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1. Introduction 

Although legged mobile robots are inferior to wheeled or crawler types in mobility 
efficiency on the flat ground, they demonstrate high motion performance and adaptation 
capability to the ground by utilizing their high degrees of freedom (DOF). Since such robots 
choose stable leg-placement, stable movements can be performed on irregular terrains 
( afak & Adams, 2002). Moreover, they demonstrate some unique functionalities, e.g., the 
scaffold of a stable activity at the time of rest can be formulated from taking the posture of 
legs which are hard to topple (Hirose & Yoneda, 1993). 
However, it is very difficult to decide robot gait due to its high DOF. When the legs of the 
robot are simply controlled by a fixed command, adaptation capability to the terrain is 
remarkably restricted and sometimes it is impossible to maintain a stable walk. Moreover, 
when a leg is unable to be placed properly an optimum leg placement must be efficiently 
found from among other candidates. 
Therefore, it needs for a legged mobile robot to sequentially decide the progression of legs. 
For that purpose, the robot predictively perceives and recognizes geographical features of 
the terrain, and it consequently gets over any obstacle by using an adaptive ability acquired 
in advance. From this fact, legged robots are not necessary to avoid all the obstacles by 
altering their path, unlike wheeled or crawler types, because they can avoid an obstacle by 
crawling-over or striding, according to the obstacle’s nature and the current state of the 
robot. Thus, it can be found that the mobility efficiency to reach a destination is improved 
by such action. Moreover, when robots have many legs like 4-legged or 6-legged types, the 
movement range is affected by the order of swing leg. 
We studied path to a destination and obstacle avoidance of a quadruped robot 
considering free-gait. In general, quadruped robots can realize two types of walk: one is 
the static walk which retains the stability statically, keeping the center of gravity (COG) in 
the polygon constructed by the support legs, and the other is the dynamic walk which 
retains dynamic stability, though it is statically unstable. In the static walk, one feature is 
that an irregular-terrain walk is easily realized, whereas excelling in walking-speed or 
consumption energy is a feature of the dynamic walk (Kimura et al., 1990, Kimura, 1993). 
Thus, static walk is suitable for action acquisition of quadruped robots in geographical 
environments where obstacles, such as a level difference, exist (Chen et al., 2002, Chen et 
al., 2002). 

Source: Mobile Robots, Moving Intelligence, ISBN: 3-86611-284-X, Edited by Jonas Buchli, pp. 576, ARS/plV, Germany, December 2006

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



536 Mobile Robots, moving intelligence

In this research, since obstacle avoidance is taken into consideration, the static walk is 
adopted as a basic walk and the order of swing leg is determined. A free gait 
planning in the static walk was already formulated as a conditional optimization 
problem and the solution method by the Monte Carlo method was proposed by 
Nakamura et al. (Nakamura et al., 1999). However, assumed, fixed environment 
specializes the result obtained from this method; it has no flexibilities to the outside 
of search environment. 
Dimensions of the obstacle and the current state of the robot can be perceived accurately, 
because of the presence of force sensors, ultrasonic sensors and potentiometers on the 
present quadruped robot. A simulator is built based on the robot’s structure and the 
path to the destination is acquired from the simulator. When avoiding an obstacle by 
quadruped robot, there are many combinatorial solutions, such as combinations of turn 
and forward movements, combinations of sideway and forward movements, etc. The 
robot’s body height must be regulated because leg movement is restricted by height. 
When the leg is placed on a corner of an obstacle, the robot may fall, so robot action 
must be determined from the relative position between the obstacle and the robot. We 
propose a method for determining the action of a quadruped robot using neural network 
(NN) from the position of the destination, the obstacle configuration, and the robot’s 
self-state. Note, however, that no any free-gait motion is taken into consideration at the 
first research. The order of swing leg in free-gait is determined in the second research 
using the amount of movements and the robot’s self-state. The static walk of the 
quadruped robot has 24 kinds of the order of swing leg. Since the static walk always 
needs to set the COG of the robot in the polygon constructed by the supporting legs, the 
amount of movements of the body is different, depending on the order of swing leg. 
Therefore, the order of swing leg is determined by another NN. Furthermore, an NN for 
determining the robot action is acquired by re-learning the NN that was built in the case 
when the order of swing leg was fixed. To reach a destination with a minimum number 
of walking cycles (Furusho, 1993), NN design parameters are optimized by a genetic 
algorithm (GA) using data from several environments, in which each environment has 
different destinations and obstacle dimensions. 

