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1. Introduction 
 

Electric machines are electromagnetic energy conversion devices that convert one form of 
energy into another form. Electric machines have been playing important roles in the 
developments of modern industrial technology for over a century. Better understanding of 
energy conversion principles coupled with evolution of new and improved materials has 
contributed to the developments of machine designs. The applications of electric machines 
are increasing rapidly with increased technological advancements. The advances of modern 
digital computers and recent developments in power electronics and semiconductor devices 
have made revolutionary contributions on the design and control of electric machines. The 
direct current (dc), induction, and synchronous machines are the three major electric 
machines that serve industrial, commercial and household needs. The time-stepping finite 
element analysis has helped in further developments and design optimization of electric 
machines. Thus, new electric machines such as brushless dc (BLDC) motor, switched 
reluctance motor, permanent magnet hysteresis motor, permanent magnet synchronous 
motor, self-excited induction generator, and doubly fed induction generator are developed 
and implemented for household and industry applications (Rahman, 1980; Slemon, 1992). 
The electric machines comes in many sizes and forms, and fulfill their function either 
independently or as part of a highly complex process in which all elements must function 
smoothly so that production can be maintained. The function of an individual electric 
machine is normally seen as separable from the rest of the electromechanical system. Not 
withstanding their high reliability, electric machines face various stresses including faults 
during different operating conditions. Hence the condition monitoring, faults diagnostic, 
and protection become necessary in order to avoid catastrophic failures of electric machines. 
The use of comprehensive monitoring schemes for the continuous assessment of electrical 
machines is becoming increasingly important. It is possible to provide adequate warning of 
imminent/incipient failures using new condition monitoring techniques. It is also possible 
to schedule future preventive maintenance and repair work in addition to present 
maintenance needs. This can result in minimum downtime and optimum maintenance 
schedules. Faults diagnosis allows a machine operator to have the necessary spare parts 
before the machine is stripped down, which also reduce machine outage times. If faults 
diagnosis is integrated into the maintenance policy, the usual maintenance at specified 
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intervals can be replaced by condition centered maintenance. This can also eliminate 
unnecessary maintenance (Vas, 1996). It is important to stress the fact that protection system 
for electric machines is basically designed to act only when a fault has occurred in order to 
initiate some remedial action. Virtually all electric machine protection systems embody 
some form of protective devices. In a typical machine, they are used in some or all of the 
following schemes 
 
 Earth fault protection, 
 over current protection, 
 differential current protection, 
 under and overvoltage protection, 
 negative phase sequence protection, 
 field failure protection, 
 reverse power protection, 
 over speed protection, 
 excessive vibration protection, 
 thermal overload protection, etc. 

 
The executive action of a protection system is the disconnection of the piece of machinery of 
a plant from the supply. Such action is acceptable if the machine is readily dissociated from 
the process it is involved with, or if it exists substantially in isolation. However, if the 
machine is vital to the operation of a process, then an unscheduled shutdown of the 
complete process may occur. The losses involved may then be significantly greater than 
those resulting simply from the loss of output during a schedule shutdown. The capital cost 
of an individual electric machine is more often not small compared with the capital costs 
involved in a plant shutdown. Maintenance is most effective when it is planned to service 
many items in the course of a single outage. Therefore, condition monitoring of an electric 
machine is not necessarily aimed at the machine itself, but also at the wider health of the 
process involving the machines (Tavner et al., 2008).  

 
2. State of the Art Faults Diagnostic and Condition Monitoring Technologies  
 

Intensive research has been conducted to develop and implement new and reliable 
techniques for condition monitoring, faults diagnostic and protection of electric machines. 
The modern techniques are based on the application of advanced digital signal processing 
tools on stator currents. The signal processing tools include discrete Fourier transform (DFT), 
fast Fourier transform (FFT), wavelet transform (WT), and other high level frequency 
spectra analysis tools. The model reference adaptive system and artificial intelligence have 
also been used for faults diagnostic and protection of electric machines. In these non-
invasive faults diagnostic techniques, either stator current or vibration signals of electric 
machines is used to detect a fault. The new faults diagnostic techniques for electric machines 
can be broadly classified into three categories: (a) artificial intelligence based techniques, (b) 
standard digital signal processing based techniques, (c) advanced digital signal processing 
based techniques. The artificial intelligence (AI) based techniques include the applications of 
expert systems (ES), genetic algorithm (GA), support vector machine (SVM), neural 
networks (NN), fuzzy logic (FL), and neuro-fuzzy. The standard digital signal processing 

based techniques include the applications of discrete Fourier transform (DFT), fast Fourier 
transform (FFT), short time Fourier transform (STFT), and higher order spectra (HOS) such 
as bi-spectrum, tri-spectrum, etc. The advanced digital signal processing based techniques 
include the applications of continuous wavelet transform (CWT), discrete wavelet transform 
(DWT), wavelet packet transform (WPT), and wavelet neural network (WNN). The use of 
partial discharge (PD), and measurements of stator temperature and negative sequence 
impedance have also been documented in the literatures for faults diagnostic of electric 
machines. A state of the art review of various forms of condition monitoring and faults 
diagnostic techniques for squirrel cage and wound rotor induction motors, permanent 
magnet synchronous motors, interior permanent magnet (IPM) motors, separately excited 
synchronous generators, etc, are given in the following subsections. 

 
2.1 Application of artificial intelligence 
The artificial intelligence (AI) is the study of system conditions through the use of 
computational models. The AI tools are of great practical significance in engineering to 
solve various complex problems, which require human intelligence. Recently, significant 
efforts have been made on the use of artificial intelligence tools to develop condition 
monitoring and faults diagnostic techniques for electric machines. Filippetti et al., (1988), 
have outlined an expert system (ES) based on the knowledge representation for faults 
diagnostic of induction motors. The knowledge based ES uses instantaneous line currents, 
line voltages, and rotor speed as input variables. Leith et al., (1988), have presented an on-
line real time ES for diagnosing faults in induction motors. The knowledge base consists of a 
failure tree, an observation tree, and a case tree. The proposed ES require theoretical and 
practical studies of fault mechanisms, and case histories of fault analyses. This method is 
vulnerable to uncertainty and is not quite suitable from computational point of view. 
Pöyhönen et al. (2002), have implemented support vector machine (SVM) based faults 
diagnostic and classification technique for an inverter fed squirrel cage induction motor. 
The magnetic field analysis is used to get virtual data of the healthy and faulty operating 
conditions of the induction motor. The power spectra of stator current are used as inputs to 
the SVM based classifier to distinguish healthy condition from normal unfaulted condition. 
However, the technique may fail if two separate classes get equal amount of votes. In 
addition, it did not consider the possible redundancy from pair-wise outputs of the classifier. 
Chow et al. (1991), have implemented a three-layer feed forward neural network for 
condition monitoring of induction motors in real time. The stator inter-turn and motor 
bearing faults are investigated at constant load torque. The stator currents and rotor speed 
are used as inputs during the off-line training of the network. The network is implemented 
in real time using a digital signal processor board. The network showed satisfactory 
performances with higher number of hidden nodes. However, the technique is not quite 
accurate due to the dynamic nature of machine parameters. In addition, it requires large 
number of training data set in order to cover all the operating conditions including the 
faulted and unfaulted conditions of the motor. Lasurt et al. (2000), have implemented a 
fuzzy logic based condition monitoring and faults diagnostic technique for induction 
motors. The proposed technique implemented the higher order statistical (HOS) analysis of 
the machine vibration signal.  The fuzzy logic procedures are then applied to the HOS 
signatures in order to enable diagnosis of a machine fault. Park et al. (2004), have presented 
an adaptive neuro-fuzzy inference system (ANFIS) based faults diagnostic technique for an 
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intervals can be replaced by condition centered maintenance. This can also eliminate 
unnecessary maintenance (Vas, 1996). It is important to stress the fact that protection system 
for electric machines is basically designed to act only when a fault has occurred in order to 
initiate some remedial action. Virtually all electric machine protection systems embody 
some form of protective devices. In a typical machine, they are used in some or all of the 
following schemes 
 
 Earth fault protection, 
 over current protection, 
 differential current protection, 
 under and overvoltage protection, 
 negative phase sequence protection, 
 field failure protection, 
 reverse power protection, 
 over speed protection, 
 excessive vibration protection, 
 thermal overload protection, etc. 

