convenient in 
soft computing based classification tools (Haykin, 1999). (Haykin, 1999) gives all detailed 
information about  NNs. Here, just a review on the used learning algorithm will be given.  
NNs aim to update their defined parameters with learning algorithms to give appropriate 
outputs for appropriate inputs. The most common learning algorithm for this purpose is 
gradient descent algorithm and it is defined in (15):  
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where E(n) as the n. step error function, wij as the weight from neuron i to neuron j and η as 
the learning rate parameter. The updates are dependent on the learning rate parameter η 
and it is known that if it is chosen too small, too many operation steps will be needed and if 
it is chosen too large, minimum value will not be reached and error value will oscillate 
around it. To avoid this problem and to accelerate converge, a momentum term with μ 
momentum parameter is added to (15): 
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Despite the momentum term in (16), observations showed that this regulation is still 
dependent on the selected momentum parameter. And again to avoid these parameter 
dependencies, adaptive learning and momentum parameters are suggested. 
These regulations neglect that weight updates are dependent not only the learning rate but 
also partial derivatives of E(n) with respect to wij. Resilient Propagation (RP) learning 
algorithm removes this blurred adaptation from updates and performs updates directly 
according to the following steps (Riedmiller & Braun, 1993). Firstly, RP assigns Δij update 
values to all weights. These values are updated as defined in (17) and (18): 
(17) expresses that if the partial derivative of error with respect to weight changes its sign, 
the update value is too big and local minima is missed, it should be decreased by η− factor 
taking values between 0 and 1 and if it remains with the same sign, it should be increased 
by η+ factor taking values greater than 1. After the update value is calculated, the weight 
update is performed in (18): 
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On the contrary of other learning algorithms, RP is more transparent, has a more powerful 
update process and is more efficient with respect to time, memory storage consumption and 
it is chosen as the learning algorithm in this study. 
Simulation results in this study and in some other studies showed that it is hard to train a 
NN with sufficient fault isolation rates just using existing residual signals (Chen & Patton, 
1999; Leuschen et al., 2005). To assist isolation process, some variant signals must be 
generated. This can be done by using the definition of analytical redundancy as defining 
one variable in two or more ways like derivation of position and integral of acceleration for 
velocity. It is clear that the derivative value of position residuals must be equivalent to 
velocity residuals mathematically and these derivatives can be applied to NN for isolation 
process and can be used for fault detection. It must be noted that these redundant signals 
are just used to help fault isolation (classification) process and these signals are not directly 
sensitive to a fault defined in (Leuschen et al., 2005). Definitions of analytical redundant 
signals and fault detection process in this study are given in (19) and (20), respectively. NN 
for fault isolation is shown in Fig. 6. 
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If one of the residual signals overshoots the thresholds determined by simulations and 
implementations running under healthy conditions, it informs a fault alarm. In this study, in 
addition to generated residuals, signals called analytical redundancies are used for fault 
detection and isolation. These signals will be outlined in the following section. 

 
4.2 Residual evaluation using NN with resilient propagation and analytical redundant 
signals  
Residual generation is followed by residual evaluation to isolate faults. This operation is 
based on the fact that different types of faults show different residual characteristics and it is 
considered as a classification process. All techniques used for classification and pattern 
recognition can be used for this process. Multilayer feedforward NNs are very convenient in 
soft computing based classification tools (Haykin, 1999). (Haykin, 1999) gives all detailed 
information about  NNs. Here, just a review on the used learning algorithm will be given.  
NNs aim to update their defined parameters with learning algorithms to give appropriate 
outputs for appropriate inputs. The most common learning algorithm for this purpose is 
gradient descent algorithm and it is defined in (15):  
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where E(n) as the n. step error function, wij as the weight from neuron i to neuron j and η as 
the learning rate parameter. The updates are dependent on the learning rate parameter η 
and it is known that if it is chosen too small, too many operation steps will be needed and if 
it is chosen too large, minimum value will not be reached and error value will oscillate 
around it. To avoid this problem and to accelerate converge, a momentum term with μ 
momentum parameter is added to (15): 
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Despite the momentum term in (16), observations showed that this regulation is still 
dependent on the selected momentum parameter. And again to avoid these parameter 
dependencies, adaptive learning and momentum parameters are suggested. 
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(17) expresses that if the partial derivative of error with respect to weight changes its sign, 
the update value is too big and local minima is missed, it should be decreased by η− factor 
taking values between 0 and 1 and if it remains with the same sign, it should be increased 
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On the contrary of other learning algorithms, RP is more transparent, has a more powerful 
update process and is more efficient with respect to time, memory storage consumption and 
it is chosen as the learning algorithm in this study. 
Simulation results in this study and in some other studies showed that it is hard to train a 
NN with sufficient fault isolation rates just using existing residual signals (Chen & Patton, 
1999; Leuschen et al., 2005). To assist isolation process, some variant signals must be 
generated. This can be done by using the definition of analytical redundancy as defining 
one variable in two or more ways like derivation of position and integral of acceleration for 
velocity. It is clear that the derivative value of position residuals must be equivalent to 
velocity residuals mathematically and these derivatives can be applied to NN for isolation 
process and can be used for fault detection. It must be noted that these redundant signals 
are just used to help fault isolation (classification) process and these signals are not directly 
sensitive to a fault defined in (Leuschen et al., 2005). Definitions of analytical redundant 
signals and fault detection process in this study are given in (19) and (20), respectively. NN 
for fault isolation is shown in Fig. 6. 
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Fig. 7. The block diagram of the second FDI scheme 
 

