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1. Introduction  
 

In mobile robotics and vehicle automation, the demand for fault detection and isolation 
(FDI) of sensors, actuators, and system components is growing significantly to assure 
system reliability and safety (Carlson, 2004; Petterson, 2005). FDI techniques are broadly 
classified into hardware redundancy and analytical redundancy approaches (Simani et al., 
2003). The typical hardware redundancy approach for FDI is based on majority voting logic; 
outputs from redundant sensors are compared with each other, and the sensor whose 
output does not match the others is determined to be the faulty one. The major problem 
with hardware redundancy is the extra equipment required.  
Unlike hardware redundancy, analytical redundancy requires no additional hardware 
components, and its algorithm can be implemented using software on a computer. 
Analytical redundancy makes use of mathematical models of the system under investigation, 
and it is therefore often referred to as a model-based method. 
The typical model-based FDI is based on Bayesian filtering. The traditional FDI method uses 
the multiple-model adaptive estimation (MMAE) algorithm (i.e., a bank of Kalman filters) 
(Magill, 1965); its application to FDI of mechanical failures (flat tires) and internal sensor 
faults has been presented (Roumeliotis et al., 1998a & 1998b). The MMAE algorithm is a 
noninteracting multiple-model algorithm. Therefore, it is not suitable for situations where 
system faults occur abruptly. To make the MMAE algorithm a better fit for such situations, 
various ad hoc techniques have been investigated (Maybeck & Hanlon, 1998; Goel et al., 
2000) . To cope with the weakness of the MMAE-based approach, the interacting multiple-
model (IMM) estimator (Blom & Bar-shalom, 1988; Zhang & Li, 1998) was applied to sensor 
FDI in mobile robots (Hashimoto et al., 2001 & 2003). Another typical model-based approach 
for FDI is the use of particle filters (Verma et al., 2004; Duan et al., 2006) ; this approach is 
suitable for FDI in nonlinear systems or systems with multimodal distribution or non-
Gaussian noise. However, the computational cost increases rapidly with the number of state 
dimensions, even though there are means for increasing efficiency.  
The major problems encountered with the model-based method are due to the use of 
imperfect models. In practical systems, model plant mismatches always exist; unexpected 
faults and disturbances also occur. These conditions may cause false alarms or missed 
alarms in FDI. Thus, model-based FDI needs to be made more robust (Simani et al., 2003). 
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In our previous paper, we presented model-based FDI for mobile robots and powered 
wheelchairs (Hashimoto et al., 2001; 2003 & 2007); external sensors and actuators were 
assumed to be always fault free, and only the faults of internal sensors were handled. The 
IMM estimator and Kalman filter were applied to FDI of the internal sensors.  
In this chapter, we present model-based FDI for a powered wheelchair handling faults of 
both the internal and external sensors, as well as actuators. This chapter is organized as 
follows: Section 2 overviews our experimental wheelchair. Sections 3 and 4 present the FDI 
method for internal sensors and actuators, and Section 5 presents the FDI method for 
external sensors. In Section 6, we describe experiments conducted in a typical indoor 
environment to evaluate the FDI method, followed by our conclusions. 

 
2. Experimental Wheelchair  
 

Figure 1 shows the powered wheelchair used in the experiments; it has wheel units on the 
left and right sides to achieve differential steering. The wheel units each consist of a wheel 
motor and a wheel resolver. The wheel resolver measures the wheel velocity. A yaw-rate 
gyro is attached to the chassis of the wheelchair to sense the turn velocity. A laser range 
sensor (LRS) is mounted at the front side of the wheelchair to sense environments. It takes a 
laser scan image, which is represented by a sequence of distance samples in the horizontal 
half plain. The angular resolution of the LRS is 0.5 [deg], and one scan image contains 361 
distance samples. 
We handle the faults of three internal sensors (two wheel resolvers and one gyro), one 
external sensor (LRS) and two wheel motors.  