2. Quadruped Robot 

Fig. 1 shows the experimental setup. TITAN-VIII (Hirose & Arikawa 1999) (see Fig. 2) 
is the quadruped robot. TITAN-VIII has four legs, one with three DOF, and each joint 
has a potentiometer. Force sensing resistors (Interlink Electronics, FSR Part # 402) are 
used on the leg sole to measure force exerted on each leg. Ultrasonic sensors (NiceRa, 
T/R40-16) are used on the forelegs to detect an obstacle; each foreleg has three 
ultrasonic sensors. 
Potentiometer measurement and force sensing resistor are transferred to a personal 
computer through a robot interface board (Fujitsu, RIF-01) and an A/D converter board 
(Interface Corporation, PCI-3133). The ultrasonic sensor measures the time difference 
between emittance and reception of ultrasonic waves, which is reflected on an obstacle by 
universal pulse processor (UPP), part of RIF-01. The computer sends joint angle commands 
to a motor driver (Okazaki Sangyo Co. Ltd., Titech Motor Driver) on the robot through the 
robot interface board. Since sensor information in feedback control must be processed in 
real time, RT-Linux is used as the computer OS. 
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TITAN-VIII

PC RT- Linux

RIF-01

D/A converter

A/D converter

UPP

PCI-3133

A/D converter

Force sensor Potentiometer

Motor controller

Leg 1Leg 2

Leg 3

Leg 4FSRFSR

Ultrasonic sensorUltrasonic sensor

Ultrasonic sensor

Fig. 1. Robot control system. 

Fig. 2. TITAN-VIII. 
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The coordinate system of one leg of the robot is defined in Fig. 3. For any leg, assuming 
position coordinates of a shoulder are rsi(xsi, ysi, zsi) and position coordinates of a sole are 

rfi(xfi, yfi, zfi), joint angles, ( 0i, 1i, 2i) are obtained by 
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sifii zzz  (6) 

Here, i denotes the leg number (i =1, 2, 3, 4). With reference to, l0, l1, and l2 are lengths of links. 
The ultrasonic sensor and the force sensor are on the foot at l3, where l3 = 130 [mm]. 
Given the initial positions for soles and shoulders, joint angles of legs including the swing 

leg are obtained from Eq. (1). Note, however, that the operation of each joint is 90.0 01

245.0, —65.0 02  90.0, 115.0 03  270.0, 65.0 04  —90.0, —65.0 1i  65.0 and —65.0 

2i  90.0 in degrees. Actions should be determined to not exceeding operational range. 

3. Obstacle Detection and Recognition 

To avoid an obstacle, its existence and height must be recognized using sensory 
information. For the robot, obstacles are detected and recognized by ultrasonic sensors. 
Ultrasonic sensors detect obstacles perpendicular to signals emitted by them. If the 
ultrasonic sensor was on the robot, the measurement of sensors would be shortened, so the 
ultrasonic sensors are on legs so that the emission of ultrasonic waves is changeable. As a 
result, obstacles not perpendicular to the robot’s forward direction can be detected. When a 
leg is swinging, it can move up to a position where the ultrasonic sensor does not detect 
anything. Using this concept, the height of the obstacle is measured roughly. 
Ultrasonic sensors on forelegs detect obstacles in the robot’s forward direction. A downward 
sensor detects the unevenness of terrain. When the center of the robot’s body is set as the origin, 
the position of an obstacle, (xob, yob), detected by the robot’s front sensors is given by 

isoiiisiob Llllxx 0022110 sincossincos  (7) 

isoiiisiob Llllyy 0022110 cossinsincos  (8) 

The position of an obstacle detected by the robot’s left and right sensors is given by 

isoiiisiob Llllxx 0022110 coscossincos  (9) 

isoiiisiob Llllyy 0022110 sinsinsincos  (10) 

Here, i denotes the front leg numbers (i=1, 2). The position of the detected obstacle is 
calculated with the distance Lso measured by ultrasonic sensor, together with the body 
position and the joint angles of the foreleg. 
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Fig. 4. Movement path of quadruped robot. 



540 Mobile Robots, moving intelligence

Ultrasonic sensor

Obstacle

–500 0

500

1000

1500

x [mm]

y
 [

m
m

]

Fig. 5. Recognition result of the obstacles in the forward direction. 

Positions of obstacles, detected where the robot moves (Fig. 4) are given in Figs. 5 and 6. 
Fig. 5 shows information regarding obstacles from foreleg sensors. We found that one side of each 
obstacle is detected. Fig. 6 shows positions and heights of obstacles when a leg passed over them, 
detected by the downward sensor. Robot action must be determined using such information. 
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Fig. 6. Recognition result of the ground. 

4. Action Determination of Quadruped Robot Using an NN 

For an actual robot, information obtained from sensors includes leg joint angles and 
dimensions and heights of obstacles. We assumed that destination information is given in 
advance. Actions of the quadruped robot are determined by the above information. For each 
action, there are several combinatorial solutions such as the combination of forward- and 
turning-motions, one of forward- and sideway-motions, etc. 
The robot action is decided by a three-layered NN (Fig. 7). This NN is trained offline so as to 
achieve an action using a minimum number of walking cycles. 
Inputs to the NN are assumed to be the position of each sole {xf1(k), yf1(k)}, ···, {xf4(k), yf4(k)}, the 
robot’s body height Zr(k), x-directional maximum and minimum distances to an obstacle at 
right {xormax(k), xormin(k)}, the y-directional maximum and minimum distances to the obstacle at 
right {yormax(k), yormin(k)}, and the height of the obstacle at right {zormax(k), zormin(k)}, the x-
directional maximum and minimum distances to the obstacle at left {xolmax(k), xolmin(k)}, the y-
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directional maximum and minimum distances to the obstacle at left {yolmax(k), yolmin(k)}, and the 
height of the obstacle at left {zolmax(k), zolmin(k)}; x-directional distance error, i.e., distance 
between the COG of the robot and destination xde(k), y-directional distance error yde(k), and 
direction error, i.e., the direction between the destination and forward direction of the robot 