 
 
 
 
 
 
 
 
 
 

 
5. FDI scheme using generalized observers with M-ANFIS 
 

The design procedure of fault isolation using observes is based on defining relationships 
between faults and generated residuals. If the residual set can isolate all faults, it can be said 
that the residual set has the required isolation property. Two methods can be applied to 
residual sets that involve all residuals to verify this fault isolability property (Chen & Patton, 
1999). For dedicated observer schemes (DOS), as the first method, each of the residuals must 
be sensitive to one fault and insensitive to others. Although this method sounds good, in 
practice, it is hard to design and to obtain robustness against modelling errors for dedicated 
observers using analytical approaches. For generalized observer schemes (GOS), as the 
second method, each of the residuals is sensitive to all but one fault and it is easier to design 
generalized observers using generated residuals. GOS approach can easily cope with 
uncertainties by modelling faulty systems one by one. Nevertheless, computational load 
coming from each system models arises real-time implementation problem. The block 
diagram of the second proposed model-based FDI scheme is shown in Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Fault isolation with NN using residuals and analytical redundancy 

Fig. 8. The block diagram of the third FDI scheme 

Again CT-PID is preferred as the robot control method. For the robot manipulator, n+ 1 
systems, as one healthy and n faulty, are defined. Each system is modelled using M-ANFIS 
and generates residual sets (position and velocity residuals of each system) using the same 
definitions in Section 3.1. Using GOS approach, each of the residual sets overshoots 
thresholds of all other systems but itself determined by simulations or implementations. 
GOS combines fault detection and isolation process in one step and that   makes the method 
more effective and attractive. But using models for each defined fault exposes heavy 
computational load. Table 2 illustrates residuals and residual evaluation process for the 
proposed scheme. 

 
 
 
 
 
 
 
 
 
 

 
6. Fault function approximator FDI scheme with M-ANFIS  
 

Despite two proposed schemes are valid and effective for fault detection and isolation, due 
to their nature, they can be used only for predefined fault types and that makes them hard 
against partial actuator faults for nonlinear systems and robot manipulators. Furthermore, 
these schemes can not fully succeed in the design of fault tolerant controllers that use 
information coming from FDI.  
These disadvantages makes fault function approximation more important and the third 
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signals as inputs is trained. Each ANFIS of M-ANFIS gives a fault function approximation of 
each actuator belonging to each joint. Activation of M-ANFIS and fault detection process are  
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Fig. 7. The block diagram of the second FDI scheme 
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implemented by residuals and analytical redundant signals. M-ANFIS is designed to give 
one fault function, the other outputs will give zero value. That makes the fault isolation 
process unnecessary but simulation results showed that especially for small faults more than 
one output may give approximations. In this study to avoid this problem, bigger output is 
accepted as the real fault function approximation. 