 
3. Detection and Isolation of Internal Sensor and Wheel Motor Hard Faults 
 

3.1 Internal Sensor FDI 
First, we consider the hard faults of the wheel resolver and the gyro—the sensor fails 
completely, and the sensor output is stuck at a constant value.  
A dynamic model related to the left and right wheel units is derived by 
 

 
Laser range sensor 
(LRS) 

Wheel unit 
(motor + resolver) 

Yaw-rate gyro 

 
 
Fig. 1. Experimental wheelchair.

 
vi (t + 1) = Ai vi (t) + Bi ui (t) + Δvi (t) (1) 

 
where i = left (wheel) and right (wheel). vi is the wheel velocity and Δvi is the disturbance. ui 
is the input of the wheel unit. Ai  and Bi are constants.  
We assume that the wheelchair moves stably at an almost constant velocity through fault-
tolerant operation, even though sensor faults have occurred. The dynamic model related to 
the turning motion of the wheelchair is then assumed to be 
 

)()()1( ttt     (2) 

 
where   is the turning velocity and    is the disturbance. 
When the sensor output of the hard fault is assumed to be stuck at zero, the measurement 
model related to the wheel unit is 
 

Fault-free model (m0): zi (t) = vi (t) + Δzi0 (t) (3) 
Hard fault model (m1): zi (t) = 0 + Δzi1 (t) (4) 

 
where zi is the output of the wheel resolver. Δzi0 and Δzi1 are the sensor noises. 
Because the wheel resolver is assumed to be stuck at zero on the hard fault, the 
measurement is modeled by zeroing out the kinematic function, as in Eq. (4). If it is stuck at 
a nonzero value on the hard fault, the measurement is modeled by zi (t) = C + Δzi1 (t), where 
C is the stuck value.  
The gyro output is also modeled by 
 

Fault-free model (m0): zgyro (t) =   (t) + Δzgyro0 (t) (5) 
Hard fault model (m1): zgyro (t) = 0 + Δzgyro1 (t) (6) 

 
We assume that the disturbances and the sensor noises are both zero means and white 
Gaussian sequences, and we estimate the mode probability based on Eqs. (1)–(6) via the 
IMM estimator (Zhang & Li, 1998; Hashimoto et al., 2001). The mode probability provides an 
indication of FDI of the internal sensor; for example, we consider FDI of the gyro and denote 
the mode probability estimates of fault free and hard fault by 0 and , respectively. The 
fault decision is made based on simple logic: If0  >, then the gyro is fault free; else, a hard 
fault occurs. 
The stop condition of the wheelchair results in wheel resolver FDI making an incorrect fault 
decision, because it makes the sensor output zero. In addition, the forward motion and stop 
condition of the wheelchair make it difficult to discriminate between fault-free and hard 
fault conditions of the gyro, because in both these conditions, the gyro output is almost zero. 
To cope with these problems, we switch the following model sets, according to the motion of 
the wheelchair: 
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IMM estimator and Kalman filter were applied to FDI of the internal sensors.  
In this chapter, we present model-based FDI for a powered wheelchair handling faults of 
both the internal and external sensors, as well as actuators. This chapter is organized as 
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where zi is the output of the wheel resolver. Δzi0 and Δzi1 are the sensor noises. 
Because the wheel resolver is assumed to be stuck at zero on the hard fault, the 
measurement is modeled by zeroing out the kinematic function, as in Eq. (4). If it is stuck at 
a nonzero value on the hard fault, the measurement is modeled by zi (t) = C + Δzi1 (t), where 
C is the stuck value.  
The gyro output is also modeled by 
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Hard fault model (m1): zgyro (t) = 0 + Δzgyro1 (t) (6) 

 
We assume that the disturbances and the sensor noises are both zero means and white 
Gaussian sequences, and we estimate the mode probability based on Eqs. (1)–(6) via the 
IMM estimator (Zhang & Li, 1998; Hashimoto et al., 2001). The mode probability provides an 
indication of FDI of the internal sensor; for example, we consider FDI of the gyro and denote 
the mode probability estimates of fault free and hard fault by 0 and , respectively. The 
fault decision is made based on simple logic: If0  >, then the gyro is fault free; else, a hard 
fault occurs. 
The stop condition of the wheelchair results in wheel resolver FDI making an incorrect fault 
decision, because it makes the sensor output zero. In addition, the forward motion and stop 
condition of the wheelchair make it difficult to discriminate between fault-free and hard 
fault conditions of the gyro, because in both these conditions, the gyro output is almost zero. 
To cope with these problems, we switch the following model sets, according to the motion of 
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In FDI for the wheel resolver, when the wheelchair is considered to stop (i.e., uleft   0 and 
uright   0), model set MG1 is selected; else, MG2 is selected. In FDI for the gyro, when the 
wheelchair stops (i.e., uleft   0 and uright   0) or moves straight (i.e., uleft   uright), model set 
MG1 is selected; else, MG2 is selected. The model-set-switching-based FDI algorithm is 
formulated based on a variable-structure-interacting-multimodel (VSIMM) estimator (Li, 
2000; Hashimoto et al., 2003).  