de(k). Positions of each sole and obstacles are defined in the frame whose origin is fixed to the 
body center. Outputs of the NN are the amount of x- and y-directional movement of the robot 
{ Xr(k), Yr(k)} and the turning angle of the robot r(k). If no obstacles exist in front of the 
robot, measured values of obstacles are set to (xormax, yormax, zormax)=(1.0, —0.99, 0.0), (xormin,
yormin, zormin)=(0.99, —1.0, 0.0), (xolmax, yolmax, zolmax)=(—0.99, —0.99, 0.0), and (xolmin, yolmin,
zolmin)=(—1.0, —1.0, 0.0) [m], assuming the obstacle is behind the robot.
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Fig. 7. Three layered neural network for determining the action of the quadruped robot. 

A radial basis function neural network (RBFNN) (Elanayar & Shin, 1994, Sakawa & Tanaka, 
1999), known as an NN that can realize various approximation functions, is used in the 
control system. With an RBFNN, a nonlinear function is expanded by any basis function 
having a circular contour, and is used as function approximation or pattern recognition. 
Unit functions at the hidden (or intermediate) layer of RBFNNs are given by 

2

2
)(

exp)(

i

i
i

ckx
x  (11) 

where i denotes ith unit output at the hidden layer, and design parameters of RBF are center ci

and standard deviation i for each input. jth unit output at output layer oj is given by 
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)()(

1

x

m

i

iijj ko  (12) 

which is calculated by a linear combination of outputs of the hidden layer. Here, ij denotes 
the connection weight between the ith hidden unit and the jth output unit, and m denotes 
the number of units at the hidden layer, where the number of hidden units is determined by 
trial and error. The number of hidden units was set to m=100, because a good result was 
obtained when m was four times the number of inputs. 
Using this RBFNN, an action of the quadruped robot is determined from the information of 
the obstacles, the current state of the robot, and the destination information. 

4.1 Acquisition of Obstacle Avoidance by Simulation 
A block diagram of obstacle avoidance control system is shown in Fig. 8. To avoid obstacles, the 
system responds to the environment by altering the path and getting over or striding obstacles. To 
do so, the robot changes its height to that of an obstacle. Such actions constrain how much the 
robot can adjust the height. The RBFNN determines the movement of the robot using obstacle 
dimensions, the position of each leg, and robot height, collectively considered during walking. 
Positions of shoulders and legs are computed from the amount of movement. Each joint angle is 
calculated by Eq. (1), and the output is communicated to the robot. 
Distance error is updated by change in the current COG position of the robot, after 
computing the COG position by considering positions of shoulders and legs. Although the 
position of an obstacle is measured by ultrasonic sensors of the robot, position information 
of obstacles in simulation is updated by change of the COG position of the robot. Each leg is 
changed based on the amount of robot movement. The range of leg placement is assumed as 
follows: when placing the leg on the ground, its range should be 50 [mm] away from a 
corner of an obstacle, whereas, when placing the leg on an obstacle, its range should be 30 
[mm] away from a corner. If a leg cannot be placed in a position, the robot places it at the 
nearest position from the scheduled position. 

RobotRobot
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Fig. 8. Obstacle avoidance control system with consideration to the destination. 

4.1.1 Simulation condition 
The simulation environment is shown in Fig. 9. The y-axis is set to the forward 
direction of the robot. The robot is assumed to start from point (0.0, 0.0, 0.3) [m] and 
approach the goal, a circle having radius 0.2 [m], centered on the destination point. 
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Simulation is performed three times by setting distance error to (xde, yde)=(0.0, 1.8), 

(0.15, 2.2), ( 0.15, 2.2) [m]. We assume that one obstacle exists at the robot’s right and 
the other at the left. Coordinates of legs and the obstacle are shown in Fig. 10. Initial 

positions for legs are set to (xf1, yf1)=( 0.25, 0.3), (xf2, yf2)=(0.25, 0.25), (xf3, yf3)=( 0.25, 

0.25), and (xf4, yf4)=(0.25, 0.3) [m]. Positions of x- and y- coordinates of obstacles are 
shown in Table 1, where each row represents coordinate data combined to produce 
coordinates of any two obstacles. Height coordinates zor and zol of obstacles are set to 
0.06, 0.12, 0.3 [m], where the data can be combined to produce a combination of 
heights. Coordinate zor (zol)=0.3 [m] implies that it is an obstacle the robot cannot get 
over, so that the combination of zor=0.3 [m] and zol=0.3 [m] is not considered in 
simulation. One of the two obstacles is assumed to be the obstacle that the robot 
cannot get over, so that simulation is conducted for 96 obstacles. 
Walking is a crawl in which the body is supported by three or more legs. The order of 
swing leg selection is the right hind-leg, right foreleg, left hind-leg, and left foreleg. 
Realization of stable static walking is similar to the crawl. The COG of the robot 
should be in the polygon constructed by the supportive legs; therefore the body is 
moved so that the COG of the robot is always in the supportive leg polygon. We 
assume that the robot is parallel to the ground. 

