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1. Introduction 
 

In optical storage systems, sensitive stored patterns can cause failure in data retrieval and 
decrease the system reliability. Modulation codes play the role of shaping the characteristics 
of stored data patterns in optical storage systems. Among various optical storage systems, 
holographic data storage is regarded as a promising candidate for next-generation optical 
data storage due to its extremely high capacity and ultra-fast data transfer rate. In this 
chapter we will cover modulation codes for optical data storage, especially on those 
designed for holographic data storage. 
In conventional optical data storage systems, information is recorded in a one-dimensional 
spiral stream. The major concern of modulation codes for these optical data storage systems 
is to separate binary ones by a number of binary zeroes, i.e., run-length-limited codes. 
Examples are the eight-to-fourteen modulation (EFM) for CD (Immink et al., 1985), EFMPlus 
for DVD (Immink, 1997), and 17 parity preserve-prohibit repeated minimum run-length 
transition (17PP) for Blu-ray disc (Blu-ray Disc Association, 2006). Setting constraint on 
minimum and maximum runs of binary zeros results in several advantages, including 
increased data density, improved time recovery and gain control and depressed interference 
between bits.   
In holographic data storage systems, information is stored as pixels on two-dimensional (2-
D) pages. Different from conventional optical data storage, the additional dimension 
inevitably brings new consideration to the design of modulation codes. The primary concern 
is that interferences between pixels are omni-directional. Besides, since pixels carry different 
intensities to represent different information bits, pixels with higher intensities intrinsically 
corrupt the signal fidelity of those with lower intensities more than the other way around, 
i.e., interferences among pixels are imbalanced. In addition to preventing vulnerable 
patterns suffering from possible interferences, some modulation codes also focus on decoder 
complexity, and yet others focus on achieving high code rate. It is desirable to consider all 
aspects but trade-off is matter-of-course. Different priorities in design consideration result in 
various modulation codes.  
In this chapter, we will first introduce several modulation code constraints. Next, one-
dimensional modulation codes adopted in prevalent optical data storage systems are 
discussed. Then we turn to the modulation codes designed for holographic data storage. 
These modulation codes are classified according to the coding methods, i.e., block codes vs. 
strip codes. For block codes, code blocks are independently produced and then tiled to form a 
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whole page. This guarantees a one-to-one relationship between the information bits and the 
associated code blocks. On the contrary, strip codes produce code blocks by considering the 
current group of information bits as well as other code blocks. This type of coding 
complicates the encoding procedure but can ensure that the constraints be satisfied across 
block boundary. We will further discuss variable-length modulation codes, which is a 
contrast to fixed-length modulation codes. Variable-length modulation codes have more 
freedom in the design of code blocks. With a given code rate, variable-length modulation 
codes can provide better modulated pages when compared to fixed-length modulation 
codes. However, variable-length modulation codes can suffer from the error propagation 
problem where a decoding error of one code block can lead to several ensuing decoding 
errors.  

 
2. Constraints 
 

Generally speaking, constraints of modulation codes are designed according to the channel 
characteristics of the storage system. There are also other considerations such as decoder 
complexity and code rate. In conventional optical data storage systems, information carried 
in a binary data stream is recorded by creating marks on the disk with variable lengths and 
spaces between them. On the other hand, information is stored in 2-D data pages consisting 
of ON pixels and OFF pixels in holographic data storage system. The holographic 
modulation codes encode one-dimensional information streams into 2-D code blocks. The 
modulated pages created by tiling code blocks comply with certain constraints, aiming at 
reducing the risk of corrupting signal fidelity during writing and retrieving processes. Due 
to the additional dimension, other considerations are required when designing constraints 
for holographic modulation codes. In the following some commonly adopted constraints are 
introduced. 

 
2.1 Run-Length Limited Constraint 
The run-length limited constraint is widely adopted in optical storage systems. Examples 
are the eight-to-fourteen modulation (EFM) in CD, EFMPlus in DVD, and the 17 parity 
preserve-prohibit repeated minimum run-length transition (17PP) in Blu-ray disc. Due to the 
different reflectivity states, peak detection is the most common receiver scheme. To reliably 
detect peaks, separation on the order of 1.5-2 mark diameters is required between marks 
(McLaughlin, 1998). The run-length limited constraint thus sets limits to the frequency of 
ones in the data stream to avoid the case where large run-length of zeros causes difficulty of 
timing recovery and streams with small run-length of zeros have significant high-frequency 
components that can be severely attenuated during readout.  
From one-dimensional track-oriented to 2-D page-based technology, the run-length between 
“1”s (or ON pixels) has to be extended to 2-D. Two run-length limited constraints for 2-D 
patterns have been proposed. One constraint sets upper and lower bounds to run-length of 
zeros in both horizontal and vertical directions (Kamabe, 2007). The other one sets upper 
and lower bounds to 2-D spatial distance between any two ON pixels (Malki et al., 2008; 
Roth et al., 2001). See Fig. 1 for illustration of this 2-D run-length limited constraint. 

 
 

2.2 Conservative Constraint 
The conservative constraint (Vardy et al., 1996) requires at least a prescribed number of 
transitions, i.e., 10 or 01, in each row and column in order to avoid long periodic 
stretches of contiguous light or dark pixels. This is because a large area of ON pixels results 
in a situation similar to over-exposure in photography. The diffracted light will illuminate 
the dark region and lead to false detection. An example of such detrimental pattern is 
shown in Fig. 2. 

Fig. 1. Illustration of the 2-D run-length limited constraint based on 2-D spatial distance with 
lower and upper bounds of two and four, respectively. 

Fig. 2. A pattern forbidden by the conservative constraint (Blaum et al., 1996).  