 
3.2 Fault Isolation of the Wheel Resolver and Wheel Motor 
We consider a hard fault of the wheel motor as well as that of the wheel resolver. For a hard 
fault of the wheel motor, wheel rotation might stop completely. The hard fault of the wheel 
motor and that of the wheel resolver make the wheel-resolver output zero; thus, the IMM-
based FDI mentioned in 3.1 cannot identify the faulty component (the wheel resolver or the 
wheel motor). In this subsection, when the IMM-based FDI detects the fault of the wheel 
unit, we identify the faulty component.  
A hard fault of the wheel motor and that of the wheel resolver cause a difference in the 
turning velocity of the wheelchair. When the hard fault of the wheel motor occurs, the 
turning velocity sensed by the gyro is almost the same as that calculated by the wheel 
resolver. On the other hand, when a hard fault in the wheel resolver occurs, the turning 
velocity sensed by the gyro is much different from that calculated by the wheel resolver. We 
therefore perform fault identification based on the following logic: 
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If

then the wheel motor is faulty;  
 else,  the wheel resolver is faulty. 

(8) 

 
where b is the tread length of the wheelchair. h is the threshold; in our experiment, we set h 
as 0.01 [rad/s]. 
In principle, when a gyro fault occurs, it is impossible to discriminate between faults of the 
wheel resolver and the motor. For simultaneous faults of the wheel resolver and the motor, 
our FDI decides that the wheel resolver is faulty. 

 
4. Detection and Isolation of Soft Faults of the Internal Sensor 
 

4.1 Scan Matching Based Velocity Estimate 
In this section, we handle soft faults of the internal sensors that appear as changes in the 
sensor gain. A change in the sensor gain is caused by not only sensor faults but also various 
system component failures and environmental interactions. For example, a flat tire, wheel 
slippage, and soft wheel motor faults change the gain of the wheel resolver; therefore, their 
conditions are considered to be soft faults of the wheel resolver.  
In principle, it is necessary to determine the accurate linear and turning velocity of the 
wheelchair to detect soft faults of the internal sensors. We make use of laser scan matching 
with the fault-free LRS to estimate the velocity of the wheelchair. Our laser scan matching is 
based on typical point-to-point scan matching using an iterative closest point (ICP) 
algorithm (Besl & Mckay, 1992; Lu & Milios, 1997).  In ICP-algorithm-based scan matching, 

the distance samples in the new laser scan are matched with those in the previous scan, so 
that the sum of squared distance can be minimized, and the velocity of the wheelchair is 
estimated.  
Before scan matching, we preprocess the scan image to remove erroneous distance samples 
(Diosi & Kleeman, 2007). This preprocessing consists of noise reduction, segmentation, and 
interpolation. The noise reduction is based on a median filter, and it replaces outliers of 
distance samples with suitable samples. The segmentation prevents incorrect interpolation 
between two disjoint distances. The interpolation allows estimation of distance samples at 
every angular resolution of 0.5 [deg] of the LRS. 
We determine the linear and turning velocities, Tyx ),,(  x , of the wheelchair by the 
weighted least-squares method; the cost function is 
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Here,  pi = (pix, piy)T, where i = 1, 2,…, 361, is the distance sample in the current scan, while qj 

= (qjx, qjy)T, where j = 1, 2,…, 361, is that in the previous scan. Each sample pi corresponds 
with the minimum distance sample qj of all samples in the previous scan. wi is the weight. R 
and T are the rotational matrix and the translational vector, respectively, given by 
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T .  is the scanning period of the LRS; in our experimental 

system,   = 0.1 [s]. 
The correspondence errors of distance samples of two successive scans affect the velocity 
estimate. To reduce the effect, we determine the weight wi according to the errors between 
the correspondence points: 
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where dij is the distance error between the new and previous scans. C is a constant; in our 
experiments, C = 0.1.  
From Eq. (9), the iterative least-squares method updates the wheelchair velocity )1( mx  as 
follows: 
 

)()( 1)1()( pqWHWHHxx   TTmm   (11) 
 
where TTTT ),,,( 36121 pppp  , TTTT ),,,( 36121 qqqq  , ),,,diag( 36121 www W  , and 

xpH  / . In our experiments, the maximum iterative number of the velocity update is 20. 
The velocity estimate calculated by the iterative least-squares method is noisy, and it is 
smoothed using Kalman filter. One disadvantage of the ICP algorithm is that it converges 
slowly. To accelerate the convergence, we use dead-reckoning information as the initial 
velocity )0(x .  
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In FDI for the wheel resolver, when the wheelchair is considered to stop (i.e., uleft   0 and 
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formulated based on a variable-structure-interacting-multimodel (VSIMM) estimator (Li, 
2000; Hashimoto et al., 2003).  
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where dij is the distance error between the new and previous scans. C is a constant; in our 
experiments, C = 0.1.  
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4.2 FDI Algorithm 
A soft fault appears as a change in the sensor gain, which deviates it from the fault-free 
condition; thus, we detect a soft fault by estimating the sensor gain. Sensor gain  is defined 
by 
 

condition free-fault thein  output Sensor
sensor the of output Actual

  (12) 