x

z

y

Goal

Obstacles

Start

Fig. 9. The environmental setup for the acquisition of quadruped robot’s action. 
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No xor1 xor2 xor3 xor4 xol1 xol2 xol3 xol4

1 0.5 0.1 0.1 0.5 — 0.5 — 0.1 — 0.1 — 0.5 

2 0.5 0.1 0.1 0.5 — 0.5 —0.2 — 0.2 — 0.5 

3 0.5 0.1 0.1 0.5 —0.5 — 0.1 — 0.1 — 0.5 

4 0.5 0.1 0.1 0.5 — 0.5 — 0.2 — 0.2 — 0.5 

No yor1 yor2 yor3 yor4 yol1 yol2 yol3 yol4

1 0.85 0.65 0.55 0.75 0.86 0.66 0.65 0.85 

2 0.85 0.65 0.66 0.86 0.75 0.55 0.65 0.85 

Table 1. x- and y- directional coordinates of obstacles. 

4.1.2 Setup of fitness function 
In simulation, connection weights of the NN and parameters (center and standard 
deviations) of RBFs are optimized by a GA (Michalewicz, 1996) so that the robot avoids 
obstacles and reaches the destination with a minimum number of walk cycles. Table 2 
shows design parameters for the GA used in simulation. The associated fitness function of 
an individual is defined by 

nob

i

cao fitnessfitnessfitnessfitness

1

)(  (13) 

whose solution is searched for as a minimization problem. obn is the number of 
environments considered in optimization. fitnesso is an evaluation function associated with 
penalty for collision with an obstacle. fitnesso is given by 

otherwise,10)]()([

collisionnois thereif,0.0

22 kykx
fitness

dede
o  (14) 

Walking stops if the robot collides with an obstacle. fitnessa is an evaluation function related to 
joint constraints, i.e., whether each joint angle is in an admissible range or not. fitnessa is given by 

otherwise,10)]()([

range theofoutsidenois thereif,0.0

22 kykx
fitness

dede
a (15)

Walking stops if the joint exceeds joint constraints. fitnessc is an evaluation function related 
to walk cycles required to reach the destination, and given by 

50
)]()([ 22 T
kykxfitness dedec (16)

T denotes the walk cycles required to move from the starting point to the destination while 
avoiding obstacles by stable walking. The maximum number of walk cycles Tmax in one 
environment is set to 50 and walking stops if the walk cycles exceed Tmax.

The number of individuals 100 

Crossover rate 0.6 (uniform crossover) 

Selection strategy Tournament selection (3 individuals) 

Elitist preserving strategy 10 

Table 2. Design parameters for GA. 
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4.2 Simulation Result

4.2.1 Performance for training data 

A typical control result after training the RBFNN using the above procedure is shown in Fig. 11. 

Environmental conditions for one of 96 combinations were as follows: x- and y-directional initial 

distance error of the destination were (xde, yde)=(—0.15, 2.2) [m]; x- and y-directional coordinates of 

two obstacles were (xor1, yor1)=(0.2, 0.85), (xor2, yor2)=(0.2, 0.65), (xor3, yor3)=(0.5, 0.55), (xor4, yor4)=(0.5, 

0.75), (xol1, yol1)=(—0.5, 0.85), (xol2, yol2)=(—0.5, 0.65), (xol3, yol3)=(—0.1, 0.66), and (xol4, yol4)=(—0.1, 

0.86) [m]; and z-directional coordinates were zor=0.3 and zol=0.12 [m]. 

The robot turned to the left to avoid an obstacle at right, in which it could not get over but 

conquered the obstacle at left. Legs 1 and 3 were used to get over the obstacle at left and the 

robot reached the destination. The number of walk cycles to the goal was 9 and the final 

distance error was (xde, yde)=( 0.037, 0.046) [m]. 
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Fig. 11. Obstacle avoidance action for the trained environment. 

4.2.2 Performance for untrained environment 

In this section, we examine RBFNN performance in an untrained environment. We set the initial 
distance errors at (xde, yde)=(0.35, 2.1) [m], and x- and y-directional coordinates of two obstacles at 
(xor1, yor1)=(0.11, 0.87), (xor2, yor2)=(0.11, 0.56), (xor3, yor3)=(0.57, 0.55), (xor4, yor4)=(0.57, 0.86), (xol1,
yol1)=(—0.56, 0.92), (xol2, yol2)=(—0.56, 0.59), (xol3, yol3)=(—0.14, 0.66), and (xol4, yol4)=(—0.14, 0.99) 
[m], together with z-directional coordinates at zor=0.07 and zol =0.3 [m]. 
Fig. 12 shows the results. In simulation, since the obstacle at left could not be gotten over by 
the robot, it moved to the right and got over it. We found that legs 2 and 4 were used for 
getting over the obstacle at right so that the robot reached the destination. The number of 
walk cycles to the goal was 9 and the final distance error was (xde, yde)=(0.036, 0.104) [m]. 
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Fig. 12. Obstacle avoidance action for an untrained environment. 
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4.3 Experiments
Experiments were conducted by quadruped robot TITAN-VIII. Walk was at a crawl and the 
robot recognized an obstacle by ultrasonic sensors on the forelegs. x- and y-directional 
movement and the turning angle of the robot were determined by the NN from simulation. 
We assumed that the robot could not get over an obstacle taller than 0.15 [m]. Placement of 
a swing leg is decided by information retrieved by the downward ultrasonic sensor, 
depending on whether the placement is a corner of the obstacle. Whether the leg is a swing 
leg or not is decided by the force sensor. 

