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1. Introduction  
 

Devices to feed along microparts, such as ceramic chip capacitors and resistors, have 
become more common, due to their use in sorting, inspecting, and shipping mass produced 
microparts. In microparts feeding, to feed along microparts in one direction, the driving 
force applied to each micropart must vary according to the direction of movement of the 
micropart. Especially, the movement of microparts smaller than submillimeter can be 
affected not only inertia but also adhesion which is caused by electrostatic, van der Waal's, 
intermolecular, and surface tension forces (Ando, 1997). Therefore, we need to derive 
dynamics including adhesion to evaluate the movement of microparts. 
We have previously shown that a sawtoothed surface with simple planar and symmetric 
vibrations can be used to feed along microparts (Figure 1) (Mitani, 2006). In this case, contact 
occurs in one of two ways: point contact, the point of the tooth contacts the fed part, and 
slope contact, the sloping side of the tooth contacts the micropart. Because of the difference 
in contact area of micropart with the sloping side of a tooth and with the other side, 
microparts adhere more strongly in one direction than in the other. Also, the driving forces 
transferred from vibrations of feeder surface vary according to contact. These result in the 
microparts moving in one direction with simple planar symmetric vibrations.  

Fig. 1. Diagram of microparts feeding using a sawtoothed surface  
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We assessed the effect of sawtoothed silicon wafers for feeding of 0603 capacitors (size, 0.6 x 
0.3 x 0.3 mm: weight, 0.3 mg). Using these experimental results, we verified relationship 
among feed velocity, driving frequency, and sawtooth pitch. Analysing contact between 
feeder surface and a micropart based on measurements using a microscope, we developed 
feeding dynamics including adhesion. Comparing experiments with feeding simulation 
using the dynamics derived, we found large errors between both results. To examine these 
errors, we observed the movement of a micropart when the micropart moved in one 
direction using a high speed video camera. We then found that the micropart rotated 
around vertical axis against the feeder surface and swung around the axis parallel to the 
tooth groove, thus reductions of feed velocity occurred. Consequently, the feeding dynamics 
considering these movements were needed for more accurate simulations. 
The objective of this work was to examine the dynamics of microparts tens or hundreds of 
micrometers in size. We found that the movement of these parts depends on both inertia 
and adhesion. 

 
2. Related Works 
 

Partsfeeder is a key device in factory automation. The most popular feeders are vibratory 
bowl feeders (Maul, 1997), which use revolving vibrators to move parts along a helical track 
on the edge of a bowl. Linear feeders as well as an inclined mechanism and oblique 
vibration for unidirectional feeding (Wolfsteiner, 1999), have also been developed. In all of 
these systems, the aspect ratio of the horizontal/vertical vibrations must be adjusted to 
prevent parts from jumping. In our system, however, this adjustment is not necessary 
because only horizontal vibration is used.  
A parts feeding that employs non-sinusoidal vibrations (Reznik, 2001) has been developed. 
The part moves to its target position and orientation or is tracked during its trajectory by 
using the difference between the static and sliding friction. Our system realizes 
unidirectional feeding by symmetric vibration of a sawtoothed surface, which yields 
different contact forces in the positive and negative directions.  
Designing have been tested by simulation (Berkowitz, 1997 & Christiansen, 1996). The focus 
was mainly on the drive systems such as the structure and actuator, the movement of fed 
parts was generally neglected. In contrast, the movement of the microparts are considered in 
the present study.  
Attempts have been made to improve the drive efficiency by feedback control systems (Doi, 
2001) and nonlinear resonance systems (Konishi, 1997). Our system depends only upon 
contact between the feeder surface and the micropart. So the driving system is simple and 
uses an open loop system for feeding. 
Micro-electro-mechanical systems (MEMS) technology has been used to mount on a planar 
board arrays of micro-sized air nozzles which, by turning on or off their air flow, have been 
used to control the direction of moving microparts (Fukuta, 2004 & Arai, 2002). 
It is possible to perform manipulation with ciliary systems (Ebefors, 2000) and vector fields 
(Oyobe, 2001) without sensors. In this case, there are many actuator arrays on a vibratory 
plate. Actuator arrays enable control of contact between the vibratory plate and micropart in 
order to accomplish the target manipulation. However, these studies did not mention the 
dynamics of the micropart, especially the effects of adhesion forces on its motion. Other 
various feeding systems using electric-field (Fuhr, 1999), magnetic (Komori, 2005), bimorph 

piezoelectric actuators (Ting, 2005), and inchworm systems (Codourey, 1995) have been 
developed. These studies, however, have also not investigated the contact between the 
feeder surface and the micropart.  