 
From this definition, when a sensor is fault free, the sensor gain equals unity.  
We estimate the sensor gain based on the wheelchair velocity estimated by laser scan 
matching. We assume that the state model of the sensor gain is given by  
 

i (t + 1) = i (t) + Δi (t) (13) 
 
where i = left (wheel), right (wheel), and gyro. 
From the inverse kinematics of the wheelchair velocity, the measurement model is derived:  
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where ),( )()( MM yx  and )( M  are the linear and turning velocities of the wheelchair, which are 
estimated by laser scan matching.  
The sensor gain is estimated based on Eqs. (13) and (14) via Kalman filter. A small change in 
the gain estimate always occurs due to wheel slippage, sensor noise, and so on. Thus, if the 
estimate of the sensor gain is far away from one (e.g., 0.7), the sensor is determined to be 
faulty. The stop condition of the wheelchair yields an incorrect estimate of the sensor gain, 
because it makes the right-handed side of Eq. (14) small. When the wheelchair moves 
straight, the turning velocity is very small, making it impossible to estimate the sensor gain. 
To better estimate the sensor gain, the following heuristic rules are incorporated into the 
fault decision making: 
Rule 1: If the control inputs of the two drive wheels are very small (i.e., uleft   0 and uright   0), 
the gain estimates of all internal sensors in the previous cycle are held for the current cycle. 
Rule 2: If the control inputs of the two drive wheels are almost the same (i.e., uleft   uright), the 
gain estimate of the gyro in the previous cycle is held for the current cycle. 
Because a hard sensor fault leads to = 0, we can detect the hard fault by estimating the 
sensor gain. However, the time delay in the hard fault detection by the sensor gain estimate 
is longer than that in the IMM-based hard fault detection. For this reason, we exploit the 
IMM estimator for hard fault detection. 
 

5. Fault Detection of the LRS 
 

5.1 Fault Detection Algorithm 
An LRS fault can be detected based on an error related to scan matching (Hashimoto et al., 
2008a); if the current scan cannot match the previous scan, the LRS is determined to be 
faulty. For fault detection, we define the following cost function: 
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where )(MR  and )( MT  are the rotational matrix and the translational vector, respectively, 
which contain the velocity estimate )(Mx   from laser scan matching.  
A fault is determined when JLRS > hLRS, where hLRS is a threshold. In detecting an LRS fault, 
Eq. (9) removes the correspondence points of large errors in two successive scan points. For 
this reason, we use Eq. (15) for detecting LRS faults. Noisy distance samples of the LRS may 
cause false detection, even though the LRS is fault free. To cope with this problem, the LRS 
is determined to be faulty, when JLRS > hLRS is always satisfied in several successive scans. 
In featureless environments (e.g., in long corridors), the corresponding pair between 
distance samples in two successive laser scans does not necessarily represent the same 
physical point in the environment, and the estimate of the wheel velocity becomes 
inaccurate, even though the LRS is fault free. To cope with this problem, we evaluate the 
distance samples by means of the Nieto approach (Nieto et al., 2007) and diagnose the LRS 
fault only in featured environments. 
In dynamic environments, moving objects and backgrounds occluded by the objects cause 
JLRS to be large, and false detections may occur. To cope with this problem, we detect the 
moving objects by the occupancy grid method (Hashimoto et al., 2006). As shown in Fig. 2, a 
grid map is represented in a reference coordinate frame w (Ow;XwYw). The LRS 
measurements are mapped in w and marked on the grid map. For each new cell of 
occupation in the current scan, the corresponding cell in the previous scan is checked. If that 
cell is marked, the cell in the current scan is considered a stationary object cell; else, it is a 
moving object cell. An object consisting of many moving object cells is determined as a 
moving object, and we remove the distance samples related to that moving object and 
backgrounds occluded by it when calculating the cost function JLRS. In our experiments, the 
cell size is set as 0.3 [m]  0.3 [m]. For mapping the laser image on the grid map, we use the 
wheelchair velocity estimated with laser scan matching.  