Destination

Obstacle

TITAN-VIII

Fig. 13. Environment of an experiment. 

The experimental environment is shown in Fig. 13. One obstacle is on the right and the other 
on the left. The obstacle at left can not be gotten over by the robot. Initial distance error was 
set to (xde, yde)=(0.0, 1.9) [m]. 
Positions of obstacles are detected by the robot (Figs. 14 and 15). Fig. 14 shows information on 
obstacles gathered by sensors on the forelegs, whose results show that only one side of each 
obstacle could be detected. Fig. 15 shows positions and heights of obstacles when the leg has 
passed over them, which were detected by downward sensors. The path to the destination and 
the presence of obstacles is shown in Fig. 16. We found that the robot turned to the right to avoid 
the obstacle at left, which could not be gotten over, but got over the obstacle at right. Legs 2 and 4 
were used for getting over the obstacle at right and the robot reached the destination. The number 
of walk cycles to the goal was 9 and the final distance error was (xde, yde)=(0.137, 0.075) [m]. 
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Fig. 14. Recognition result of the obstacles gathered by sensors on the forelegs. 
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Fig. 15. Recognition result of the obstacles detected by downward sensors. 
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Fig. 16. Obstacle avoidance action in an actual experiment. 

5. Determination of the Order of Swing Leg for Free-Gait 
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Fig. 17. Three layered neural network for determining the order of swing leg. 

Since obstacle avoidance is taken into consideration, it is assumed that the static walk is adopted 
as a basic walk and the order of swing leg is determined. 24 kinds of the order exist in a static walk 
of the quadruped robot. Although 24 kinds of the order can be tried to implement whenever the 
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quadruped robot walks, in this research, the order of swing leg is determined by a three-layered 
NN shown in Fig. 17. Inputs to the NN are assumed to be the robot’s body height Zr(k), the 

amount of x- and y-directional movements of the robot { Xr(k), Yr(k)} and the turning angle of 

the robot r(k). Moreover, we prepare 24 units at the output, corresponding to 24 kinds of the 
order (Table 3). The order of swing leg fed to the quadruped robot uses the order associated to the 
unit whose output value is closest to one among output units. RBFNN is also used for the NN, 
where the number of units in the hidden layer is set to 50. 

Output number Order of swing leg Output number Order of swing leg 

0 1 2 3 4 12 3 1 2 4

1 1 2 4 3 13 3 1 4 2

2 1 3 2 4 14 3 2 1 4

3 1 3 4 2 15 3 2 4 1

4 1 4 2 3 16 3 4 1 2

5 1 4 3 2 17 3 4 2 1

6 2 1 3 4 18 4 1 2 3

7 2 1 4 3 19 4 1 3 2

8 2 3 1 4 20 4 2 1 3

9 2 3 4 1 21 4 2 3 1

10 2 4 1 3 22 4 3 1 2

11 2 4 3 1 23 4 3 2 1

Table 3. Order of swing leg to each output of NN. 

5.1 Acquisition of the Order of Swing Leg

In a static walk of quadruped robot, since the amount of movements of the body changes 

with the order of swing leg, the robot produces different movable range for each order of 

swing leg. For this reason, if the stability of static walk is maintained by less movement of 

the body, then the movable range of each leg becomes large; it can imsequently enlarge the 

movable range of the robot. 

For teacher signal used for this research, when the robot’s body height Zr(k) was changed 

from 300 [mm] to 370 [mm], the amount of x-directional movement of the robot Xr(k) is 

changed from —100 [mm] to 100 [mm], the amount of y-directional movement of the 

robot Yr(k) is changed from 150 [mm] to 350 [mm] and the turning angle of the robot 

r(k) is changed form —15 [degree] to 15 [degree], respectively, the order of swing leg 

that the movement of the robot’s body is a minimum and the stability of static walk is 

satisfied is set as one, and the other order is set to zero. Here, there were 19 kinds of the 

order of swing leg that the amount of movements of the robot’s body became the 

minimum. Note however that when the amount of changes of Zr(k), Xr(k), Yr(k), and 

r(k) is fixed, the number of selections is changed, depending on the order of swing leg. 