 
7. Simulation results 
 

In this section, the proposed FDI schemes are simulated using MATLAB Fuzzy Logic Toolbox 
and Neural Network Toolbox. Robot manipulator used in the simulations is a two-link planar 
manipulator under gravity and masses of the links are defined at the end of the links (Lewis 
et al., 1993). The manipulator is shown in Fig. 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The dynamics of the manipulator and the generalized form of dynamics are given in (21) 
and (22), respectively:  
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where              is the applied torques to joints,                         is the inertia matrix,  
is   the   Coriolis/centripedal  vector and                      is  the   gravity   vector.    Friction    and  
disturbance  terms are neglected.  The  link  masses are m1 = m2 = 1 kg.,  the  link  lengths  are  
a1 = a2 = 1 m. and the sampling frequency is 100 Hz. 

Fig. 9. Two-link manipulator under gravity 
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Computed Torque control is a special application of feedback linearization of nonlinear 
systems to robotics. It has commonly PD or PID types and CT-PID is used in this study 
(Lewis et al., 1993). CT-PID is not very effective against uncertainties but in this study, the 
controller is not important because suggested FDI schemes use soft computing techniques 
and they use only the datas coming from the system. If another controller is used, only datas 
will change and soft computing tools will be trained again using these new datas. Equations 
of CT-PID are given in (23): 
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where e is the error, ε is the derivative of error. The gain matrices of the controller are Kd = 
100 I2×2, Kp = 20 I2×2, Ki = 500 I2×2. 
In this study, 4 different partial actuator faults are defined, examined and they are given in 
Table 3 with loss percentages. Expression of partial actuator faults defined in (6) with 
respect to time in (22) is given in (24). 
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where 2  is the partial actuator loss, 2)( tu  is the unit step and T is the fault 
occurence instant. 
 
 
 
 
 
 
 
 
 

Table 3. Simulated faults 

 
7.1 Case 1: FDI with the first scheme 
As the first case, FDI scheme in Fig. 2 is implemented. Firstly, M-ANFIS is constructed as 
the model. M-ANFIS is formed of 4 independent ANFIS having instant torque and unit time 
step delayed position and velocity signals as common 6 inputs coming from 2 joints and 
each giving assigned instant position or velocity signal of each joint. Manipulator is 
simulated for 146 different joint trajectories defined in sin-, cos-shape with amplitudes 
varying between ±1 and 76 sampled datas from these simulations are used to train M-
ANFIS. Each ANFIS has two bell-shaped membership functions for each input and hybrid 
learning is selected as the learning algorithm. To show the robustness of the model and 
residuals generated, time varying %5 dynamics uncertainty is added to (22) as accepted in 
(25) and the schemes are tested against different uncertainties added to robot dynamics.  

Fault Name 

Actuator 1 %50 loss f1 

Actuator 1 %30 loss f2 

Actuator 2 %50 loss f3 

Actuator 2 %30 loss f4 
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implemented by residuals and analytical redundant signals. M-ANFIS is designed to give 
one fault function, the other outputs will give zero value. That makes the fault isolation 
process unnecessary but simulation results showed that especially for small faults more than 
one output may give approximations. In this study to avoid this problem, bigger output is 
accepted as the real fault function approximation. 
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disturbance  terms are neglected.  The  link  masses are m1 = m2 = 1 kg.,  the  link  lengths  are  
a1 = a2 = 1 m. and the sampling frequency is 100 Hz. 

Fig. 9. Two-link manipulator under gravity 
 

2),( qqV 
2)( qG

2 22)( qM

Computed Torque control is a special application of feedback linearization of nonlinear 
systems to robotics. It has commonly PD or PID types and CT-PID is used in this study 
(Lewis et al., 1993). CT-PID is not very effective against uncertainties but in this study, the 
controller is not important because suggested FDI schemes use soft computing techniques 
and they use only the datas coming from the system. If another controller is used, only datas 
will change and soft computing tools will be trained again using these new datas. Equations 
of CT-PID are given in (23): 
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where e is the error, ε is the derivative of error. The gain matrices of the controller are Kd = 
100 I2×2, Kp = 20 I2×2, Ki = 500 I2×2. 
In this study, 4 different partial actuator faults are defined, examined and they are given in 
Table 3 with loss percentages. Expression of partial actuator faults defined in (6) with 
respect to time in (22) is given in (24). 
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where 2  is the partial actuator loss, 2)( tu  is the unit step and T is the fault 
occurence instant. 
 