 
3. Principe of unidirectional feeding 
 

Let us first look at a typical micropart, a 0603 ceramic chip capacitor used in electronic 
devices (Figure 2). Then let us analyse feeding by developing a model for contact between a 
micropart and a sawtooth. 
 

 
Fig. 2. Ceramic chip capacitor 0603 (size, 0.6 x 0.3 x 0.3 mm: weight, 0.3 mg) 
 
A capacitor consists of a conductor and electrodes with convexities on each end surface. We 
obtained representative contours along a capacitor using a Form Talysurf S5C sensing-pin 
surface measurement tool (Taylor Hobson Corp.) (Figure 3). Electrodes contact the feeder 
because they protrude 10 μm higher than the conductor. 
Assuming that convexities are perfectly spherical (Figure 4 (a)), let r be the radius of a 
convexity (Figure 4 (b)). The feeder surface is sawtoothed (Figure 5), let θ be sawtooth 
elevation angle, p sawtooth pitch, and d the groove depth. The sawtooth contacts the 
electrode in one of two ways (Figure 6) - at the tooth point or at the tooth slope.  To drive the 
microparts unidirectionally, driving must depend on the contact and direction of movement. 

 
Fig. 3. A section of 0603 capacitor 
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                      (a)   surface model                                           (b)  convexity 
Fig. 4. Model of surface convexity on an electrode 
 

 
Fig. 5. Model of sawtooth surface 
 

 
                    (a) at  tooth point                                    (b)  at tooth slope  
Fig. 6. Two contacts between micropart and sawtooth 

 
4. Feeding experiments of 0603 capacitor 
 

4.1 Experimental equipments 
In micropart feeder (Figure 7), a silicon wafer is placed at the top of the feeder table, which is 
driven back and forth in a track by a pair of piezoelectric bimorph elements, powered by a 
function generator and an amplifier that delivers peak-to-peak output voltage of up to 300 V.  
 

 
Fig. 7. Microparts feeder using bimorph piezoelectric actuators 

 
4.2 Sawtooth surfaces 
We used a dicing saw (Disco Corp.), a high-precision cutter-groover using a bevelled blade 
to cut sawteeth in silicon wafers. Figure 8 shows a microphotograph of a cut silicon wafer 
with sawteeth of p = 0.1 mm, θ = 20 deg, and d = p tan θ = 0.0364 mm. We prepared  
sawtoothed silicon wafers with pitch  p = 0.01, 0.02, ∙∙∙, 0.1 mm and elevation angle θ = 20 
deg. 

 
Fig. 8. Microphotograph of a sawtoothed silicon wafer 

 
4.3 Experiments 
Using the microparts feeder and these sawtoothed surfaces, we conducted feeding 
experiments with 0603 capacitor. Micropart movement was recorded using a digital video 
camera at 30 fps. Velocity was measured by counting how many frames it took for a 
micropart to move 30 mm along the sawtooth surface. Microparts moved at a drive 
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frequency f = 98 to 102 Hz and feeder table amplitude was about 0.20 mm. Each value is the 
average of three trials, each trial using five capacitors (Figure 9).  
 

 
(a) p = 0.01 to 0.05 mm 
 

 
(b) p=0.06 to 0.10 mm 

Fig. 9. Experimental results of 0603 capacitor 
 
Table 1 shows the drive frequency that realized maximum velocity for each pitch, and its 
maximum velocity.  When the pitch was 0.04 mm or less, velocity was 0.6 mm/s at drive 
frequency f = 98 to 101 Hz, but movement was jittery. At higher drive frequency, the 
microparts jumped. Fastest feeding was 1.7 mm/s, realized at f = 101.4 Hz with p=0.05 mm. 
When the pitch was 0.06 mm or greater, maximum feed velocity on a surface was realized 

when drive frequency was 101.4 Hz. The maximum velocity decreased with increasing pitch, 
indicating the appropriate pitch for 0603 capacitors is p = 0.05 mm.  
Figure 9 shows velocity dispersion at the maximum feed velocity on each sawtooth surface. 
Feed velocity dispersed within 6.7 to 23.5 %, averaging 15.8 %. The smallest dispersion 
occurred at a sawtooth pitch of 0.05 mm. Consequently, the sawtooth surface with pitch p = 
0.05 mm was most appropriate for feeding 0603 capacitor. 
 