 
5.2 Selection of Initial Velocity 
In scan matching, we use dead-reckoning information as the initial velocity )0(x  to 
accelerate the convergence. A fault of an internal sensor thus causes JLRS to be large, even 
though the LRS is fault free. To cope with this problem, we define the following cost 
function: 
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4.2 FDI Algorithm 
A soft fault appears as a change in the sensor gain, which deviates it from the fault-free 
condition; thus, we detect a soft fault by estimating the sensor gain. Sensor gain  is defined 
by 
 

condition free-fault thein  output Sensor
sensor the of output Actual

  (12) 

 
From this definition, when a sensor is fault free, the sensor gain equals unity.  
We estimate the sensor gain based on the wheelchair velocity estimated by laser scan 
matching. We assume that the state model of the sensor gain is given by  
 

i (t + 1) = i (t) + Δi (t) (13) 
 
where i = left (wheel), right (wheel), and gyro. 
From the inverse kinematics of the wheelchair velocity, the measurement model is derived:  
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where ),( )()( MM yx  and )( M  are the linear and turning velocities of the wheelchair, which are 
estimated by laser scan matching.  
The sensor gain is estimated based on Eqs. (13) and (14) via Kalman filter. A small change in 
the gain estimate always occurs due to wheel slippage, sensor noise, and so on. Thus, if the 
estimate of the sensor gain is far away from one (e.g., 0.7), the sensor is determined to be 
faulty. The stop condition of the wheelchair yields an incorrect estimate of the sensor gain, 
because it makes the right-handed side of Eq. (14) small. When the wheelchair moves 
straight, the turning velocity is very small, making it impossible to estimate the sensor gain. 
To better estimate the sensor gain, the following heuristic rules are incorporated into the 
fault decision making: 
Rule 1: If the control inputs of the two drive wheels are very small (i.e., uleft   0 and uright   0), 
the gain estimates of all internal sensors in the previous cycle are held for the current cycle. 
Rule 2: If the control inputs of the two drive wheels are almost the same (i.e., uleft   uright), the 
gain estimate of the gyro in the previous cycle is held for the current cycle. 
Because a hard sensor fault leads to = 0, we can detect the hard fault by estimating the 
sensor gain. However, the time delay in the hard fault detection by the sensor gain estimate 
is longer than that in the IMM-based hard fault detection. For this reason, we exploit the 
IMM estimator for hard fault detection. 
 

5. Fault Detection of the LRS 
 

5.1 Fault Detection Algorithm 
An LRS fault can be detected based on an error related to scan matching (Hashimoto et al., 
2008a); if the current scan cannot match the previous scan, the LRS is determined to be 
faulty. For fault detection, we define the following cost function: 
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where )(MR  and )( MT  are the rotational matrix and the translational vector, respectively, 
which contain the velocity estimate )(Mx   from laser scan matching.  
A fault is determined when JLRS > hLRS, where hLRS is a threshold. In detecting an LRS fault, 
Eq. (9) removes the correspondence points of large errors in two successive scan points. For 
this reason, we use Eq. (15) for detecting LRS faults. Noisy distance samples of the LRS may 
cause false detection, even though the LRS is fault free. To cope with this problem, the LRS 
is determined to be faulty, when JLRS > hLRS is always satisfied in several successive scans. 
In featureless environments (e.g., in long corridors), the corresponding pair between 
distance samples in two successive laser scans does not necessarily represent the same 
physical point in the environment, and the estimate of the wheel velocity becomes 
inaccurate, even though the LRS is fault free. To cope with this problem, we evaluate the 
distance samples by means of the Nieto approach (Nieto et al., 2007) and diagnose the LRS 
fault only in featured environments. 
In dynamic environments, moving objects and backgrounds occluded by the objects cause 
JLRS to be large, and false detections may occur. To cope with this problem, we detect the 
moving objects by the occupancy grid method (Hashimoto et al., 2006). As shown in Fig. 2, a 
grid map is represented in a reference coordinate frame w (Ow;XwYw). The LRS 
measurements are mapped in w and marked on the grid map. For each new cell of 
occupation in the current scan, the corresponding cell in the previous scan is checked. If that 
cell is marked, the cell in the current scan is considered a stationary object cell; else, it is a 
moving object cell. An object consisting of many moving object cells is determined as a 
moving object, and we remove the distance samples related to that moving object and 
backgrounds occluded by it when calculating the cost function JLRS. In our experiments, the 
cell size is set as 0.3 [m]  0.3 [m]. For mapping the laser image on the grid map, we use the 
wheelchair velocity estimated with laser scan matching.  