 
The executive action of a protection system is the disconnection of the piece of machinery of 
a plant from the supply. Such action is acceptable if the machine is readily dissociated from 
the process it is involved with, or if it exists substantially in isolation. However, if the 
machine is vital to the operation of a process, then an unscheduled shutdown of the 
complete process may occur. The losses involved may then be significantly greater than 
those resulting simply from the loss of output during a schedule shutdown. The capital cost 
of an individual electric machine is more often not small compared with the capital costs 
involved in a plant shutdown. Maintenance is most effective when it is planned to service 
many items in the course of a single outage. Therefore, condition monitoring of an electric 
machine is not necessarily aimed at the machine itself, but also at the wider health of the 
process involving the machines (Tavner et al., 2008).  

 
2. State of the Art Faults Diagnostic and Condition Monitoring Technologies  
 

Intensive research has been conducted to develop and implement new and reliable 
techniques for condition monitoring, faults diagnostic and protection of electric machines. 
The modern techniques are based on the application of advanced digital signal processing 
tools on stator currents. The signal processing tools include discrete Fourier transform (DFT), 
fast Fourier transform (FFT), wavelet transform (WT), and other high level frequency 
spectra analysis tools. The model reference adaptive system and artificial intelligence have 
also been used for faults diagnostic and protection of electric machines. In these non-
invasive faults diagnostic techniques, either stator current or vibration signals of electric 
machines is used to detect a fault. The new faults diagnostic techniques for electric machines 
can be broadly classified into three categories: (a) artificial intelligence based techniques, (b) 
standard digital signal processing based techniques, (c) advanced digital signal processing 
based techniques. The artificial intelligence (AI) based techniques include the applications of 
expert systems (ES), genetic algorithm (GA), support vector machine (SVM), neural 
networks (NN), fuzzy logic (FL), and neuro-fuzzy. The standard digital signal processing 

based techniques include the applications of discrete Fourier transform (DFT), fast Fourier 
transform (FFT), short time Fourier transform (STFT), and higher order spectra (HOS) such 
as bi-spectrum, tri-spectrum, etc. The advanced digital signal processing based techniques 
include the applications of continuous wavelet transform (CWT), discrete wavelet transform 
(DWT), wavelet packet transform (WPT), and wavelet neural network (WNN). The use of 
partial discharge (PD), and measurements of stator temperature and negative sequence 
impedance have also been documented in the literatures for faults diagnostic of electric 
machines. A state of the art review of various forms of condition monitoring and faults 
diagnostic techniques for squirrel cage and wound rotor induction motors, permanent 
magnet synchronous motors, interior permanent magnet (IPM) motors, separately excited 
synchronous generators, etc, are given in the following subsections. 

 
2.1 Application of artificial intelligence 
The artificial intelligence (AI) is the study of system conditions through the use of 
computational models. The AI tools are of great practical significance in engineering to 
solve various complex problems, which require human intelligence. Recently, significant 
efforts have been made on the use of artificial intelligence tools to develop condition 
monitoring and faults diagnostic techniques for electric machines. Filippetti et al., (1988), 
have outlined an expert system (ES) based on the knowledge representation for faults 
diagnostic of induction motors. The knowledge based ES uses instantaneous line currents, 
line voltages, and rotor speed as input variables. Leith et al., (1988), have presented an on-
line real time ES for diagnosing faults in induction motors. The knowledge base consists of a 
failure tree, an observation tree, and a case tree. The proposed ES require theoretical and 
practical studies of fault mechanisms, and case histories of fault analyses. This method is 
vulnerable to uncertainty and is not quite suitable from computational point of view. 
Pöyhönen et al. (2002), have implemented support vector machine (SVM) based faults 
diagnostic and classification technique for an inverter fed squirrel cage induction motor. 
The magnetic field analysis is used to get virtual data of the healthy and faulty operating 
conditions of the induction motor. The power spectra of stator current are used as inputs to 
the SVM based classifier to distinguish healthy condition from normal unfaulted condition. 
However, the technique may fail if two separate classes get equal amount of votes. In 
addition, it did not consider the possible redundancy from pair-wise outputs of the classifier. 
Chow et al. (1991), have implemented a three-layer feed forward neural network for 
condition monitoring of induction motors in real time. The stator inter-turn and motor 
bearing faults are investigated at constant load torque. The stator currents and rotor speed 
are used as inputs during the off-line training of the network. The network is implemented 
in real time using a digital signal processor board. The network showed satisfactory 
performances with higher number of hidden nodes. However, the technique is not quite 
accurate due to the dynamic nature of machine parameters. In addition, it requires large 
number of training data set in order to cover all the operating conditions including the 
faulted and unfaulted conditions of the motor. Lasurt et al. (2000), have implemented a 
fuzzy logic based condition monitoring and faults diagnostic technique for induction 
motors. The proposed technique implemented the higher order statistical (HOS) analysis of 
the machine vibration signal.  The fuzzy logic procedures are then applied to the HOS 
signatures in order to enable diagnosis of a machine fault. Park et al. (2004), have presented 
an adaptive neuro-fuzzy inference system (ANFIS) based faults diagnostic technique for an 
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inverter fed pulse width modulated induction motor drive system. The proposed technique 
involves data acquisition and feature extraction of fault currents, and then use of adaptive 
neuro fuzzy inference system (ANFIS) for faults diagnostic. The technique used the mean 
values of direct and quadrature axis phase currents as the input pattern for the ANFIS.  

 
2.2 Application of standard digital signal processing techniques 
The standard signal processing tools such as DFT, FFT, STFT, etc are widely used for 
condition monitoring and faults diagnostic of electric machines in last fifteen years. These 
techniques have traditionally been applied separately in time and frequency domains. The 
time domain analysis focuses particularly on statistical characteristics of vibration, 
temperature, and stator currents, which include peak level, standard deviation, kurtosis, 
skewness, and crest factor of the diagnostic signal. The frequency domain approach uses 
Fourier methods to transform the time domain signal in the frequency domain, where 
further analysis is carried out. The use of either domain implicitly excludes the direct use of 
information present in other domain (Yang et al., 2003).  
Yang et al. (2003), have used vibration analysis based on bi-spectra and wavelet transform 
for the diagnostic of induction motor rolling element bearing faults. The singular value 
decomposition (SVD) technique is applied to extract the most significant features from 
vibration signatures. The features are used as inputs to an artificial neural network to 
identify the type of fault. Roux et al. (2003), have investigated two condition monitoring 
techniques in order to detect rotor faults in surface mounted type permanent magnet 
synchronous motor. The first technique is based on harmonic spectra analysis of stator 
voltage and current in the natural reference frame. The second technique is based on spectra 
analysis of d-q axis voltage the rotor reference frame. The static and dynamic eccentricity, 
broken magnets, and rotor misalignments are investigated. The harmonic spectra analysis 
method based on fast Fourier transform (FFT) was able to differentiate all faults except the 
static eccentricity from the normal case. Therefore, the harmonics of the negative sequence 
component of the stator current were used for the detection of static eccentricity, and it 
successfully distinguished the static eccentricity from the normal case. However, the main 
disadvantage of FFT based harmonic spectra analysis is the impact of side lobe leakage due 
to windowing of finite data sets.  
Zanardelli et al. (2007), have implemented the short time Fourier transform (STFT) of the 
torque producing current component in order to diagnose faults in surface mounted 
permanent magnet synchronous motor. The field oriented d-q axis currents are used in this 
analysis. The energy of the STFT coefficients is used to detect a fault in the motor, and linear 
discriminator analysis is used to classify faults. However, the STFT based technique uses 
stationary and periodic basis functions. But fault currents are often non-stationary and non-
periodic. As a result, the performances of the technique are limited due to the constraint on 
the window size. In addition, the performances of the proposed technique have not been 
investigated in real time. Schoen et al. (1995), have implemented motor current spectral 
analysis (MCSA) for diagnostic of rolling element bearing in induction motors. The 
vibration and current frequencies are modeled in order to detect incipient bearing failures. 
Yazici et al. (1999), have developed an adaptive statistical time–frequency approach for 
diagnostic of broken bars and bearing faults in induction motors. The proposed technique 
has four stages such as preprocessing, training, testing, and post processing. In the 
preprocessing stage, analog current data are filtered by low pass circuit in order to prevent 

aliasing in the frequency domain. Next, the time–frequency spectra of the digital data are 
computed and used as inputs of a neural network. In the training stage, fault frequencies are 
determined, and a window with frequency components near to the estimated frequencies is 
applied to form a feature vector. Next, feature vectors are segmented into homogenous 
sections along the time axis in time–frequency space. Segmentation is performed by a 
statistical method, which divided the time–frequency spectra into statistically homogenous 
regions along the time axis. However, the proposed technique shows strong interactions 
between machine operating conditions and machine variables.  
 