pitch, mm velocity,  mm/s frequency, Hz 
0.01 0.695 99.2 
0.02 0.839 98.8 
0.03 0.749 100.0 
0.04 0.582 99.2 
0.05 1.705 101.4 
0.06 0.880 101.6 
0.07 1.253 101.4 
0.08 1.262 101.8 
0.09 0.883 101.2 
0.10 1.049 101.6 

Table 1. Maximum feed velocity of 0603 capacitor and drive frequency  
 

 
Fig. 10. Relationship between feeding velocity and sawtooth pitch 

 
5. Analysis of 0603 capacitor 
 

5.1 Measurement tools 
As in the previous work (Mitani, 2006), the sawtooth surface profile should be selected 
according to the convexity size on the surface of the capacitor electrodes. To observe them, 
we used AZ-100 multi-purpose zoom microscope (Nikon Instruments Co.) (Figure 11), 
which can take pictures at up to 16 times magnification. The microscope also has an 
automatic stage to control focus height at a resolution of 0.54 μm. Each image is forwarded 
to a personal computer and saved as a bitmap file. We used DynamicEye Real focus image 

www.intechopen.com



Unidirectional feeding of submillimeter microparts along  
a sawtooth surface with horizontal and symmetric vibrations 269

frequency f = 98 to 102 Hz and feeder table amplitude was about 0.20 mm. Each value is the 
average of three trials, each trial using five capacitors (Figure 9).  
 

 
(a) p = 0.01 to 0.05 mm 
 

 
(b) p=0.06 to 0.10 mm 

Fig. 9. Experimental results of 0603 capacitor 
 
Table 1 shows the drive frequency that realized maximum velocity for each pitch, and its 
maximum velocity.  When the pitch was 0.04 mm or less, velocity was 0.6 mm/s at drive 
frequency f = 98 to 101 Hz, but movement was jittery. At higher drive frequency, the 
microparts jumped. Fastest feeding was 1.7 mm/s, realized at f = 101.4 Hz with p=0.05 mm. 
When the pitch was 0.06 mm or greater, maximum feed velocity on a surface was realized 

when drive frequency was 101.4 Hz. The maximum velocity decreased with increasing pitch, 
indicating the appropriate pitch for 0603 capacitors is p = 0.05 mm.  
Figure 9 shows velocity dispersion at the maximum feed velocity on each sawtooth surface. 
Feed velocity dispersed within 6.7 to 23.5 %, averaging 15.8 %. The smallest dispersion 
occurred at a sawtooth pitch of 0.05 mm. Consequently, the sawtooth surface with pitch p = 
0.05 mm was most appropriate for feeding 0603 capacitor. 
 

pitch, mm velocity,  mm/s frequency, Hz 
0.01 0.695 99.2 
0.02 0.839 98.8 
0.03 0.749 100.0 
0.04 0.582 99.2 
0.05 1.705 101.4 
0.06 0.880 101.6 
0.07 1.253 101.4 
0.08 1.262 101.8 
0.09 0.883 101.2 
0.10 1.049 101.6 

Table 1. Maximum feed velocity of 0603 capacitor and drive frequency  
 

 
Fig. 10. Relationship between feeding velocity and sawtooth pitch 

 
5. Analysis of 0603 capacitor 
 

5.1 Measurement tools 
As in the previous work (Mitani, 2006), the sawtooth surface profile should be selected 
according to the convexity size on the surface of the capacitor electrodes. To observe them, 
we used AZ-100 multi-purpose zoom microscope (Nikon Instruments Co.) (Figure 11), 
which can take pictures at up to 16 times magnification. The microscope also has an 
automatic stage to control focus height at a resolution of 0.54 μm. Each image is forwarded 
to a personal computer and saved as a bitmap file. We used DynamicEye Real focus image 

www.intechopen.com



Mechatronic Systems, Applications270

synthesizing software (Mitani Corp.) to analyse these convexities. The software can 
synthesize a three dimensional (3D) model from these pictures according to focus height. 
Sections of the 3D model are analysed to obtain a convexity size and position. 
 

 
Fig. 11. AZ-100 multi-purpose zoom microscope (Nikon Instruments Co.) 