 
5.2 Selection of Initial Velocity 
In scan matching, we use dead-reckoning information as the initial velocity )0(x  to 
accelerate the convergence. A fault of an internal sensor thus causes JLRS to be large, even 
though the LRS is fault free. To cope with this problem, we define the following cost 
function: 
 





361

1

2)0()0( )}({
i

iiDRJ TpRq  (16) 

 

www.intechopen.com



Mechatronic Systems, Applications154

 

  

Robot 

wO wX

wY

Wheelchair 

 
Fig. 2. Grid map; gray cells show the field of view of the LRS. 
 
where )0(R and )0(T  are the rotational matrix and the translational vector, respectively, 
which contain the initial velocity )0(x  resulting from dead reckoning.  
If JDR < hDR, where hDR is a threshold, the internal sensor is assumed to be fault free, and we 
use dead-reckoning information as the initial velocity for scan matching. However, if JDR   
hDR, the internal sensor is assumed to be faulty, and the velocity estimate in the previous 
scan is used as the initial velocity for scan matching in the new scan. 
When abrupt faults occur in the LRS, our algorithm detects the fault. However, incipient 
faults (a slow degradation of LRS performance), which may occur in the LRS in the real 
world, would allow scan matching, but estimate the wheelchair velocity inaccurately, 
causing incorrect fault detection. To cope with this problem, an alternative approach 
(Sundvall & Jensfelt, 2005) can be considered; the internal sensors estimate the wheelchair 
velocity by dead reckoning. The LRS also estimates it by scan matching. We thus can 
consider that the wheelchair is equipped with two different velocity providers (dead 
reckoning and laser scan matcher). Velocity estimates by fault-free providers yield similar 
values; whereas those of fault-free and faulty providers are inconsistent. This approach 
might be suitable for various fault patterns. However, this indicates only that something is 
going wrong in the two velocity providers; it cannot identify which provider is failing. If a 
wheelchair is equipped with three or more velocity providers, we can perform majority-
voting-logic-based FDI (Hashimoto et al., 2008b). The velocity estimates from the providers 
are compared, and the provider whose velocity estimate does not match the others is 
determined to be the faulty one. 

 
6. Experimental Results 
 

6.1 Hard Fault of the Wheel Unit 
The wheelchair was moved in a typical indoor environment. We conducted experiments in 
the following three scenarios: 

Scenario 1: All the internal sensors and LRS are fault free. 
Scenario 2: A hard fault of the left wheel resolver occurs at 8 [s]. 
Scenario 3: A hard fault of the left wheel motor occurs at 8 [s]. 

Figures 3–5 show the experimental results; subfigures (a) and (b) show the velocity of the 
left and right wheels, respectively. Subfigure (c) shows the turning velocity of the 

wheelchair; the bold and broken lines indicate the results calculated by the wheel resolvers 
and sensed by the gyro, respectively. Subfigures (d)–(f) show the mode probability of the left 
wheel unit, the right wheel unit, and the gyro, respectively; the bold and broken lines 
indicate the fault-free and hard fault modes, respectively. 
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Fig. 3. Experimental result (Scenario 1). 
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Fig. 4. Experimental result (Scenario 2). 
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Fig. 2. Grid map; gray cells show the field of view of the LRS. 
 
where )0(R and )0(T  are the rotational matrix and the translational vector, respectively, 
which contain the initial velocity )0(x  resulting from dead reckoning.  
If JDR < hDR, where hDR is a threshold, the internal sensor is assumed to be fault free, and we 
use dead-reckoning information as the initial velocity for scan matching. However, if JDR   
hDR, the internal sensor is assumed to be faulty, and the velocity estimate in the previous 
scan is used as the initial velocity for scan matching in the new scan. 
When abrupt faults occur in the LRS, our algorithm detects the fault. However, incipient 
faults (a slow degradation of LRS performance), which may occur in the LRS in the real 
world, would allow scan matching, but estimate the wheelchair velocity inaccurately, 
causing incorrect fault detection. To cope with this problem, an alternative approach 
(Sundvall & Jensfelt, 2005) can be considered; the internal sensors estimate the wheelchair 
velocity by dead reckoning. The LRS also estimates it by scan matching. We thus can 
consider that the wheelchair is equipped with two different velocity providers (dead 
reckoning and laser scan matcher). Velocity estimates by fault-free providers yield similar 
values; whereas those of fault-free and faulty providers are inconsistent. This approach 
might be suitable for various fault patterns. However, this indicates only that something is 
going wrong in the two velocity providers; it cannot identify which provider is failing. If a 
wheelchair is equipped with three or more velocity providers, we can perform majority-
voting-logic-based FDI (Hashimoto et al., 2008b). The velocity estimates from the providers 
are compared, and the provider whose velocity estimate does not match the others is 
determined to be the faulty one. 