2.3 Application of advanced digital signal processing techniques 
Majority of the signal processing based faults diagnostic techniques involve the analyses of 
vibrations signal or stator currents in either time or frequency domains assuming stationary 
and periodic nature of fault currents. Thus these techniques are not fully suitable for 
localizing and identifying short duration dynamic phenomena. Therefore, the applications 
of advanced signal processing techniques are required, which include signal modeling, 
filtering, and time-frequency analysis. Among the latter, the wavelet transform algorithms 
are the recent mathematical tools adopted and implemented for faults diagnostic  and 
protection of electric machines (Dalpiaz & Rivola, 1997).  
Zanardelli et al. (2005), have developed a failure prognosis technique for surface mounted 
permanent magnet synchronous motor drives based on undecimated discrete wavelet 
transform (UDWT) of torque current components.  The energy of the UDWT coefficients of 
normal unfaulted and faulted currents is used to detect a fault in the motor. The linear 
discriminator analysis is used to classify faults. The same authors (Zanardelli et. al., 2002) 
have made a comparative analysis of wavelet based faults diagnostic and protection 
techniques in electric machines. Khan & Rahman (2009), have developed and implemented 
a novel fault diagnostic and protection technique for interior permanent magnet (IPM) 
synchronous motors using wavelet packet transform (WPT) and artificial neural network 
(ANN). In the proposed technique, the line currents of different faulted and normal 
conditions of an IPM motor are preprocessed by the WPT. The second level wavelet packet 
transformed coefficients of line currents are used as inputs of a three-layer feed forward 
neural network. The proposed protection technique is successfully simulated and 
experimentally tested on a line-fed and an inverter-fed IPM motors. aKhan & Rahman (2008), 
have developed a wavelet transform based diagnostic and protection technique for inverter 
faults of IPM motor drives. The proposed technique is implemented in real time for a 
voltage source inverter fed IPM motor. The WPT coefficients of motor currents are used as 
inputs of a three-layer wavelet neural network (WNN) for detecting inverter faults in the 
drive system. A feature vector based on the energy of WPT coefficients is used to classify 
different faulted conditions. bKhan & Rahman (2008), have developed and implemented a 
WNN based diagnostic and protection algorithm for inverter faults in vector controlled 
induction motor drive system. The proposed technique is tested on-line for a laboratory 1-
hp induction motor drive using the digital signal processor board ds1102. aKhan et al. (2007), 
have developed and implemented a novel wavelet power based faults diagnostic and 
protection algorithm for separately excited synchronous generator. The proposed algorithm 
is based on the comparison of instantaneous wavelet power of terminal voltage and current 
of a synchronous generator for different faulted and normal (unfaulted) conditions. The 
wavelet power of second level high frequency details (dd2) of fault currents and voltages 
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inverter fed pulse width modulated induction motor drive system. The proposed technique 
involves data acquisition and feature extraction of fault currents, and then use of adaptive 
neuro fuzzy inference system (ANFIS) for faults diagnostic. The technique used the mean 
values of direct and quadrature axis phase currents as the input pattern for the ANFIS.  

 
2.2 Application of standard digital signal processing techniques 
The standard signal processing tools such as DFT, FFT, STFT, etc are widely used for 
condition monitoring and faults diagnostic of electric machines in last fifteen years. These 
techniques have traditionally been applied separately in time and frequency domains. The 
time domain analysis focuses particularly on statistical characteristics of vibration, 
temperature, and stator currents, which include peak level, standard deviation, kurtosis, 
skewness, and crest factor of the diagnostic signal. The frequency domain approach uses 
Fourier methods to transform the time domain signal in the frequency domain, where 
further analysis is carried out. The use of either domain implicitly excludes the direct use of 
information present in other domain (Yang et al., 2003).  
Yang et al. (2003), have used vibration analysis based on bi-spectra and wavelet transform 
for the diagnostic of induction motor rolling element bearing faults. The singular value 
decomposition (SVD) technique is applied to extract the most significant features from 
vibration signatures. The features are used as inputs to an artificial neural network to 
identify the type of fault. Roux et al. (2003), have investigated two condition monitoring 
techniques in order to detect rotor faults in surface mounted type permanent magnet 
synchronous motor. The first technique is based on harmonic spectra analysis of stator 
voltage and current in the natural reference frame. The second technique is based on spectra 
analysis of d-q axis voltage the rotor reference frame. The static and dynamic eccentricity, 
broken magnets, and rotor misalignments are investigated. The harmonic spectra analysis 
method based on fast Fourier transform (FFT) was able to differentiate all faults except the 
static eccentricity from the normal case. Therefore, the harmonics of the negative sequence 
component of the stator current were used for the detection of static eccentricity, and it 
successfully distinguished the static eccentricity from the normal case. However, the main 
disadvantage of FFT based harmonic spectra analysis is the impact of side lobe leakage due 
to windowing of finite data sets.  
Zanardelli et al. (2007), have implemented the short time Fourier transform (STFT) of the 
torque producing current component in order to diagnose faults in surface mounted 
permanent magnet synchronous motor. The field oriented d-q axis currents are used in this 
analysis. The energy of the STFT coefficients is used to detect a fault in the motor, and linear 
discriminator analysis is used to classify faults. However, the STFT based technique uses 
stationary and periodic basis functions. But fault currents are often non-stationary and non-
periodic. As a result, the performances of the technique are limited due to the constraint on 
the window size. In addition, the performances of the proposed technique have not been 
investigated in real time. Schoen et al. (1995), have implemented motor current spectral 
analysis (MCSA) for diagnostic of rolling element bearing in induction motors. The 
vibration and current frequencies are modeled in order to detect incipient bearing failures. 
Yazici et al. (1999), have developed an adaptive statistical time–frequency approach for 
diagnostic of broken bars and bearing faults in induction motors. The proposed technique 
has four stages such as preprocessing, training, testing, and post processing. In the 
preprocessing stage, analog current data are filtered by low pass circuit in order to prevent 

aliasing in the frequency domain. Next, the time–frequency spectra of the digital data are 
computed and used as inputs of a neural network. In the training stage, fault frequencies are 
determined, and a window with frequency components near to the estimated frequencies is 
applied to form a feature vector. Next, feature vectors are segmented into homogenous 
sections along the time axis in time–frequency space. Segmentation is performed by a 
statistical method, which divided the time–frequency spectra into statistically homogenous 
regions along the time axis. However, the proposed technique shows strong interactions 
between machine operating conditions and machine variables.  
 