 
 
 
 
 
 
 
 

Table 3. Simulated faults 

 
7.1 Case 1: FDI with the first scheme 
As the first case, FDI scheme in Fig. 2 is implemented. Firstly, M-ANFIS is constructed as 
the model. M-ANFIS is formed of 4 independent ANFIS having instant torque and unit time 
step delayed position and velocity signals as common 6 inputs coming from 2 joints and 
each giving assigned instant position or velocity signal of each joint. Manipulator is 
simulated for 146 different joint trajectories defined in sin-, cos-shape with amplitudes 
varying between ±1 and 76 sampled datas from these simulations are used to train M-
ANFIS. Each ANFIS has two bell-shaped membership functions for each input and hybrid 
learning is selected as the learning algorithm. To show the robustness of the model and 
residuals generated, time varying %5 dynamics uncertainty is added to (22) as accepted in 
(25) and the schemes are tested against different uncertainties added to robot dynamics.  
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Difference signals between this robot model and real robot generate residuals. Although 
residuals must be zero in healthy conditions, it may have very small values due to 
uncertainties. 12 trajectories of 146 trajectories are selected, up and down boundary 
thresholds of residuals generated from healthy 12 different trajectories are determined and 
any overshooting is defined as the fault alarm and fault detection part of the scheme. 
A four-layered NN with 10-20-20-4 neurons using RP learning algorithm is constructed for 
residual evaluation/fault isolation. Four faults defined in Table 4 for the same 12 different 
trajectories are simulated, 4 residuals and 2 analytical redundant (position residual 
derivatives of each link) signals with 101 samples (6×4848) as 6 inputs and 4 outputs giving 
0.9 value, each representing one fault in Table 4, are used to train NN. 7000 epochs and 0 
error target are selected as training parameters. Training process is accomplished under 5 
minutes and error value is under 10-3.  
Simulation tests showed that NN is confused by residuals during transition from healthy to 
faulty condition and this increases false alarm rate. To prevent this, 3.85 seconds delay is 
added before NN starts to evaluate residuals after fault detection alarm.  
If one of the NN outputs overshoots 0.5, it is defined as fault isolation signal. Simulation 
studies showed that some faults belonging to some trajectories may cause two outputs 
(especially fault outputs of the same actuator) to overshoot 0.5 for short time durations, and 
these results increase false alarm rate. To regulate this, continuity is accepted as criteria and 
network output signals with time durations shorter than 0.35 s. are neglected.  
With these specifications, simulation studies showed %89.58 fault isolation rate for defined 
faults and trajectories.  
As an illustration of the proposed scheme, a trajectory is defined in (26), a %50 fault at 
actuator 1 (f1) at t = 24 s. is simulated. Followed trajectories by joints, errors and applied 
torques to joints are given in Fig. 10, residuals and analytical redundant signals are given in 
Fig. 11 and NN outputs are given in Fig. 12 for 4-50 s. time interval: 
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It can be seen in Fig. 12 that the outputs of f1 and f2 overshoots 0.5 but the time continuity 
rule neglects this time interval. And fault isolation instant t = 28.21 s. can be seen in Fig. 12. 

 
7.2 Case 2: FDI with the second scheme 
As the second case, scheme in Fig. 7 is implemented. Four actuator faults, as in the first case 
defined in Table 1, are considered and from this consideration, as can be seen in Fig. 7, 1 M-
ANFIS for healthy and 4 M-ANFIS for faulty robot models are defined and each is formed 
of 4 independent ANFIS having instant torque and unit time step delayed position and 
velocity signals as common 6 inputs and each giving assigned instant position or velocity 
signal. As a result, 5 M-ANFIS with 20 independent ANFIS is constructed. To train, same 
146 different joint trajectories defined in sin- and cos-shape with amplitudes varying 
between ±1  are simulated  for healthy  and faulty robot models  and 76 sampled datas  from  
these simulations are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Time histories of joint 1,2: a) Followed trajectories b) Errors c) Applied torques 
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Fig. 11. Residuals and analytical redundant signals with thresholds 
 a) 111 q̂qr    b) 112 q̂qr    c) 223 q̂qr   d) 224 q̂qr    e) 111 q̂qr    f) 223 q̂qr    
 

a) b) 

c) d) 

e) f) 

www.intechopen.com



Model-Based FDI Schemes For Robot Manipulators Using Soft Computing Techniques 145

    ),(05.1),(,)(05.1)( qqNqqNqMqM                    (25) 
 