Therefore, the amount of change of Zr(k), Xr(k), Yr(k), and r(k) is enlarged for the 

case of high number of selections, whereas the amount of change of movement is made 

small for the case of low number of selections, and 20 data are prepared for each order of 

swing leg. Moreover, it is assumed that initial leg positions of quadruped robot are set to 

(xf1, yf1)=(—0.25, 0.3), (xf2, yf2)=(0.25, 0.25), (xf3, yf3)=(—0.25, —0.25), and (xf4, yf4)=(0.25, —

0.3) [m]. Here, the subscript number denotes the leg number. 
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In this research, the order of swing leg is determined using RBFNN. Connection weights of 

the NN and parameters (center and standard deviations) of RBFs are optimized by a GA so 

that the relation between an input and an output is satisfied. There is 19 kinds of the order 

of swing leg chosen when changing Zr(k), Xr(k), Yr(k), and r(k), respectively, and 20 

data are prepared for each one. Here, there are a total of 380 kinds of combination optimized 

by using GA. The associated fitness function of an individual is defined by 

n

i

BA fitneessfitnessfitness

1

)(  (17) 

whose solution is searched for as a minimization problem. n is the total number of 
combinations in optimization. fitnessA is an evaluation function only applied when a teacher 
signal tsj is one, which is given by 

1
2)( jjjjA tsofitness  (18) 

where j denotes any unit number of output layer and j1 denotes the unit number of tsj  1. 
Contrarily, fitnessB is an evaluation function applied when a tsj is zero, which is given by 

})(,,)(,,)max{( 2
2424

22
11 tsotsotsofitness jjB  (19) 

fitnessB denotes the largest value in the difference of oj and tsj. j denotes the unit number 1 to 
24 except for the case of j1 that denotes the unit number of tsj  1. 

5.2 Obstacle Avoidance with Consideration to the Free-Gait
A block diagram of obstacle avoidance control system considered here is shown in Fig. 
18. The avoidance action of quadruped robot is determined by the upper NN. 
Furthermore, the order of swing leg is determined by the lower NN from the amount 
of movements of the robot. 
The simulation environment is the same as section 4.1. The y-axis is set to the forward 
direction of the robot. The robot is assumed to start from point (0.0, 0.0, 0.3) [m] and 
approach the goal, a circle having radius 0.2 [m], centered at the destination point. 
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Fig. 18. Obstacle avoidance control system with consideration to the order of swing leg. 
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We set the initial distance errors at (xde, yde)=(— 0.15, 2.2) [m], and x- and y-directional 
coordinates of two obstacles at (xor1, yor1)=(0.1, 0.85), (xor2, yor2)=(0.1, 0.65), (xor3,
yor3)=(0.5, 0.66), (xor4, yor4)=(0.5, 0.86), (xol1, yol1)=(—0.5, 0.75), (xol2, yol2)=(—0.5, 0.55), 
(xol3, yol3)=(—0.2, 0.65), and (xol4, yol4)=(—0.2, 0.85) [m], together with z-directional 
coordinates at zor=0.12 and zol=0.3 [m]. Here, although a robot can get over an obstacle 
at right, an obstacle at left shall not be get over. The robot’s body height Zr(k) is 
adjusted and changed to the height of the obstacle which can be get over. 

5.2.1 When the order of swing leg is fixed
The movement path of the quadruped robot when fixing the order of swing leg and 
avoiding an obstacle is shown in Fig. 19, and the corresponding amount of movements 
of the robot’s body Br is shown in Table 4. Here, the leg number used as swing leg is 
assigned as the left foreleg to 1, right foreleg to 2, left hind-leg to 3 and right hind-leg to 
4, as shown in Fig. 2. The robot’s body height changes as shown in Fig. 20. Furthermore, 
it can be checked from Fig. 20 that both the leg 2 and 4 were used for a getting over to 
the obstacle at right. 
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Fig. 19. Movement path of the quadruped robot when fixing the order of swing leg. 

Xr(k) [mm] Yr(k) [mm] r(k) [deg] Zr(k) [mm] Br [mm] Order of swing leg 

22.026 237.002 0.809 300.0 418.090 4 2 3 1

43.958 217.174 —0.818 360.0 372.904 4 2 3 1

45.347 200.484 —0.639 360.0 354.896 4 2 3 1

32.227 189.676 1.413 360.0 362.871 4 2 3 1

12.261 186.691 4.182 360.0 390.217 4 2 3 1

—15.944 241.234 3.894 360.0 520.653 4 2 3 1

—17.443 240.270 4.289 360.0 528.034 4 2 3 1

—18.958 239.279 4.695 300.0 535.676 4 2 3 1

—20.522 238.245 5.122 300.0 543.786 4 2 3 1

—22.187 237.142 5.586 300.0 552.667 4 2 3 1

Table 4. The amount of movements of the robot’s body when fixing the order of swing leg. 
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Fig. 20. Movement path of the leg 2 and 4. 

5.2.2 When all 24 kinds of the order are tried 
The movement path of the quadruped robot, when trying all 24 kinds of the order and avoiding 
an obstacle, is shown in Fig. 21, and the amount of movements of the robot’s body Br is shown 
in Table 5. Here, the robot’s body height changes with obstacles. For this reason, the robot’s 
body height varies as shown in Fig. 20. Compared to the case where the order of swing leg is 
fixed, it is found that the amount of movements of the robot’s body is relatively small. 
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Fig. 21. Movement path of the quadruped robot when trying all 24 kinds of the order. 