2.3 Application of advanced digital signal processing techniques 
Majority of the signal processing based faults diagnostic techniques involve the analyses of 
vibrations signal or stator currents in either time or frequency domains assuming stationary 
and periodic nature of fault currents. Thus these techniques are not fully suitable for 
localizing and identifying short duration dynamic phenomena. Therefore, the applications 
of advanced signal processing techniques are required, which include signal modeling, 
filtering, and time-frequency analysis. Among the latter, the wavelet transform algorithms 
are the recent mathematical tools adopted and implemented for faults diagnostic  and 
protection of electric machines (Dalpiaz & Rivola, 1997).  
Zanardelli et al. (2005), have developed a failure prognosis technique for surface mounted 
permanent magnet synchronous motor drives based on undecimated discrete wavelet 
transform (UDWT) of torque current components.  The energy of the UDWT coefficients of 
normal unfaulted and faulted currents is used to detect a fault in the motor. The linear 
discriminator analysis is used to classify faults. The same authors (Zanardelli et. al., 2002) 
have made a comparative analysis of wavelet based faults diagnostic and protection 
techniques in electric machines. Khan & Rahman (2009), have developed and implemented 
a novel fault diagnostic and protection technique for interior permanent magnet (IPM) 
synchronous motors using wavelet packet transform (WPT) and artificial neural network 
(ANN). In the proposed technique, the line currents of different faulted and normal 
conditions of an IPM motor are preprocessed by the WPT. The second level wavelet packet 
transformed coefficients of line currents are used as inputs of a three-layer feed forward 
neural network. The proposed protection technique is successfully simulated and 
experimentally tested on a line-fed and an inverter-fed IPM motors. aKhan & Rahman (2008), 
have developed a wavelet transform based diagnostic and protection technique for inverter 
faults of IPM motor drives. The proposed technique is implemented in real time for a 
voltage source inverter fed IPM motor. The WPT coefficients of motor currents are used as 
inputs of a three-layer wavelet neural network (WNN) for detecting inverter faults in the 
drive system. A feature vector based on the energy of WPT coefficients is used to classify 
different faulted conditions. bKhan & Rahman (2008), have developed and implemented a 
WNN based diagnostic and protection algorithm for inverter faults in vector controlled 
induction motor drive system. The proposed technique is tested on-line for a laboratory 1-
hp induction motor drive using the digital signal processor board ds1102. aKhan et al. (2007), 
have developed and implemented a novel wavelet power based faults diagnostic and 
protection algorithm for separately excited synchronous generator. The proposed algorithm 
is based on the comparison of instantaneous wavelet power of terminal voltage and current 
of a synchronous generator for different faulted and normal (unfaulted) conditions. The 
wavelet power of second level high frequency details (dd2) of fault currents and voltages 
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using a selected mother wavelet show distinctive features between different faulted and 
normal conditions. The proposed technique is tested on-line on a laboratory 1.6 kW three-
phase synchronous generator. The WPT based diagnostic and protection technique is 
implemented in (bKhan et al., 2007) for three-phase induction motors. The WPT coefficients 
at second level of resolution using a selected mother wavelet are compared with a fault 
threshold in order to detect a fault in induction motor. The proposed technique is tested on 
both squirrel cage and wound rotor induction motors. The proposed protection technique 
initiated a trip signal almost at the instant or within one cycle of fault current in all cases of 
investigated faults. cKhan & Rahman (2007), have developed and implemented a hybrid 
WPT and ANN based faults diagnostic and protection technique for three-phase IPM 
motors. The proposed technique is compared with discrete Fourier transform (DFT) based 
protection algorithm at dynamic operating conditions. The proposed technique showed 
better performances than the DFT based technique. dKhan et al. (2007), have developed and 
implemented a wavelet power based diagnostic and protection technique for stator faults in 
synchronous generators. The stator phase unbalance, line to ground (L-G), line-to-line (L-L), 
and turn-to-turn faults are investigated to evaluate the performances of the proposed 
technique.   
Kim et al. (2002), have developed a model based faults diagnostic technique based on 
recurrent dynamic neural networks and multi-resolution signal decomposition for 
predicting transient response and extracting features of fault currents in induction motors, 
respectively. The transient model is used to generate residual fault current. Then, the 
wavelet packet transform based decomposition algorithm is implemented on residuals in 
order to generate decoupled fault indicators. The wavelet transform is applied in (Chow et 
al., 2004) for extracting vibration spectra, which contain features of critical frequencies for 
faults diagnostic in induction motors running at different speeds. The wavelet basis 
functions are matched with related signals through careful selection of basis function 
parameters. An on-line fault detection approach based on the continuous wavelet transform 
of vibration signals for detecting bearing faults in induction motors has been reported in 
(Luo et al., 2003). Douglas et al. (2004), have developed a new faults diagnostic algorithm 
based on the signature analysis of starting currents of induction motors. The proposed 
algorithm estimated the amplitude, frequency, and phase of a single sinusoid signal of the 
non-stationary fault current waveforms. The DWT is applied to residual current vector in 
order to discriminate a healthy motor from the damaged motor. However, the proposed 
technique is used to detect passive faults rather than incipient failures in induction motors. 
Toliyat et al. (2003), have implemented WPT for detecting defects in railroad track. The 
energy of WPT coefficients is used to detect a fault. The experimental results showed 
deviation of energy of the DWT coefficients in the faulted motor from the healthy motor. 
Yen et al. (2000), have outlined a systematic procedure for selecting best WPT features, 
which exploit specific differences among interesting signals. In this method the signal is first 
decomposed via the wavelet packet transform (WPT) in order to extract the time–frequency 
information. Several feature components, which contain little discriminator information are 
discarded with the help of a statistic based feature selection criterion. Zhengjia et al. (1996), 
have implemented WPT for condition monitoring and faults diagnostic of turbo generators. 
The proposed method successfully diagnosed weak defects and looseness in ball bearings of 
inside the bearing terminal of a 50MW turbine generator.  

There have been many condition monitoring and faults diagnostic techniques for electric 
machines. The artificial intelligence, motor current signature analysis, and finally time-
frequency analysis based on short time Fourier transform or wavelet transforms are widely 
used in last twenty years. The wavelet transform is a relatively new technique for condition 
monitoring and faults diagnostic of electric machines. It replaces other condition monitoring 
techniques because of its better frequency resolution and time localization properties. It is 
free from any learning or training of the experimental data covering all operating conditions 
of the motor. In addition, desirable basis function related to a specific application can be 
chosen in wavelet transform based faults diagnostic technique whereas in Fourier transform 
based diagnostic technique the basis functions are fixed to sinusoid or cosine function. 
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A short analysis and real time implementation of each type are given for diagnostic and 
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For the case of non-periodic and non-stationary fault current signals, the windowed DFT is 
normally used. If a signal is sampled with sampling interval of t such that there are N/t 
samples per cycle, then the DFT basis function coefficients can be calculated as (Khan, 2006)  
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using a selected mother wavelet show distinctive features between different faulted and 
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The proposed method successfully diagnosed weak defects and looseness in ball bearings of 
inside the bearing terminal of a 50MW turbine generator.  
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used in last twenty years. The wavelet transform is a relatively new technique for condition 
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techniques because of its better frequency resolution and time localization properties. It is 
free from any learning or training of the experimental data covering all operating conditions 
of the motor. In addition, desirable basis function related to a specific application can be 
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The Fourier harmonic coefficients can be calculated as 
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where kF  is the kth harmonic Fourier coefficient, and x[n] is the sampled sequence of the 
continuous signal x(t). Three types of electrical faults such as single phasing, stator winding 
line to ground (L-G), and stator winding line to line (L-L) faults are investigated. The DFT is 
implemented to determine the spectra of stator current of different faulted and normal 
unfaulted conditions.  
Figure 1 shows the DFT based spectra of stator current of different unfaulted and faulted 
conditions of a laboratory 4-pole 1-hp IPM motor. The fundamental harmonic (30Hz) is 
found significant in all the operating conditions of the IPM motor of Figs. 1(a)-1(d). The 
fundamental spectrum varied between faulted and normal unfaulted (healthy) conditions 
and also within disturbances. The normalized magnitude of fundamental spectrum varied 
between 0.5 and 0.6 for the case of unfaulted operating conditions of the motor. It showed 
peak values of greater than 0.69 and less than 0.3 for the cases of disturbances. Based on the 
observations it can be asserted that the DFT based spectra analysis of fault currents can 
detect and classify possible disturbances in IPM motors. However, the DFT based technique 
is not suitable for non-stationary and non-periodic signals. In addition, faults cannot be 
localizes in time domain using DFT based technique. 
 

 
Fig. 1. The DFT of stator current of the 1hp IPM motor: (a) normal healthy operation, (b) stator 
winding line to ground (L-G) fault, (c) stator winding line to line (L-L) fault, (d) single phasing. 