 
5.2 Convexity size and position 
We assumed that each convexity on the electrodes of capacitor was defined as a half sphere. 
The radii of each convexity and its position were analysed from the 3D model. Analysing a 
synthesized model (Figure 12), we obtain a contour line of the synthesized model, defining 
the micropart coordinate G-xy (Figure 13). In this figure, the arrowed convexities could be 
disregarded because the convexities labelled as A occurred besides the capacitor, and the 
convexities labelled as B did not occur on any electrode of the capacitor. We thus defined 
four convexities on the surface of the 0603 capacitor. 

 
Fig. 12. Synthesized model of 0603 capacitor 
 

 
Fig. 13. Contour model  

 
Fig. 14. Analysis line of convexity #1 
 
Let us analyse convexity size from the 3D model. We first analysed the convexity #1 along  a 
line x’x’ parallel to the x axis, and a line y’y’ parallel to the y axis, both lines pass the top of 
the convexity (Figure 14), and then we obtained two section models shown in Figure 15. 
Similarly, we analysed and obtained each section of convexities #2, #3, and #4, (Figures 16 
to 18). Each convexity was approximated in a half sphere from the top to less than 18 μm. 
The radii of each convexity were assumed to be the mean value of radii along both 
directions. 
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(a ) along line x’x’                                                     (b) along line y’y’ 

Fig. 15. Sections of convexity #1 

 

  
(a ) along line x’x’                                                     (b) along line y’y’ 

Fig. 16. Sections of convexity #2 

 

  
(a ) along line x’x’                                  (b) along line y’y’ 

Fig. 17. Sections of convexity #3 

 

  
(a ) along line x’x’                                        (b) along line y’y’ 

Fig. 18. Sections of convexity #4 

From Figure 13, we measured position of each convexity with the top of each convexity on 
G-xy.  Finally, we obtained convexity size and position appeared in Figure 13 (Table 2), and 
defined surface model of a 0603 capacitor (Figure 19). 
 

no. cordinate (x, y), μm radus, μm 
1 (207, -37) 20 
2 (216, 51) 13 
3 (-241, -36) 24 
4 (-200, -6) 36 

Table 2 Coordinate and radius of convexity 
 

 
Fig. 19. Convexity model of 0603 capacitor 

 
6. Feeding simulation and comparison 
 

6.1 Feeding dynamics 
We have already derived the dynamics of micropart when a convexity exists on the surface 
of micropart (Mitani, 2006).  We extended these results to plural convexities. We defined the 
feeder coordinate O-x0y0 and micropart position and posture on its coordinate P = (xc, yc, φ). 

  
(a)  coordinate                                        (b) micropart position and posture 

Fig. 20. Position of micropart on coordinate  
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Fig. 21. Position of convexity i on the coordinate G-xy 
 

 
Fig. 22. Driving force of micropart transferred from convexity 
 
We also defined potion of the i-th convexity as ci = (xi, yi) on the coordinate G-xy. Dynamics 
of micropart is represented as:  
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where m indicates mass of micropart, I intertia, c attenuation coefficients of motion, and d 
attenuation coefficients of  rotation. Driving force and torque, f ≡ (Fx, Fy, τ ) T, is calculated 
by the sum of driving force transferred from each convexity. Force generated by vibration of 
feeder surface occurs along direction of vibration. Considering the driving force fi ≡ (fxi, fyi, 
τi) generated by contact force Fi, vibration force at i-th convexity shown in Figure 22, we 
found: 
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Assuming that 1st, 2nd, …, and n-th convexities appear on the surface of a micropart, 
driving force f is represented as follows: 
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Fig. 23. Comparison of experimental and simulation results 
 
6.2 Feeding simulation 
In equation (2), each contact force Fi is decided according to its contact between a sawtooth 
and a convexity (Mitani, 2006). We conducted feeding simulation of the 0603 capacitor 
model shown in Figure 21, using the same parameters as feeding experiments, and then 
compared with experimental results (Figure 23). In the simulation, feed velocity peaked at p 
= 0.04 mm, whereas it peaked at p = 0.05 mm in the experiments. At the pitch of 0.01 to 0.04 
mm, velocities were proportional to the sawtooth pitch. At the pitch of 0.07 to 0.1 mm, the 
experimental results were about 0.5 mm/s lower than simulation though the tendency was 
the same. Consequently, there were large differences between the simulation and 
experimental results. In the next section, we examine these differences by analyzing the 
micropart movement and feeder surface. 