Xr(k) [mm] Yr(k) [mm] r(k) [deg] Zr(k) [mm] Br [mm] Order of swing leg 

22.026 237.002 0.809 300.0 417.078 2 4 3 1
43.958 217.174 —0.818 360.0 372.904 4 2 3 1
45.347 200.484 —0.639 360.0 354.896 4 2 3 1
32.227 189.676 1.413 360.0 362.871 4 2 3 1
12.261 186.691 4.182 360.0 389.931 2 4 3 1
—15.944 241.234 3.894 360.0 520.653 4 2 3 1
—17.443 240.270 4.289 360.0 528.034 4 2 3 1
—18.958 239.279 4.695 300.0 448.019 3 1 4 2
—20.522 238.245 5.122 300.0 446.065 3 1 4 2
—22.187 237.142 5.586 300.0 443.984 3 1 4 2

Table 5. The amount of movements of the robot’s body when trying all 24 kinds of the order. 
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5.2.3 When the order of swing leg is determined by RBFNN
After training the lower RBFNN, the movement path of the quadruped robot, determining 
the order of swing leg and avoiding an obstacle, is shown in Fig. 22. The corresponding 
amount of movements of the robot’s body Br is shown in Table 6. Note here that the robot’s 
body height is the same as that shown in Fig. 20. Compared to the case where the order of 
swing leg is fixed, it is observed that the amount of movements of the robot’s body is small. 
However, compared with the case where all 24 kinds of the order are tried, the amount of 
movements of t he body was slightly large. 
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Fig. 22. Movement path of the quadruped robot when determining the order of swing leg 
using RBFNN. 

Xr(k) [mm] Yr(k) [mm] r(k) [deg] Zr(k) [mm] Br [mm] Order of swing leg 

22.026 237.002 0.809 300.0 418.090 4 2 3 1
43.958 217.174 —0.818 360.0 372.904 4 2 3 1
45.347 200.484 —0.639 360.0 354.896 4 2 3 1
32.227 189.676 1.413 360.0 362.871 4 2 3 1
12.261 186.691 4.182 360.0 390.217 4 2 3 1
—15.944 241.234 3.894 360.0 520.653 4 2 3 1
—17.443 240.270 4.289 360.0 528.034 4 2 3 1
—18.958 239.279 4.695 300.0 448.019 3 1 4 2
—20.522 238.245 5.122 300.0 446.065 3 1 4 2
—22.187 237.142 5.586 300.0 443.984 3 1 4 2

Table 6. The amount of movements of the robot’s body when determining the order of 
swing leg using RBFNN. 

6. Re-learning of the NN for Determining the Robot Action 

NN for determining the robot action is acquired by re-learning the NN that was built in the 
case when the order of swing leg was fixed. 
A block diagram of obstacle avoidance control system is the same as section 5.2. Moreover, 
the simulation condition and fitness function are the same as section 4.1. 

6.1 When the Obstacle at Right is a Wall
We set the initial distance errors at (xde, yde)=(—0.15, 2.2) [m], and x- and y-directional coordinates 
of two obstacles at (xor1, yor1)=(0.2, 0.85), (xor2, yor2)=(0.2, 0.65), (xor3, yor3)=(0.5, 0.55), (xor4, yor4)=(0.5, 
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0.75), (xol1, yol1)=(—0.5, 0.85), (xol2, yol2)=(—0.5, 0.65), (xol3, yol3)=(—0.1, 0.66), and (xol4, yol4)=(— 0.1, 
0.86) [m], together with z-directional coordinates at zor=0.3 and zol=0.12 [m]. Here, although a robot 
can get over an obstacle at left, an obstacle at right shall not be get over. 
The simulation result using the learned RBFNN is shown in Fig. 23. The number of walk 
cycles to the goal was 10, and the distance from the COG of the robot to the destination 
point was (xde, yde)=(0.017, —0.027) [m]. Moreover, the amount of movements of the robot 
and the order of swing leg are shown in Table 7. It was found that the order of the swing leg 
changes with the amount of movements of the robot. 
In the simulation result of the case where unlearned RBFNN is used, the number of walk 
cycles to the goal was 9, and the distance from the COG of the robot to the destination point 
was (xde, yde)=(—0.037, —0.046) [m]. 
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Fig. 23. Movement path of quadruped robot when changing the order of swing leg using 
RBFNN (in the case where an obstacle at right is a wall). 

Xr(k) [mm] Yr(k) [mm] r(k) [deg] Zr(k) [mm] Order of swing leg 

—26.645 183.469 0.751 300.0 3 1 4 2

—35.059 157.334 0.497 360.0 3 1 4 2

—32.240 162.725 0.311 360.0 3 1 4 2

—24.792 181.329 0.089 360.0 3 1 4 2

—14.077 211.723 —0.166 360.0 3 1 4 2

2.710 274.449 —0.255 360.0 4 2 3 1

2.834 266.891 —0.172 300.0 4 2 3 1

1.787 265.774 —0.159 300.0 4 2 3 1

0.661 264.499 —0.143 300.0 4 2 3 1

—0.516 263.101 —0.126 300.0 4 2 3 1

Table 7. The amount of movements of the robot in the case where an obstacle at right is a wall. 