3.2 Application of Short Time Fourier Transform (STFT) 
The short time Fourier transform (STFT) is an extension of fast Fourier transform (FFT), 
which is able to analyze non-stationary and non-periodic signals. In the STFT, the discrete 
signal is divided into segments, and each segment is analyzed using the FFT. The results of 
the STFT are intuitive and easy to correlate with the original signal. The tiling of the STFT is 
shown in Fig. 2. The tiling shows how the spectrum of a signal changes with time in the 
STFT.  In the implementation of the STFT, a design tradeoff is normally made between time 
and frequency resolution. This is due to the uncertainty principle, which limits the lower 
bound of the time-bandwidth product.  Figure 3 shows the block diagram of the STFT 
algorithm. In Fig. 3, nfft is the length of the FFT, noverlap is the number of overlap samples, 
and window is a weighting vector applied to the FFT input. The spectrogram is the 
graphical way to display the output of the STFT. 
The STFT based spectrogram of stator current of the 1hp IPM motor for the case of normal 
unfaulted and faulted conditions are shown in Figs. 4(a)-4(d). In the detailed analysis, a 512-
point FFT with 475 overlap samples between data segments is used to estimate the 
frequencies of discrete signal. A 500-point Kaiser window (Mathworks, 2007) is applied in 
each data segment. The analysis generated 257 frequency points in 141 time-axis values. The 
energy concentration of the fundamental harmonic (30 Hz) of the 4-pole IPM motor is 
uniform over the entire time axis of the spectrogram for the case of healthy operating 
condition of the IPM motor of Fig. 4(a). However, the concentrations of energy of the 
fundamental, third, fifth, and seventh harmonics are different than those of the healthy 
motor during the inception and clearing of faults of Figs. 4(b)-4(d). Based on the analysis 
performed, it can be asserted that the STFT based algorithm can detect faults in the IPM 
motors in both time and frequency domains. However, the STFT based technique does not 
provide good energy resolution for a specific point of the data signal as the length of the 
window is fixed in each of the data segment of the discrete signal. In addition, the frequency 
analysis is performed using the sinusoidal basis functions. 

 

 
Fig. 2. Time-frequency distribution of the STFT. 
 

 
Fig. 3. Block diagram of the STFT algorithm. 
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uniform over the entire time axis of the spectrogram for the case of healthy operating 
condition of the IPM motor of Fig. 4(a). However, the concentrations of energy of the 
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motor during the inception and clearing of faults of Figs. 4(b)-4(d). Based on the analysis 
performed, it can be asserted that the STFT based algorithm can detect faults in the IPM 
motors in both time and frequency domains. However, the STFT based technique does not 
provide good energy resolution for a specific point of the data signal as the length of the 
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Fig. 2. Time-frequency distribution of the STFT. 
 

 
Fig. 3. Block diagram of the STFT algorithm. 
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Fig. 4. STFT based spectrogram of stator current of the 1hp IPM motor: (a) normal healthy 
operation, (b) stator winding line to ground (L-G) fault, (c) single phasing, (d) stator winding 
line to line (L-L) fault. 

 
3.3 Application of artificial neural network (NN) 
The primary step in developing and implementing artificial neural network (NN) based faults 
diagnostic and protection technique for electric motors is to choose a suitable network structure. 
A three-layer feed forward network with three neurons in the hidden layer and one neuron in 
the output layer is chosen in this work for the NN based faults diagnostic of IPM motors. The 
numbers of neurons in the hidden layer are selected by trial and error, which ensured stability 
and higher convergence rate. The Nguyen-Widrow initialization algorithm (Mathworks, 2007) is 
used in order to initialize weights and biases of the network. The activation function log-sigmoid 
(Mathworks, 2007) is used in both hidden and output layers of the network.   
 

 
Fig. 5. Specific structure of a three-layer feed forward neural network (FFNN). 

The specific structure of a three-layer feed forward neural network is shown in Fig. 5. The 
network is trained off-line in a supervised manner with the back propagation function 
traingdm (Mathworks, 2007), which updates weight and bias values of the hidden and 
output layers according to the gradient descent with momentum. In the NN based faults 
diagnostic algorithm for an IPM motor, the stator currents are used as inputs to the neural 
network. The discrete data of normal unfaulted and faulted conditions are used to train the 
network so that it can differentiate normal conditions from the abnormal conditions. In 
order to generate the realizable training patterns for the NN based faults diagnostic, 
samples of the squared summation of three-phase stator currents are compared with a 
predefined threshold to convert it a binary value of either 1 or 0, depending on whether the 
value is greater or smaller than the threshold, respectively. In this way each training pattern 
became a different combination of 1 and 0. It is expected that the starting current and fault 
currents data would not have same training pattern. The elements of the target vector for 
the case of normal unfaulted (both no load and full load) and starting current samples are 
chosen equal to binary ‘0’. On the other hand, the elements of the target vector are equal to 
binary ‘1’ for the case of fault current samples. After training the network with one set of 
training pattern, which includes the samples of the normal unfaulted and faulted currents, 
and starting currents, the network is tested off-line in the MATLAB environment with the 
different set of testing pattern. Figure 6 shows the off-line test results of NN based faults 
diagnostic and protection algorithm of the 1hp IPM motor.  
 

 
Fig. 6. NN based faults diagnostic response and stator current of the 1hp IPM motor: (a) 
normal unfaulted condition, (b) normal starting condition, (c) stator winding line to ground 
(L-G) fault, (d) single phasing. 
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Figures 6(a)–6(b) show the NN based faults diagnostic response and stator current of the 
1hp IPM motor for the case of normal (unfaulted) and starting conditions. The neural 
network (NN) based diagnostic algorithm identified these as normal conditions and did not 
generate any trip signal. The stator current with the associated trip signal for the case of 
stator winding line to ground (L-G) fault and single phasing are shown in Figs. 6(c)–6(d). 
The algorithm identified these properly and initiated a trip signal almost at the instant of the 
fault occurrence. However, the technique needs a large number of data files to train the 
network effectively. In addition, number of hidden layers may have to be increased to 
improve the accuracy. Therefore, more memory may be needed to accommodate the 
weights and biases of the new layers, and as a result, many trials are required to determine 
the learning rate, so as to improve the functionality of the NN based diagnostic algorithm. 

 
4. Wavelets and Wavelet Transforms 
 

The wavelet transforms analyze a signal simultaneously in time and frequency domains. 
The wavelet transforms are very useful in analyzing non-stationary, non-periodic, 
intermittent, and transient signals. Therefore, a number of wavelet based techniques are 
developed and implemented for signal manipulation and interrogation. The wavelet 
transforms are applied in the investigation of diverse physical phenomena such as climate 
analysis, financial market analysis, heart monitoring, condition monitoring and protection 
of rotating machines, de noising of seismic signal and astronomical images, characterization 
of crack surface and turbulent intermittency, compression of video image and medical 
signal records, etc. The wavelets are little waves of short duration. These have finite energy 
and decay quickly in time. The wavelets also have oscillating feature, which comes along 
with the location in time and frequency. These basic features make wavelets highly 
adequate for signal representation. The wavelet functions of orthogonal type have a 
companion function, which is known as the scaling function. It is responsible for generating 
basis functions, which are required during the decomposition or reconstruction of a signal. 
Figures 7(a) and 7(b) show the Daubechies (‘db3’) wavelet function and its scaling function, 
respectively. In certain application, it is necessary to use real and symmetric wavelets. One 
way to get the symmetric wavelets is to construct two sets of bi-orthogonal wavelets, which 
are wavelet function  ,m n t  and it’s dual  ,

ˆ
m n t . The first set is used during the 

decomposition, and the other one is used during the reconstruction process. Figures 8(a)–
8(d) show the spline bi-orthogonal (‘bior2.6’) wavelet functions and their scaling functions 
during the decomposition and reconstruction of a signal.  
 

 
Fig. 7. The Daubechies (‘db3’) wavelet: (a) mother wavelet function and (b) scaling function. 

 
Fig. 8. The Spline bi-orthogonal (‘bior2.6’) wavelet: (a) scaling function during decomposition, 
(b) mother wavelet function during decomposition, (c) scaling function during 
reconstruction, and (d) mother wavelet function during reconstruction. 
 
The wavelet transforms use little wavelike functions, which are known as wavelets. 
Wavelets are used to transform a signal under investigation into another representation of a 
more useful form. From the mathematical point of view, the wavelet transform is a 
convolution of the wavelet function with the signal. The wavelet function is manipulated in 
two ways: it is moved to various locations on the signal, and it is stretched or squeezed. If a 
wavelet function matches the shape of a signal well at a specific scale and location, then a 
large transformation value will be generated. On the other hand, if the wavelet function and 
signal do not correlate well, then a low value of transformation will be generated (Addison, 
2002). The wavelet transform can be applied to both continuous and discrete signals. In the 
following subsections, different forms of wavelet transforms and their mathematical 
formulations are briefly presented. 