 
7. Examination of simulation error 
 

7.1 Observation of micropart movement 
We used Fastcam-1024PCI highspeed video camera (Photron) to capture micropart 
movement at 1000 fps. A 0603 capacitor was initially placed lengthwise on the feeder and 
the video camera was set to the side of the capacitor (Figure 24).  

 
Fig. 24. Capture setup of micropart movement using a Fastcam video camera 
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Fig. 22. Driving force of micropart transferred from convexity 
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feeder surface occurs along direction of vibration. Considering the driving force fi ≡ (fxi, fyi, 
τi) generated by contact force Fi, vibration force at i-th convexity shown in Figure 22, we 
found: 
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Assuming that 1st, 2nd, …, and n-th convexities appear on the surface of a micropart, 
driving force f is represented as follows: 
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Fig. 23. Comparison of experimental and simulation results 
 
6.2 Feeding simulation 
In equation (2), each contact force Fi is decided according to its contact between a sawtooth 
and a convexity (Mitani, 2006). We conducted feeding simulation of the 0603 capacitor 
model shown in Figure 21, using the same parameters as feeding experiments, and then 
compared with experimental results (Figure 23). In the simulation, feed velocity peaked at p 
= 0.04 mm, whereas it peaked at p = 0.05 mm in the experiments. At the pitch of 0.01 to 0.04 
mm, velocities were proportional to the sawtooth pitch. At the pitch of 0.07 to 0.1 mm, the 
experimental results were about 0.5 mm/s lower than simulation though the tendency was 
the same. Consequently, there were large differences between the simulation and 
experimental results. In the next section, we examine these differences by analyzing the 
micropart movement and feeder surface. 

 
7. Examination of simulation error 
 

7.1 Observation of micropart movement 
We used Fastcam-1024PCI highspeed video camera (Photron) to capture micropart 
movement at 1000 fps. A 0603 capacitor was initially placed lengthwise on the feeder and 
the video camera was set to the side of the capacitor (Figure 24).  

 
Fig. 24. Capture setup of micropart movement using a Fastcam video camera 
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(a) 0.000 s                                      (b) 0.050 s                               (c) 0.100 s 

 
(d) 0.150 s                                      (e) 0.200 s                               (f) 0.250 s 

 
(g) 0.300 s                                      (h) 0.350 s                               (i) 0.400 s 

 
(j) 0.450 s                                      (k) 0.500 s                               (l) 0.550 s 

 
(m) 0.600 s                                      (n) 0.650 s                               (o) 0.700 s 

 
(p) 0.750 s                                      (q) 0.800 s                               (r) 0.850 s 

Fig. 25. Micropart movement 
 
We obtained successive pictures of the capacitor movement from t = 0.000 to 0.850 s with an 
interval of 0.050 s (Figure 25). Beginning the feeder vibration at t = 0.000 s, the capacitor 
started to move along the feeder in the right direction upon feeder vibration. During the 
micropart moved in the right direction, the capacitor rotated around its vertical axis against 
the feeder surface (t = 0.150 s) and became oriented to widthwise at t = 0.300 s. When 

moving along the feeder in this widthwise posture, the capacitor began to rotate around the 
y0 axis. Rotation angles were 17◦ at t = 0.300 and 0.400 s, and -3◦ at t = 0.550 s. 

 
7.2 Analysis of micropart rotation 
Let us formulate this rotation at this widthwise posture. We added the z axis to the 
coordinate G-xy defined in Figure 19: the z axis is perpendicular to the xy plane (Figure 26). 
Considering the capacitor rotation around the point of contact when a tooth contacts a 
convexity Ci with contact force Fi, force Fτ, generated by torque τi, is represented as: 
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If β is angle between C1 G and y axis, force F’ along the y axis can be formulated as:  
 

βcosFF'F τi   (5) 
 
This suggests that drive force reduces by rotation of the micropart. Consequently, we need 
to derive dynamics considering rotation to simulate the movement of microparts more 
accurately. 