 
6. Experimental Results 
 

6.1 Hard Fault of the Wheel Unit 
The wheelchair was moved in a typical indoor environment. We conducted experiments in 
the following three scenarios: 

Scenario 1: All the internal sensors and LRS are fault free. 
Scenario 2: A hard fault of the left wheel resolver occurs at 8 [s]. 
Scenario 3: A hard fault of the left wheel motor occurs at 8 [s]. 

Figures 3–5 show the experimental results; subfigures (a) and (b) show the velocity of the 
left and right wheels, respectively. Subfigure (c) shows the turning velocity of the 

wheelchair; the bold and broken lines indicate the results calculated by the wheel resolvers 
and sensed by the gyro, respectively. Subfigures (d)–(f) show the mode probability of the left 
wheel unit, the right wheel unit, and the gyro, respectively; the bold and broken lines 
indicate the fault-free and hard fault modes, respectively. 
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Fig. 3. Experimental result (Scenario 1). 
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Fig. 4. Experimental result (Scenario 2). 

Time [s]
0 10 20

0.2

0.4

V
el

oc
ity

 [m
/s

]

0

Time [s]
0 10 20

0.2

0.4
V

el
oc

ity
 [m

/s
]

0

0.6

Time [s]
0 10 20

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

Time [s]
0 10 20

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

Time [s]
0 10 20

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

Time [s]
0 5 10

0

0.2

V
el

oc
ity

 [m
/s

] 0.4

Time [s]
0 5 10

0
0.2

V
el

oc
ity

 [m
/s

]

0.4

0.6

Time [s]
0 10 20

-0.4

0.4

Tu
rn

in
g 

ve
lo

ci
ty

   
   

   
   

   
  [

ra
d/

s]

0

0.8

-0.8

Time [s]
0  5 10

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

Time [s]
0  5 10

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

Time [s]
0 5 10

M
od

e 
pr

ob
ab

ili
ty

0.5

1.0

0

www.intechopen.com



Mechatronic Systems, Applications156

                           
(a) Velocity of                           (b) Velocity of                        (c) Turning velocity of 

left wheel                                   right wheel                             wheelchair 
 

                            
(d) Mode probability of            (e) Mode probability of             (f) Mode probability of 
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Fig. 5. Experimental result (Scenario 3). 
 
It is clear from subfigure (d) that in scenarios 2 and 3, we can detect a hard fault of the left 
wheel unit exactly, based on the mode probability. In scenario 2, the turning velocity sensed 
by the gyro is much different from that calculated by the wheel resolvers. On the other hand, 
the turning velocity sensed by the gyro is almost the same as that calculated by the wheel 
resolvers in scenario 3. This difference enables identification of the component (resolver or 
motor) that fails.  

 
6.2 Soft Fault of Internal and External Sensors 
The wheelchair was moved in a typical indoor environment. Figure 6 shows the velocity 
profile of the wheelchair. Two people walked around in the environment. We set the 
thresholds related to scan matching at hLRS = hDR = 15 [m2]. We conducted experiments in the 
following four scenarios: 

Scenario 4: All the internal sensors and LRS are fault free. 
Scenarios 5 and 6: The sensor gain of the right wheel resolver changes abruptly to 0.5 

(scenario 5) and 0.8 (scenario 6), respectively, from 1.0 at 21 [s]. 
Scenarios 7: The sensor gain of the LRS changes abruptly to 0.8 from 1.0 at 30 [s]. 

Figures 7–10 show the experimental results. Because in scenarios 4, 5, and 6, the cost 
function JLRS is always less than the threshold hLRS, the LRS is determined to be fault free. 
Then, we estimate the sensor gain of the internal sensor, and then, based on the estimate, we 
detect a soft fault of the right wheel resolver, as shown in Figs. 8(c) and 9(c). In scenario 7 
(Fig. 10), the cost function JDR is larger than the threshold hDR; the internal sensor is assumed 
to be faulty, and the velocity estimate in the previous scan is used as the initial velocity for 
laser scan matching in the new scan. We also check the value of the cost function JLRS. 
Because JLRS > hLRS, the LRS is determined to be faulty.  
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Fig. 6. Profile of wheelchair velocity. 
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Fig. 7. Experimental result (Scenario 4). 
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Fig. 8. Experimental result (Scenario 5). 
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Fig. 5. Experimental result (Scenario 3). 
 