 
4.1 Continuous wavelet transform 
The wavelet transform of a continuous signal x(t) with respect to the wavelet function ( )t  
can be defined as 

( , ) ( ) ( ) t bT a b w a x t dt
a


 



   
   (7) 

where w(a) is the weighting function, a and b are the dilation and translation parameters, 
respectively. The asterisk indicates that the complex conjugate of the wavelet function is 
used in the transformation. The wavelet transform can be thought of as the cross correlation 
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Figures 6(a)–6(b) show the NN based faults diagnostic response and stator current of the 
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(b) mother wavelet function during decomposition, (c) scaling function during 
reconstruction, and (d) mother wavelet function during reconstruction. 
 
The wavelet transforms use little wavelike functions, which are known as wavelets. 
Wavelets are used to transform a signal under investigation into another representation of a 
more useful form. From the mathematical point of view, the wavelet transform is a 
convolution of the wavelet function with the signal. The wavelet function is manipulated in 
two ways: it is moved to various locations on the signal, and it is stretched or squeezed. If a 
wavelet function matches the shape of a signal well at a specific scale and location, then a 
large transformation value will be generated. On the other hand, if the wavelet function and 
signal do not correlate well, then a low value of transformation will be generated (Addison, 
2002). The wavelet transform can be applied to both continuous and discrete signals. In the 
following subsections, different forms of wavelet transforms and their mathematical 
formulations are briefly presented. 

 
4.1 Continuous wavelet transform 
The wavelet transform of a continuous signal x(t) with respect to the wavelet function ( )t  
can be defined as 

( , ) ( ) ( ) t bT a b w a x t dt
a


 



   
   (7) 

where w(a) is the weighting function, a and b are the dilation and translation parameters, 
respectively. The asterisk indicates that the complex conjugate of the wavelet function is 
used in the transformation. The wavelet transform can be thought of as the cross correlation 
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of a signal with a set of wavelets of various widths. Typically, w(a) is set to 1 / a  for the 
reason of energy conservation. It ensures that wavelets at each scale have identical energy. If 
one sets w(a) = 1 / a , then the wavelet transform of the continuous signal x(t) can be 
rewritten as 

  1, ( ) .t bT a b x t dt
aa


 



   
                                         (8) 

 
The equation (8) is known as the continuous wavelet transform (CWT) of the signal x(t). It 
contains both dilated and translated wavelets (( ) / )t b a  , and the continuous signal x(t). 
The signal x(t) may be a beating heart, an audio signal, a financial index, the gearbox 
vibration signal, a spatial signal such as crack profile or land surface heights. The 
normalized wavelet function can be written more compactly as       
 

,
1( )a b

t bt
aa

     
 

                                                       (9) 

 
where the normalization is in the sense of wavelet energy. Now the transform integral of 
equation (9) can be rewritten as 
 

  ,, ( ) ( )a bT a b x t t dt
 


                                                (10) 

The dilation and contraction of the mother wavelet function is governed by the dilation 
parameter a, which is the distance between center of the wavelet function and its crossing 
on the time axis. The movement of the wavelet function along the time axis is governed by 
the translation parameter b. Figure 9 shows the stretching (double) and squeezing (half) of 
the Mexican Hat wavelet function on the time axis. Figure 10 shows the translation of the 
Mexican Hat wavelet function on the time axis from b1 via b2 to b3. 
 

 
Fig. 9. Stretching (a = 0.5) and squeezing (a = 2) of the Mexican Hat wavelet function. 

 
Fig. 10. Translation (b1 via b2 to b3) of the Mexican Hat wavelet function. 

 
4.2 Discrete wavelet transform 
In the continuous wavelet transform (CWT), the mother wavelet is dilated and translated 
continuously over a real continuous number system   . Therefore, it can generate 
substantial redundant information. The mother wavelet can be dilated and translated 
discretely by replacing 0

ma a  and 0 0
mb nb a , where 0a  and 0b  are the fixed constants with 

0 1a  , 0 0b  , and ,m n . Here   is the set of positive integers. Then, the discretized 
mother wavelet function can be defined as (Addison, 2002) 
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and the corresponding discrete wavelet transform (DWT) can be defined as 
 

,( , ) ( ) ( )m nDWT x m n x t t dt 
 


                                            (12) 

 
In the DWT, the family of dilated wavelets constitutes an orthonormal basis by careful 

selections of 0a  and 0b .  There are several implications of the orthonormal basis. The 
orthonormality ensures no information redundancy among the decomposed signals. With 

the optimal choices of 0a and 0b , there exists an elegant algorithm known as the 
multiresolution signal decomposition. It decomposes a signal into various scales with 
different time and frequency resolutions. In the DWT, the procedure starts with passing the 
discrete signal x[n] of length N  through a digital low pass filter with impulse response g[n] 
and a digital high pass filter with impulse response h[n]. The low pass and high pass filters 
are called scaling and wavelet filters, respectively. The outputs from the low pass filter are 
approximation coefficients of the discrete signal at first level of resolution of the DWT. The 
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outputs from the high pass filter are detail coefficients of the discrete signal at first level of 
resolution of the DWT. The output of these filters consists of N wavelet coefficients. This 
constitutes first level of decomposition of the discrete signal and can be mathematically 
expressed as 
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The approximation coefficients (a1) at first level of resolution are used as inputs for another 
pair of wavelet filters (identical with the first pair) after being down sampled by two. The 
filters at second level of resolution generate sets of approximations and details coefficients 
of length N/2. This constitutes second level of decomposition of the discrete signal and can 
be mathematically expressed as   
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Figure 11(a) shows the two-level decomposition of a discrete signal of the discrete wavelet 
transform. It uses the high pass filters (H) and the low pass filters (G) in the decomposition 
process. 

 
4.3 Wavelet packet transform 
The wavelet packets are alternative bases, which can be formed from the linear 
combinations of usual wavelet functions. These bases inherit properties such as 
orthonormality and time-frequency localization from their corresponding wavelet functions. 
A wavelet packet function is a function of three indices j, k and n, and is defined as  
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where the integers j and k are the indices for scale and translation operations, respectively. 
The index n is defined as the modulation or oscillation parameter. The first two wavelet 
packet functions are the scaling function and mother wavelet function, and these are 
defined as 

0
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The wavelet packet functions for n = 2,3,… can be computed as 
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where g(k) and h(k) are the quadrature mirror filters associated with the predefined scaling 
and mother wavelet functions. To measure specific time-frequency information of a signal, 
one simply takes the inner product of the signal with a particular basis function. The 
wavelet packet decomposition (WPD) involves applying both high pass and low pass filters 
to a discrete signal, and then recursively to each intermediate signal. The procedure is 
illustrated in Fig. 11(b) up to the second level of resolution. The first level of decomposition 
of the discrete signal x[n] of length N in the wavelet packet transform (WPT) generates two-
frequency sub-bands, which are the approximation coefficients 1 1 1 1 1

0 1 2 1...n Na a a a a      and 

detail coefficients 1 1 1 1 1
0 1 2 1...n Nd d d d d     . The second level of decomposition generates four-

frequency sub-bands using same set of filters of the first level of resolution. These are 
defined as  
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The frequency sub-band aa2 is defined as second level low frequency approximations of 
original signal. The frequency sub-band ad2 is defined as second level low frequency details 
of original signal. The frequency sub-band da2 is defined as second level high frequency 
approximations of original signal. The frequency sub-band dd2 is defined as second level 
high frequency details of original signal.        
 