Difference signals between this robot model and real robot generate residuals. Although 
residuals must be zero in healthy conditions, it may have very small values due to 
uncertainties. 12 trajectories of 146 trajectories are selected, up and down boundary 
thresholds of residuals generated from healthy 12 different trajectories are determined and 
any overshooting is defined as the fault alarm and fault detection part of the scheme. 
A four-layered NN with 10-20-20-4 neurons using RP learning algorithm is constructed for 
residual evaluation/fault isolation. Four faults defined in Table 4 for the same 12 different 
trajectories are simulated, 4 residuals and 2 analytical redundant (position residual 
derivatives of each link) signals with 101 samples (6×4848) as 6 inputs and 4 outputs giving 
0.9 value, each representing one fault in Table 4, are used to train NN. 7000 epochs and 0 
error target are selected as training parameters. Training process is accomplished under 5 
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It can be seen in Fig. 12 that the outputs of f1 and f2 overshoots 0.5 but the time continuity 
rule neglects this time interval. And fault isolation instant t = 28.21 s. can be seen in Fig. 12. 
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velocity signals as common 6 inputs and each giving assigned instant position or velocity 
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Fig. 12. Neural network outputs 
 
The operation of GOS shows that it can detect and isolate faults at the same time instant. 
Although Table 2 implies that the residual of the defined fault or healthy condition must be 
zero, it may have very small values due to modelling errors. To define thresholds for each 
residual of defined conditions (1 healthy + 4 faulty), 80 trajectories are simulated, up and 
down thresholds are determined, overshooting of these thresholds for each residual is 
defined as another condition except belonging to itself. Analytical redundant signals are not 
defined for this scheme because the residual signals are sufficient and capable of isolating 
faults using GOS scheme. 
Simulation studies for determining fault isolation rate showed that for some faults 
belonging to some trajectories, two residual sets coming from two models may fall between 
threshold intervals causing decrease of isolation rate. To increase this rate, residuals are 
evaluated in the sequence of healthy-f1-f2-f3-f4. Furthermore, again continuity is accepted as 
criteria and residuals falling between threshold intervals with time durations shorter than 
0.8 s. are neglected. 
With these specifications, simulation results showed %87.81 fault isolation rate for defined 
faults and trajectories. As an example of this scheme, the same trajectory in (26) and the 
same fault f1 is accepted. Residuals of f1 are given in Fig. 13 and isolation signals are given in 
Fig. 14. Fault isolation instant t = 24.93 s. can be seen in Fig. 14. 

 
7.3 Case 3: FDI with the third scheme 
As the third case, the scheme in Fig. 8 is implemented. Robot modelling, residual generation 
and fault detection processes are implemented in the same way with the first scheme. The 
scheme is simulated for the 80 trajectories used in the second scheme and residual 
thresholds are determined. To approximate the fault function, M-ANFIS is formed of two 
independent ANFIS (for each actuator) taking instant torque, position and velocity signals 
as  inputs.  Activation of  M-ANFIS  is  realized  by  the  residuals  and analytical  redundant  
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Fault isolation signals of the second scheme  
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Fig. 12. Neural network outputs 
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signals defined for the first scheme. For the training of M-ANFIS, to realize fault function 
approximation more correctly, 2 extra faults f5-Actuator 1 %70 torque loss and  f6-Actuator 2 
%70  torque  loss  are defined. Simulations  are  implemented  for  defined  6  faults  and  101  
sampled datas from these simulations are used for training. 
Function approximator M-ANFIS is formed of two ANFIS and they are trained to give fault 
approximation of the faulty actuator. It is hard for the other ANFIS to give zero output 
because of uncertainties and that causes false alarms. This problem is solved by the rule 
“The bigger signal is the right signal”. This rule is based on that ANFIS output torque of the 
faulty actuator is mostly bigger than other ANFIS output torques. This rule constitutes false 
alarms in the cases of low percentage actuator faults resulting close ANFIS outputs.  
The second problem is the torque signals containing high frequency components coming 
from the change of the system region from stable to unstable in the cases of some very high 
percentage actuator faults. Sudden changes in short time intervals as the high frequency 
signals lead M-ANFIS to false alarms. These high frequency signals are removed by using a 
filter like sliding mode control with saturation but the problem still continues and these 
high frequency components are accepted as a part of the study. 
In the simulation studies, like the first scheme, transition from healthy to faulty condition 
increased false alarms and to decrease these alarms, function approximator M-ANFIS is 
activated after 3.2 s. delay from fault detection instant. 
Again for this scheme, 0.8 s. continuity test is added to the scheme to increase fault isolation 
rates. 
With these specifications, simulation results showed %87.5 fault isolation rate for defined 
faults and trajectories. Fault function and aproximation signals are given in Fig. 15 and fault 
isolation signals are given in Fig. 16 for the same example defined for the other schemes. 
Fault isolation instant t = 28 s. can be seen in Fig. 16. In addition to approximating fault 
function, this approximation can give information if the fault function causes actuator 
saturation problem. 
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8. Comparison of the schemes and conclusions  
 