 
Fig. 26. Micropart rotation at widthwise posture 

 
7.3 Analysis of feeder surface 
Using the AZ-100 microscope (Figure 11), we obtained a synthesized model (Figure 27) and 
its contour model (Figure 28) of a sawtoothed surface. From these figures, feeder surface had 
many cracks and errors, not perfectly sawtoothed, which caused instable contact between 
the surface and a micropart, and affected the movement of micropart. Therefore, we need to 
formulate a feeder surface profile model based on measurements, and consider contact and 
adhesion using this model. 
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started to move along the feeder in the right direction upon feeder vibration. During the 
micropart moved in the right direction, the capacitor rotated around its vertical axis against 
the feeder surface (t = 0.150 s) and became oriented to widthwise at t = 0.300 s. When 
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y0 axis. Rotation angles were 17◦ at t = 0.300 and 0.400 s, and -3◦ at t = 0.550 s. 

 
7.2 Analysis of micropart rotation 
Let us formulate this rotation at this widthwise posture. We added the z axis to the 
coordinate G-xy defined in Figure 19: the z axis is perpendicular to the xy plane (Figure 26). 
Considering the capacitor rotation around the point of contact when a tooth contacts a 
convexity Ci with contact force Fi, force Fτ, generated by torque τi, is represented as: 
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If β is angle between C1 G and y axis, force F’ along the y axis can be formulated as:  
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This suggests that drive force reduces by rotation of the micropart. Consequently, we need 
to derive dynamics considering rotation to simulate the movement of microparts more 
accurately. 

 
Fig. 26. Micropart rotation at widthwise posture 

 
7.3 Analysis of feeder surface 
Using the AZ-100 microscope (Figure 11), we obtained a synthesized model (Figure 27) and 
its contour model (Figure 28) of a sawtoothed surface. From these figures, feeder surface had 
many cracks and errors, not perfectly sawtoothed, which caused instable contact between 
the surface and a micropart, and affected the movement of micropart. Therefore, we need to 
formulate a feeder surface profile model based on measurements, and consider contact and 
adhesion using this model. 
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Fig. 27. Synthesized model of sawtoothed surface (p = 0.1 mm and θ=20 deg) 
 

 
Fig. 28. Contour model  

 
8. Conclusion 
 

We examined a surface model of 0603 capacitor based on measurements. A microscope was 
used to analyse convexity sizes in the electrode surface. Each convexity was approximated 
as a half sphere model. These models were then applied for feeding simulation proposed in 
the previous work. Comparing with feeding experiments, we found large differences 
between the simulation and experimental results. We examined these differences by 
analyzing the movement of parts using a high speed video camera and found an error of 
oversight in our simulation. Capacitors rotated around the vertical axis against the sawtooth 
surface from a lengthwise to widthwise posture and continued to move along the feeder in 

the desired direction while swinging around the axis along the sawtooth. This movement 
reduced the actual feeding velocity of a capacitor in contrast to the simulation. We also 
inspected a feeder surface profile using a microscope, and found many cracks and errors at 
the top of sawteeth, whereas feeder surface was perfectly sawtoothed in simulation. We 
concluded to need analysis of micropart rotation and a strict contact model between feeder 
surface and micropart based on measurements to simulate the feeding more accurately. 
In future studies, we will try to: 
· Identify dynamics of micropart including rotation, 
· Formulate surface profile model of sawtoothed surface based on measurements, and 
analyse contact and adhesion using the model derived. 
· Develop new feeder surfaces for smaller microparts, and, 
· Verify the effect of ambient humidity on feeding. 
This research was supported in part by a Grant-in-Aid for Young Scientists (B) (20760150) 
from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a 
grant from the Electro-Mechanic Technology Advancing Foundation (EMTAF), Japan. 
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We examined a surface model of 0603 capacitor based on measurements. A microscope was 
used to analyse convexity sizes in the electrode surface. Each convexity was approximated 
as a half sphere model. These models were then applied for feeding simulation proposed in 
the previous work. Comparing with feeding experiments, we found large differences 
between the simulation and experimental results. We examined these differences by 
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oversight in our simulation. Capacitors rotated around the vertical axis against the sawtooth 
surface from a lengthwise to widthwise posture and continued to move along the feeder in 

the desired direction while swinging around the axis along the sawtooth. This movement 
reduced the actual feeding velocity of a capacitor in contrast to the simulation. We also 
inspected a feeder surface profile using a microscope, and found many cracks and errors at 
the top of sawteeth, whereas feeder surface was perfectly sawtoothed in simulation. We 
concluded to need analysis of micropart rotation and a strict contact model between feeder 
surface and micropart based on measurements to simulate the feeding more accurately. 
In future studies, we will try to: 
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