 
Fig. 11. (a) Two-level decomposition of a discrete signal of the discrete wavelet transform 
(DWT) and (b) two-level decomposition of a discrete signal of the wavelet packet transform 
(WPT). 
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outputs from the high pass filter are detail coefficients of the discrete signal at first level of 
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and mother wavelet functions. To measure specific time-frequency information of a signal, 
one simply takes the inner product of the signal with a particular basis function. The 
wavelet packet decomposition (WPD) involves applying both high pass and low pass filters 
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The frequency sub-band aa2 is defined as second level low frequency approximations of 
original signal. The frequency sub-band ad2 is defined as second level low frequency details 
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Fig. 11. (a) Two-level decomposition of a discrete signal of the discrete wavelet transform 
(DWT) and (b) two-level decomposition of a discrete signal of the wavelet packet transform 
(WPT). 
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5. Wavelet Transform Based Faults Diagnostic and Protection 
 

One of the primary tasks of wavelet based faults diagnostic technique for electric machines 
is to develop experimental setup and to collect stator current of faulted and normal 
unfaulted conditions. The collected data are to be employed for selecting optimum mother 
wavelet and optimal levels of resolution, and for off-line testing of the proposed technique. 
In the data acquisition setup, the current transformers (CTs) are connected in series with 
motor terminals to collect different faulted and normal unfaulted stator currents. The CTs 
are rated at 200/5 A (rms) and 15 V (max.). The data acquisition instrument consists of DSP 
controller board ds1102, which includes a floating-point digital signal processor TMS320C31. 
The digital data are acquired through on-board three-channel analog-to-digital (A/D) 
converters. The data are collected at the sampling rate of 8 kHz, and stored in a personal 
computer through dSPACE TRACE module. Then, these data are converted to ASCII format 
for further processing. The wavelet based faults diagnostic and protection technique is 
tested on laboratory prototype electric machines. These include 1hp and 5hp interior 
permanent magnet (IPM) motors, 1hp squirrel cage induction motor (IM), 1.5hp wound 
rotor induction motor (IM), and 1.6 kW separately excited synchronous generator. Electric 
machines may experience different type of faults. The majority of these faults are stator 
faults such as turn-to-turn fault, which appears as phase-to-phase or phase-to-ground faults 
later, loss of a phase or field faults, and rotor faults such as static eccentricity, dynamic 
eccentricity, broken bars, and defects in buried permanent magnets or field windings. Faults 
such as stator inter-turn, loss of supply (single phasing), line to ground (L-G), and line-to-
line (L-L) faults are considered in this work.  

 
5.1 Feature extraction using WPT coefficients  
The wavelet packet transform (WPT) is suitable for detection of high frequency components 
superimposed on the fundamental frequency.  In addition, a feature can be extracted by the 
existence of details or approximations coofficients of a signal at any level of resolution of the 
wavelet packet tree, and such feature can be used to identify the type of a fault. The 
collected data of different faulted and unfaulted conditions of an IPM motor are 
decomposed up to the second level of resolution of the WPT using the selected mother 
wavelet ‘db3’. The minimum description length data criterion (Hamid et al., 2002) is used for 
the selection of optimum mother wavelet from a set of orthogonal and non orthogonal 
wavelet functions. Figures 12–13 show the second level WPT coefficients of normal and 
fault currents of an inverter-fed 1-hp IPM motor. The second level WPT coefficients of stator 
current for the case of faulted condition in Fig. 13 are larger than those of unfaulted 
condition in Fig. 12 at the inception of fault occurrence. Therefore, these feature coefficients 
can be used for faults diagnostic and protection of IPM motors. A feature vector F is defined 
using the de noised second level WPT components of stator currents. The feature vector F is 
defined as (Khan & Rahman, 2009) 
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Fig. 12. Second level WPT coefficients of normal current: (a) low frequency approximations 
(aa2), (b) low frequency details (ad2), (c) high frequency approximations (da2), and (d) high 
frequency details (dd2). 
 

 
 

Fig. 13. Second level WPT coefficients of fault current: (a) low frequency approximations 
(aa2), (b) low frequency details (ad2), (c) high frequency approximations (da2), and (d) high 
frequency details (dd2). 
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5. Wavelet Transform Based Faults Diagnostic and Protection 
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rotor induction motor (IM), and 1.6 kW separately excited synchronous generator. Electric 
machines may experience different type of faults. The majority of these faults are stator 
faults such as turn-to-turn fault, which appears as phase-to-phase or phase-to-ground faults 
later, loss of a phase or field faults, and rotor faults such as static eccentricity, dynamic 
eccentricity, broken bars, and defects in buried permanent magnets or field windings. Faults 
such as stator inter-turn, loss of supply (single phasing), line to ground (L-G), and line-to-
line (L-L) faults are considered in this work.  

 
5.1 Feature extraction using WPT coefficients  
The wavelet packet transform (WPT) is suitable for detection of high frequency components 
superimposed on the fundamental frequency.  In addition, a feature can be extracted by the 
existence of details or approximations coofficients of a signal at any level of resolution of the 
wavelet packet tree, and such feature can be used to identify the type of a fault. The 
collected data of different faulted and unfaulted conditions of an IPM motor are 
decomposed up to the second level of resolution of the WPT using the selected mother 
wavelet ‘db3’. The minimum description length data criterion (Hamid et al., 2002) is used for 
the selection of optimum mother wavelet from a set of orthogonal and non orthogonal 
wavelet functions. Figures 12–13 show the second level WPT coefficients of normal and 
fault currents of an inverter-fed 1-hp IPM motor. The second level WPT coefficients of stator 
current for the case of faulted condition in Fig. 13 are larger than those of unfaulted 
condition in Fig. 12 at the inception of fault occurrence. Therefore, these feature coefficients 
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defined as (Khan & Rahman, 2009) 
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Fig. 12. Second level WPT coefficients of normal current: (a) low frequency approximations 
(aa2), (b) low frequency details (ad2), (c) high frequency approximations (da2), and (d) high 
frequency details (dd2). 
 

 
 

Fig. 13. Second level WPT coefficients of fault current: (a) low frequency approximations 
(aa2), (b) low frequency details (ad2), (c) high frequency approximations (da2), and (d) high 
frequency details (dd2). 

www.intechopen.com



Fault Detection274

2
2

1
( ) /

N

ad
n

W ad n N


   (28) 

 

2
2

1
( ) /

N

da
n

W da n N


   (29) 

 

2
2

1
( ) /

N

dd
n

W dd n N


   (30) 

 
where N denotes total number of coefficients in a certain node of wavelet packet tree. Table-
I shows the comparisons of feature vector calculated using equations (26)-(30) between 
faulted and normal conditions of an IPM motor. The feature vectors clearly differentiate 
faulted conditions from normal conditions and also within faulted conditions.  

 

Type of faults Waa2 Wad2 Wda2 Wdd2 
Normal  17.31 0.2757 0.0479 0.1222 

Inter-turn 30.33 0.3654 0.1125 0.1854 
L-G  34.34 0.4164 0.1278 0.2039 
L-L 114.75 0.7929 0.2588 0.3607 

Single phasing  21.88 0.7485 0.1036 0.2671 
Table 1. Feature vector 

 
5.2 Feature extraction based on signature analysis of WPT coefficients 
The signature analysis technique is used for feature extraction of fault currents of the 
proposed wavelet based faults diagnostic technique for induction motors. The discrete 
signal of stator current is decomposed up to the second level of resolution of the wavelet 
packet tree using the selected mother wavelet ‘db3’. The second level high frequency details 
(dd2) of stator currents are used to analyse the signatures of various faults in an induction 
motor as most of the fault current signals contain high frequency components superimposed 
on the fundamental frequency. The 2nd level high frequency details (dd2) of stator currents of 
different faulted and normal unfaulted conditions are given in Figs. 14(a)–14(d). The details 
(dd2) of stator current of Figs. 14(c)–14(d) showed high density of color strips between the 
faulted region as compared to those of normal currents (loaded or unloaded) of Figs. 14(a)–
14(b). Therefore, the significant features for faults detection can be extracted based on the 
density of WPT coefficients (dd2) of stator currents.  

 
5.3 Wavelet based faults diagnostic algorithm 
The new faults diagnostic and protection algorithm is developed by combining the features 
of wavelet packet transform (WPT) coefficients and neural network (NN) algorithm. A 
three-layer feed forward neural network with four inputs and one output is used. 

 
 

Fig. 14. Second level high frequency details (dd2) of stator current of the 1hp induction 
motor: (a) unloaded current, (b) full load current, (c) stator winding phase to ground fault 
current, and (d) single phasing current. 
 