It is clear from subfigure (d) that in scenarios 2 and 3, we can detect a hard fault of the left 
wheel unit exactly, based on the mode probability. In scenario 2, the turning velocity sensed 
by the gyro is much different from that calculated by the wheel resolvers. On the other hand, 
the turning velocity sensed by the gyro is almost the same as that calculated by the wheel 
resolvers in scenario 3. This difference enables identification of the component (resolver or 
motor) that fails.  

 
6.2 Soft Fault of Internal and External Sensors 
The wheelchair was moved in a typical indoor environment. Figure 6 shows the velocity 
profile of the wheelchair. Two people walked around in the environment. We set the 
thresholds related to scan matching at hLRS = hDR = 15 [m2]. We conducted experiments in the 
following four scenarios: 

Scenario 4: All the internal sensors and LRS are fault free. 
Scenarios 5 and 6: The sensor gain of the right wheel resolver changes abruptly to 0.5 

(scenario 5) and 0.8 (scenario 6), respectively, from 1.0 at 21 [s]. 
Scenarios 7: The sensor gain of the LRS changes abruptly to 0.8 from 1.0 at 30 [s]. 

Figures 7–10 show the experimental results. Because in scenarios 4, 5, and 6, the cost 
function JLRS is always less than the threshold hLRS, the LRS is determined to be fault free. 
Then, we estimate the sensor gain of the internal sensor, and then, based on the estimate, we 
detect a soft fault of the right wheel resolver, as shown in Figs. 8(c) and 9(c). In scenario 7 
(Fig. 10), the cost function JDR is larger than the threshold hDR; the internal sensor is assumed 
to be faulty, and the velocity estimate in the previous scan is used as the initial velocity for 
laser scan matching in the new scan. We also check the value of the cost function JLRS. 
Because JLRS > hLRS, the LRS is determined to be faulty.  
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Fig. 6. Profile of wheelchair velocity. 
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Fig. 7. Experimental result (Scenario 4). 
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Fig. 8. Experimental result (Scenario 5). 
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Fig. 9. Experimental result (Scenario 6). 
 

                             
(a)  JLRS                                                           (b)  JDR     

 
Fig. 10. Experimental result (Scenario 7).              
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Fig. 11. Experimental result (without moving-object detector). 
 
For comparison, we conducted experiments using the FDI system without the moving-
object detector, based on the occupancy grid method. Figure 11 shows the results (the values 
of the cost functions) in a fault-free condition of both the internal sensors and LRS. The FDI 
system without the moving-object detector causes false detection of the LRS fault because 
the values of the cost functions sometimes become larger than the thresholds. On the other 
hand, as shown in Fig. 7(a) and (b), our FDI system with the moving-object detector, 
provides the correct detection of the sensor state. 
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7. Conclusions 
 

This chapter presented a model-based FDI for wheelchair sensors and actuators. Hard faults 
of the internal sensors and the wheel motors were detected based on the IMM estimator. 
Fault isolation of the wheel resolvers and the motors was achieved based on the information 
of the fault-free gyro. A soft fault of the internal sensors was diagnosed based on the 
velocity estimate of the wheelchair from laser scan matching, using the fault-free LRS. The 
LRS fault was detected based on errors related to scan matching.  
Abrupt faults of the LRS can be detected by our algorithm. However, incipient faults (a slow 
degradation of LRS performance), which can occur in the real world, allows scan matching, 
but estimates the wheelchair velocity inaccurately, and causes incorrect LRS fault detection.   
Our research effort is directed toward FDI for sensors and actuators in various fault patterns. 
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7. Conclusions 
 

This chapter presented a model-based FDI for wheelchair sensors and actuators. Hard faults 
of the internal sensors and the wheel motors were detected based on the IMM estimator. 
Fault isolation of the wheel resolvers and the motors was achieved based on the information 
of the fault-free gyro. A soft fault of the internal sensors was diagnosed based on the 
velocity estimate of the wheelchair from laser scan matching, using the fault-free LRS. The 
LRS fault was detected based on errors related to scan matching.  
Abrupt faults of the LRS can be detected by our algorithm. However, incipient faults (a slow 
degradation of LRS performance), which can occur in the real world, allows scan matching, 
but estimates the wheelchair velocity inaccurately, and causes incorrect LRS fault detection.   
Our research effort is directed toward FDI for sensors and actuators in various fault patterns. 
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