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Abstract  
The chapter deals with design of contact force vector sensor. The information about 
interaction between robotic parts and surroundings is necessary for intelligent control of 
robot behavior. The simplest example of such interaction is mechanical contact between 
working part of robot and surroundings. Than the knowledge of contact characteristic is 
important for robot control. This mechanical contact could be described by vector of contact 
force which includes information about force magnitude as well as information about 
orientation and contact point. The information about contact force vector will allow to 
predict the geometry of object which is in the contact with robots parts and modify robots 
behaviour. This kind of sensor can be used for instance for control of robotic hand gripping 
force as well as for detection of collision between robot and surrounding. 

 
1. Introduction 
 

The design of contact force  sensor was published by Schwarzinger, 1992. This design 
requires application of 24 strain gauges on active part of sensor. The quantity of strain 
gauges is sufficient for analytical determination of contact force vector. 
Demand on small size of sensor for a lot of  robotic applications (Grepl, R., Bezdicek, M., 
Chmelicek, J., Svehlak, M., 2004) disable application of a large number of strain gauges. 
Quantity of applied strain gauges and their size is limiting factor for using such design in 
our applications.  
Our design of contact sensor supposes to use only three strain gauges on active part of 
sensor. However three strain gauges are not enough for the analytical expression of contact 
force vector. Due to this fact the neural network is used for force vector identification based 
on measured deformations of sensor body. The application of three strain gauges and new 
design will reduce size of sensor but requires a lot of numerical simulations for correct and 
accurate sensor behaviour. 
The main advantage of using neural network is in low computational requirements for 
vector determination. It means fast response of sensor to contact load. The neural network is 
able to process measured data faster than nonlinear equations for force vector expression in 
analytical way. 
The other advantage of our design is in reduced requirements for strain measurement by 
strain gauges. Generally, the Wheatstone bridge has to be used for strain measurement 
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Table 1 

 
Contact force coordinates Accuracy 

[%] Point of FE model load Position of contact force 
determined by Simulated by ANN 

x [mm] 6.10 6.03 98.85 
y [mm] -3.31 -3.29 99.39 
z [mm] 15.95 15.97 99.87 

Table 1. Result of verification 

 
6. Experimental verification of sensor functionality 
 

The sensor functionality was verified by experimental simulation in laboratory of 
Mechatronics. During experiment the loads of sensor was applied in several positions of 
sensor head. Gauging fixture (Fig. 6) was used for sensor positioning. Load was applied by 
materials testing machine Zwick Z 020-TND (Fig. 7, Fig. 8) where the real load force was 
measured. The deformation of sensor body was measured by strain gauges through HBM 
Spider 8 unit which is among other things designed for measuring of deformation by strain 
gauges.  

 
Fig. 6. Gauging fixture 

 
Measured deformations was transferred to information about contact force position and 
magnitude by neural network implemented in Matlab software. The results of experimental 
verification for selected points are shown in Table 2 for four positions of load force and 
shows really good accuracy of designed sensor. 
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Fig. 9. Loads of sensor used in topological optimization procedure 
 

 
Fig. 10. Results of optimization (pseudodensity - red color means that volume will be 
included in final design, blue color mean that volume will be excluded from final design)  
 
Optimized shape of sensor body need to by simplified by reason of good manufacturing. 
Due to this fact few shapes of cutting was designed with consideration of optimized shape 
(Fig. 10) and machining. Based on results of structural analysis rectangular shape of cutting 
with 1 mm hole (Fig. 11b) ) produces the best results in terms of sensitivity. This shape is 
also suitable for simple machining. Fig. 12  shows prototype of optimized and non-
optimized sensor which is made from aluminium alloy. 

 
Fig
 

Fig

 
7.1
Str
lin
Fig
de
 

                          
g. 11. Optimized s

g. 12. Optimized a

1. Structural ana
ructural analysis 

near behaviour of 
g. 13 for load forc
formation of sens

 a)    
sensors with diffe

and non-optimiz

alysis of sensor 
of optimized sen
 structure occurs.
ce of 140N. This v
sor body can occu

                  b) 
erent shapes of cu

ed sensor prototy

 prototype 
sor was done in o
. Results of this si
value defines upp
urs. 

  
uttings 

ype 

order to find out 
imulation are sho
per bound of sens

 c) 

 

load limits where
own in  

sor limits where 

 

e the 

plastic 

www.intechopen.com



Contact sensor for robotic application 43

 
Fig. 9. Loads of sensor used in topological optimization procedure 
 

 
Fig. 10. Results of optimization (pseudodensity - red color means that volume will be 
included in final design, blue color mean that volume will be excluded from final design)  
 
Optimized shape of sensor body need to by simplified by reason of good manufacturing. 
Due to this fact few shapes of cutting was designed with consideration of optimized shape 
(Fig. 10) and machining. Based on results of structural analysis rectangular shape of cutting 
with 1 mm hole (Fig. 11b) ) produces the best results in terms of sensitivity. This shape is 
also suitable for simple machining. Fig. 12  shows prototype of optimized and non-
optimized sensor which is made from aluminium alloy. 

 
Fig
 

Fig

 
7.1
Str
lin
Fig
de
 

                          
g. 11. Optimized s

g. 12. Optimized a

1. Structural ana
ructural analysis 

near behaviour of 
g. 13 for load forc
formation of sens

 a)    
sensors with diffe

and non-optimiz

alysis of sensor 
of optimized sen
 structure occurs.
ce of 140N. This v
sor body can occu

                  b) 
erent shapes of cu

ed sensor prototy

 prototype 
sor was done in o
. Results of this si
value defines upp
urs. 

  
uttings 

ype 

order to find out 
imulation are sho
per bound of sens

 c) 

 

load limits where
own in  

sor limits where 

 

e the 

plastic 

www.intechopen.com



Mechatronic Systems, Applications44

 
 

Fig. 13. Von-Misses stress (MPa) of sensor for load of 140 N applied in radial direction 

 
8. Verification of optimized sensor functionality 
 

Functionality of optimized sensor was also done by two methods. Finite elements model of 
sensor is used for calculation of body deformation caused by specified load in first method. 
The Second method using experimental verification of sensor subjected to real load. 
Deformations of sensor body observed by both methods are used as inputs of neural 
network which produces information about contact force magnitude and coordinates.  

 
8.1. Verification of functionality by FEM simulation 
Sensor functionality was proof by numerical simulation using FE model of sensor. 
Verification was done in same way as procedure described in section 4.  
The maximal difference in load force position between force coordinates used for FEM 
model loading and simulated coordinates retrieved from ANN was up to 2%. This 
difference also shows error of trained neural network. 

 
8.2. Experimental verification of functionality 
The results of experimental verification that was done in same way as described in section 5 
show that the maximum inaccuracy of sensor is up to 10%. This difference can be caused by 
inaccuracy in strain gauges application. 

 
9. Conclusion 
 

Presented chapter introduced new concept of contact sensor for robotic application that can 
be used to contact force vector determination. The problem of the sensor is low sensitivity 
for load in axial direction of sensor that was solved by topological optimization in ANSYS 
software. The reduction of 80% of sensor body volume was achieved and in this relation the 
sensitivity in axial direction increases. The functionality of sensor was proofed by numerical 

simulations and also by experimental verification using and simulating real load of sensor 
prototype. Verification was done for optimized and non-optimized prototype of sensor. 
Using only three strain gauges for deformation measurement of sensor body allow us to use 
SMD electronics parts and build up the unit to hollow sensor body. The sensor can be use 
for 10N to 140N load force range.  
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