In this study, three model-based fault detection and isolation schemes for robot 
manipulators using soft computing techniques are proposed. All schemes use multi-input-
multi-output type of ANFIS, M-ANFIS structure for modelling. The first scheme uses 
overshooting of the residuals for fault detection and a NN for fault isolation and the second 
scheme uses generalized observer approach for fault detection and isolation. The third 
scheme differs from these schemes by approximating fault function and it uses M-ANFIS for 
approximation. A comparison of the schemes according to some important FDI 
specifications is given in Table 4. 
All schemes have low false alarm rates, common and positive responses against robustness, 
and adding new trajectories and training. It is hard to define robustness of these schemes 
analytically but all schemes are tested against different uncertainties added to robot 
dynamics and all give similar isolation results. It is observed that new added position 
trajectories with lower values than ±1 peak values show same results. When new trajectories 
are added, residual thresholds should be calibrated, isolation structure should be trained 
and isolation delay and continuity time intervals should be revised if the same isolation 
results are desired.  
One of the most demanded specification for FDI schemes is low or absent fault detection 
and isolation delays. None of the schemes need fault detection delay. The first and the third 
schemes have fault isolation delays arising from transition from healthy to faulty condition 
and these delays should be paid attention especially in real-time implementations. The 
second scheme realizes detection and isolation in the same method and doesn t need any 
delays.  
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Resembling of faulty condition residuals to healthy and other type residuals in short time 
intervals causes low isolation rates. To prevent this, continuity tests are added to all of the 
schemes. 

Table 4. Comparison of the schemes 

The first and the third schemes can be considered to have low level, the second scheme to 
have very high level computational load (simulation durations as the proof). The main 
sources of the computational load in these schemes are soft computing structures. 
Especially, ANFIS and its big brother M-ANFIS bring high computational loads. The second 
scheme includes M-ANFIS for all models and that makes it hard for real-time 
implementations. 
The main disadvantage of the first and second scheme is that both are functional for just 
defined faults. This is a limiting characteristic for fault function approximation and for fault 
tolerant controller (FTC) schemes as an extension of FDI schemes. Fault function 
approximation is important to give information about how fault function changes and to 
give the peak value of control signal to observe the saturation occurence. The third scheme 
can approximate all faults and that makes it the first choice for real-time implementation. 
These three schemes, especially the third one, are suitable for real-time implementation. In 
the future studies, schemes involving fault tolerant controllers will be proposed. These FTC 
schemes will use gain scheduling nonlinear PID approach and all proposed schemes will be 
implemented on a real manipulator. 
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intervals causes low isolation rates. To prevent this, continuity tests are added to all of the 
schemes. 
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The first and the third schemes can be considered to have low level, the second scheme to 
have very high level computational load (simulation durations as the proof). The main 
sources of the computational load in these schemes are soft computing structures. 
Especially, ANFIS and its big brother M-ANFIS bring high computational loads. The second 
scheme includes M-ANFIS for all models and that makes it hard for real-time 
implementations. 
The main disadvantage of the first and second scheme is that both are functional for just 
defined faults. This is a limiting characteristic for fault function approximation and for fault 
tolerant controller (FTC) schemes as an extension of FDI schemes. Fault function 
approximation is important to give information about how fault function changes and to 
give the peak value of control signal to observe the saturation occurence. The third scheme 
can approximate all faults and that makes it the first choice for real-time implementation. 
These three schemes, especially the third one, are suitable for real-time implementation. In 
the future studies, schemes involving fault tolerant controllers will be proposed. These FTC 
schemes will use gain scheduling nonlinear PID approach and all proposed schemes will be 
implemented on a real manipulator. 
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