6.2 When the Obstacle at Left is a Wall

We set the initial distance errors at (xde, yde)=(—0.15, 2.2) [m], and x- and y-directional 
coordinates of two obstacles at (xor1, yor1)=(0.1, 0.85), (xor2, yor2)=(0.1, 0.65), (xor3,
yor3)=(0.5, 0.66), (xor4, yor4)=(0.5, 0.86), (xol1, yol1)=(—0.5, 0.75), (xol2, yol2)=(—0.5, 0.55), 
(xol3, yol3)=(—0.2, 0.65), and (xol4, yol4)=(—0.2, 0.85) [m], together with z-directional 
coordinates at zor=0.12 and zol=0.3 [m]. Here, although a robot can get over an obstacle 
at right, an obstacle at left shall not be get over. 
The simulation result is shown in Fig. 24. The number of walk cycles to the goal was 11, and the 
distance from the COG of the robot to the destination point was (xde, yde)=(0.018, —0.014) [m]. 
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Moreover, the amount of movements of the robot and the order of swing leg are shown in Table 8. 
In the simulation result when unlearned RBFNN is used, the number of walk cycles to 
the goal was 10, and the distance from the COG of the robot to the destination point 
was (xde, yde)=(0.068, 0.027) [m]. 
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Fig. 24. Movement path of quadruped robot when changing the order of swing leg using
RBFNN (in the case where an obstacle at left is a wall). 

Xr(k) [mm] Yr(k) [mm] r(k) [deg] Zr(k) [mm] Order of swing leg 

45.379 198.899 —0.298 300.0 4 2 3 1

55.253 181.795 0.837 360.0 4 2 3 1

49.297 172.875 1.419 360.0 4 2 3 1

36.077 165.824 1.896 360.0 2 4 3 1

18.925 159.794 2.220 360.0 2 4 3 1

—0.386 155.208 2.319 360.0 2 4 1 3

—23.440 241.344 0.167 360.0 4 2 3 1

—23.620 239.286 0.087 300.0 4 2 3 1

—24.022 237.751 0.013 300.0 4 2 3 1

—24.397 236.259 —0.060 300.0 4 2 3 1

—24.746 234.816 —0.131 300.0 4 2 3 1

Table 8. The amount of movements of the robot in the case where an obstacle at left is a wall. 

7. Conclusions 

We experimentally have proved a method for acquiring a path to a destination and obstacle 
avoidance of a quadruped robot. Robot actions were determined through an RBFNN, whose 
input consisted of destination information, obstacle configuration, and current robot status. Using 
training data on environmental conditions, focusing on x-, y-, and z-coordinates of different 
obstacles and certain destinations, RBFNN design parameters were optimized using a GA so that 
the robot reached the destination with a minimum number of walking cycles. For an untrained 
(unknown) environment, we found that the RBFNN was useful for acquiring an obstacle 
avoidance path to the destination. Effectiveness of this approach was examined by actual 
experiments. However, free-gait motion was not taken into consideration in the first reseach. 
A method of determining the order of swing leg in free gait by an RBFNN, whose inputs are 
the amount of movements for the quadruped robot and the height of the body, has been 
proposed for the second research. In the tuning of design parameters of the RBFNN, 20 data 
to which the amount of movements for the robot was changed are prepared for each order 
of swing leg. Such design parameters were optimized using GA so that the relation between 
an input and an output is satisfied. 
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As a result, compared to the case where the order of swing leg is fixed, the amount of 
movements for the robot body was small. However, compared to the case where all 24 kinds 
of the order are tried, that for the robot body was slightly large. It seems to be attributed to 
the fact that there was few data used for the study of the RBFNN. In order to make the 
amount of movements for the robot body much smaller, more data need to be used for the 
study of RBFNN. 
In order to acquire the obstacle avoidance action of quadruped robots with considering to 
the order of swing leg, the action of a quadruped robot has been determined through an 
RBFNN, whose inputs were the destination information, the obstacle configurations, and 
the robot’s self-state. The NN for determining the robot’s action is acquired by re-learning 
the NN that was built in the case where the order of swing leg was fixed. Compared to the 
case where the unlearned RBFNN is used, the final distance error to the destination of the 
present approach was small; however the walk cycle was comparable to each other. It is 
attributed to the fact that a priority was assigned to the error distance in the evaluation of 
GA. For this reason, in order to make a walk cycle smaller, further fitness function of GA 
needs to be re-examined. Moreover, the effectiveness of the proposed system needs to be 
verified by using the actual system. 
Obstacles are recognized by an ultrasonic sensor that detects reflected ultrasonic waves on a 
flat surface. Obstacles were assumed to be flat, i.e., rectangular blocks and oblique obstacles 
were not considered. Since the order of the swing leg was assumed to be constant, this 
assumption appears to have slightly restricted the robot action. We will improve the 
mobility efficiency of the robot by constructing a system that changes the sequence of the 
swing leg based on environmental conditions and improve recognition system by adding a 
vision sensor (Chow & Chung, 2002). 
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systems, intelligent cars to flexible assistants in factories and construction sites, over service robot which assist

and support us in daily live, all the way to the possibility for efficient help for impaired and advances in

prosthetics.
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