 
 

Fig. 15. Experimental setup of the proposed WPT and NN based faults diagnostic and 
protection algorithm for inverter fed IPM motor using the DSP board ds1102. 
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where N denotes total number of coefficients in a certain node of wavelet packet tree. Table-
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Fig. 15. Experimental setup of the proposed WPT and NN based faults diagnostic and 
protection algorithm for inverter fed IPM motor using the DSP board ds1102. 
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Fig. 16. Flow chart of the new WPT and NN based faults diagnostic and protection 
algorithm for electric motors. 
 
In the proposed faults diagnostic and protection technique, the inputs of the NN are feature 
vectors of second level WPT coefficients of faulted and normal currents. The outputs are 
binary values of 0 or 1 to indicate whether the measured current is a normal current or a 
fault current, respectively. The proposed wavelet based diagnostic and protection technique 
for inverter fed interior permanent magnet (IPM) motors using the DSP board ds1102 is 
shown in Fig. 15. The proposed WPT and NN based faults diagnostic algorithm is written in 
the turbo C language. The algorithm uses a set of initialization and input/output (I/O) 
functions in order to initialize TMS320C31’s on-chip timers and to access the ds1102’s on 
board A/D and D/A converters. When a timer is started, the A/D converters of the DSP 
board continuously sample stator currents at the rate of 8 kHz. The samples of stator 
currents are sent to the memory of the DSP by the host PC, where they are squared and 
summed into one sample. This sample is placed into a circular buffer of size six. The six 
current data are processed using the filter coefficients of the mother wavelet ‘db3’, and the 
biases and weights of the NN algorithm. 
The procedure to implement the proposed WPT and NN based faults diagnostic algorithm 
using the DSP board ds1102 is shown in the flow chart of Figure 16. In the proposed 

technique, samples of three-phase stator currents are squared and summed into one sample 
at the beginning for minimizing the computational burden. The WPT is applied on squared 
samples of stator currents, and the feature vectors are calculated from the WPT coefficients. 
The feature vectors are given as inputs to the neural network. The NN algorithm determines 
the values of the network output using the trained weights and biases, and checks whether 
it is greater than the threshold or not in order to generate the trip signals for the circuit 
breakers.   

 
5.4 Laboratory implementation of wavelet based faults diagnostic algorithm 
The proposed wavelet based faults diagnostic technique is tested in real time using the 
experimental setup of Fig. 15. The experimental responses of the wavelet based faults 
diagnostic technique for supply and inverter fed IPM motors are shown in Figs. 17–19. 
Figures 17(a) and 17(b) show the test results for the case of single phasing of a supply fed 
IPM motor. Figures 17(c) and 17(d) contain the test results for the case of L-L fault of a 
supply fed IPM motor. The proposed faults diagnostic algorithm generated trip signal 
almost at the instant of fault occurrence without any delay. The experimental responses of 
the wavelet based faults diagnostic technique for inverter fed IPM motor are shown in Figs. 
18(a)–18(d). It is clear from Figs. 18(a)–18(d) that for all fault cases disturbances are identified 
promptly and properly. However, the trip signal is initiated after three cycles of fault 
occurrence for the case of single phasing of inverter fed IPM motor of Figs. 18(a)–18(b). In 
addition, the algorithm generated trip signal after one cycle of fault occurrence for the case 
of line to line fault of Figs. 18(c)–18(d). These delays are due to the fact that the response 
time includes the executions of the proposed protection algorithm, the speed control 
algorithm, and the vector control algorithm for generation of logic signals of inverter 
switches. Figure 19(a) shows the phase-a current and experimental response of no trip signal 
of the hybrid wavelet packet transform (WPT) and neural network (NN) based faults 
diagnostic algorithm for step increase and step decrease of command speeds of the inverter 
fed IPM motor. Figure 19(b) shows the phase-a current and experimental response of no trip 
signal of the hybrid diagnostic algorithm for the sudden change of load torque of the 
inverter fed IPM motor. The hybrid algorithm identified these unfaulted conditions of Figs. 
19(a)–19(b) as normal conditions and did not change the status of trip signal. Thus the 
proposed WPT and NN based hybrid algorithm correctly and promptly detected faulted 
and normal currents of both supply fed and inverter fed IPM motors.  
The wavelet based faults diagnostic technique is also implemented on a three-phase, Y-
connected, 1705 rpm, 1hp squirrel cage induction motor. The proposed algorithm is based 
on the identification of WPT coefficients of stator currents of different faulted and normal 
unfaulted conditions. The experimental responses of the faults diagnostic algorithm and 
three-phase stator currents are shown in Figs. 20(a)–20(d). Figures 20(a)–20(b) show the test 
results for single phasing, and Figures 20(c)–20(d) show the test results for line to ground 
fault of supply fed induction motors. The proposed WPT based faults diagnostic algorithm 
correctly and promptly classified faulted and normal currents of induction motor. 
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Fig. 17. Experimental responses of the WPT and NN based faults diagnostic technique for 
supply fed IPM motor: (a)-(b) single phasing condition and (c)-(d) line to line fault condition. 
(time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 A/div.) 
 

 
Fig. 18. Experimental responses of the WPT and NN based faults diagnostic technique for 
inverter fed IPM motor: (a)-(b) single phasing condition and (c)-(d) line to line fault 
condition. (time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 
A/div.) 
 
 
 

 
 

Fig. 19. Experimental responses of the WPT and NN based faults diagnostic technique for 
inverter fed IPM motor: (a) step changes of speed condition and (b) change of load torque 
condition. (time: 2 s/div., trip signal: 1 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 
A/div.) 
 

 
 

Fig. 20. Experimental responses of the WPT based faults diagnostic technique for supply fed 
induction motor: (a)-(b) single phasing condition and (c)-(d) line to ground fault condition. 
(time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 A/div.) 

 
6. Conclusions and Remarks 
 

In this chapter, a short review of conventional Fourier transforms and new wavelet based 
faults diagnostic and protection techniques for electric motors is presented. The new hybrid 
wavelet packet transform (WPT) and neural network (NN) based faults diagnostic 
algorithm is developed and implemented for electric motors. The proposed WPT and NN 

www.intechopen.com



Wavelet Based Diagnosis and Protection of Electric Motors 279

 
 

Fig. 17. Experimental responses of the WPT and NN based faults diagnostic technique for 
supply fed IPM motor: (a)-(b) single phasing condition and (c)-(d) line to line fault condition. 
(time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 A/div.) 
 

 
Fig. 18. Experimental responses of the WPT and NN based faults diagnostic technique for 
inverter fed IPM motor: (a)-(b) single phasing condition and (c)-(d) line to line fault 
condition. (time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 
A/div.) 
 
 
 

 
 

Fig. 19. Experimental responses of the WPT and NN based faults diagnostic technique for 
inverter fed IPM motor: (a) step changes of speed condition and (b) change of load torque 
condition. (time: 2 s/div., trip signal: 1 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 
A/div.) 
 

 
 

Fig. 20. Experimental responses of the WPT based faults diagnostic technique for supply fed 
induction motor: (a)-(b) single phasing condition and (c)-(d) line to ground fault condition. 
(time: 0.1 s/div., trip signal: 5 V/div., Ia: 4.172 A/div., Ib: 4.66 A/div., and Ic: 4.82 A/div.) 

 
6. Conclusions and Remarks 
 

In this chapter, a short review of conventional Fourier transforms and new wavelet based 
faults diagnostic and protection techniques for electric motors is presented. The new hybrid 
wavelet packet transform (WPT) and neural network (NN) based faults diagnostic 
algorithm is developed and implemented for electric motors. The proposed WPT and NN 

www.intechopen.com



Fault Detection280

faults diagnostic algorithm based protection technique is implemented in real time using the 
DSP board ds1102 for both supply fed and inverter fed IPM motors. In the proposed faults 
diagnostic technique, the WPT feature coefficients of stator currents are used as inputs to a 
two-layer feed forward neural network. The WPT based faults diagnostic algorithm is 
developed and implemented for a squirrel cage induction motor. The performances of both 
hybrid and WPT based diagnostic algorithm are found satisfactory. The proposed 
techniques do not require any harmonic contents analysis, and these are independent of 
motor equivalent circuit model parameters. The wavelet based technique is quite fast and 
easy to implement. It also requires less computational memory for the on-line 
implementation. 
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