 
2.3 Low-Pass Constraint 
The low-pass constraint (Ashley & Marcus, 1998; Vadde & Vijaya Kumar, 2000) excludes 
code blocks with high spatial frequency components, which are sensitive to inter-pixel 
interference induced by holographic data storage channels. For example, an ON pixel tends 
to be incorrectly detected as “0” when it is surrounded by OFF pixels and similarly an OFF 
pixel tends to be incorrectly detected as “1” when surrounded by ON pixels. Therefore, such 
patterns are forbidden under the low-pass constraint.  
In fact, the low-pass constraints can be quite strict so that the legal code patterns have good 
protection against high-frequency cutoff. This is, however, achieved at the cost of lower 
code rate because few code blocks satisfy this constraint. Table 1 lists five low-pass 
constraints and examples that violate these constraints. 
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whole page. This guarantees a one-to-one relationship between the information bits and the 
associated code blocks. On the contrary, strip codes produce code blocks by considering the 
current group of information bits as well as other code blocks. This type of coding 
complicates the encoding procedure but can ensure that the constraints be satisfied across 
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different reflectivity states, peak detection is the most common receiver scheme. To reliably 
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(McLaughlin, 1998). The run-length limited constraint thus sets limits to the frequency of 
ones in the data stream to avoid the case where large run-length of zeros causes difficulty of 
timing recovery and streams with small run-length of zeros have significant high-frequency 
components that can be severely attenuated during readout.  
From one-dimensional track-oriented to 2-D page-based technology, the run-length between 
“1”s (or ON pixels) has to be extended to 2-D. Two run-length limited constraints for 2-D 
patterns have been proposed. One constraint sets upper and lower bounds to run-length of 
zeros in both horizontal and vertical directions (Kamabe, 2007). The other one sets upper 
and lower bounds to 2-D spatial distance between any two ON pixels (Malki et al., 2008; 
Roth et al., 2001). See Fig. 1 for illustration of this 2-D run-length limited constraint. 
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The conservative constraint (Vardy et al., 1996) requires at least a prescribed number of 
transitions, i.e., 10 or 01, in each row and column in order to avoid long periodic 
stretches of contiguous light or dark pixels. This is because a large area of ON pixels results 
in a situation similar to over-exposure in photography. The diffracted light will illuminate 
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shown in Fig. 2. 

Fig. 1. Illustration of the 2-D run-length limited constraint based on 2-D spatial distance with 
lower and upper bounds of two and four, respectively. 

Fig. 2. A pattern forbidden by the conservative constraint (Blaum et al., 1996).  

 
2.3 Low-Pass Constraint 
The low-pass constraint (Ashley & Marcus, 1998; Vadde & Vijaya Kumar, 2000) excludes 
code blocks with high spatial frequency components, which are sensitive to inter-pixel 
interference induced by holographic data storage channels. For example, an ON pixel tends 
to be incorrectly detected as “0” when it is surrounded by OFF pixels and similarly an OFF 
pixel tends to be incorrectly detected as “1” when surrounded by ON pixels. Therefore, such 
patterns are forbidden under the low-pass constraint.  
In fact, the low-pass constraints can be quite strict so that the legal code patterns have good 
protection against high-frequency cutoff. This is, however, achieved at the cost of lower 
code rate because few code blocks satisfy this constraint. Table 1 lists five low-pass 
constraints and examples that violate these constraints. 
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Constraints Examples of forbidden patterns 

At least one ON/OFF pixel exists among 
eight nearest neighboring pixels of an 
ON/OFF pixel. 

 ,  

At least one ON/OFF pixel exists among 
four nearest neighboring pixels of an 
ON/OFF pixel. 

,   
At least two ON/OFF pixels exist among 
four nearest neighboring pixels of an 
ON/OFF pixel.  , , etc. 

No ON/OFF pixels are isolated either 
horizontally or vertically. 

, , ,  

No ON/OFF pixels are isolated either 
horizontally, vertically or diagonally.  

, , , , 

, , etc. 
Table 1. Low-pass constraints and examples of forbidden patterns. 
 
2.4 Constant-Weight Constraint 
The weight of a page is defined as the ratio of the number of ON pixels over the number of 
all pixels. With a constant-weight page, low-complexity correlation detection can be 
efficiently implemented (Coufal et al., 2000; Burr & Marcus, 1999; Burr et al., 1997). Two 
kinds of weight distribution garner interests of researchers. One is balanced weight, which 
makes the numbers of ON pixels and OFF pixels the same. The other is sparse weight, 
which makes the number of ON pixels less than that of OFF pixels. Balanced-weight 
modulation codes have higher code rates than sparse-weight modulation codes with the 
same code block size. However, due to imbalanced interference between ON pixels and OFF 
pixels, OFF pixels are favored as they cause lower level of interference. Therefore, sparse 
codes enable more data pages that can be superimposed at the same location on the 
recording medium by reducing optical exposure and increasing diffraction efficiency (the 
ratio of the power of the diffracted beam to the incident power of that beam) per pixel 
(Daiber et al., 2003). In addition, the probability of undesirable patterns can be reduced by 
decreasing ON pixel density. To be more exact, up to 15% improvement of total memory 
capacity can be achieved by sparse codes with the page weight decreased to 25% (King & 
Neifeld, 2000). 

 

2.5 Summary 
We have introduced four types of constraints for modulation codes commonly adopted in 
optical data storage: run-length limited, conservative, low-pass and constant-weight 
constraints. The run-length limited constraint focuses on the density of ON pixels. The 
conservative constraint considers the frequency of transitions between ON and OFF pixels. 
The low-pass constraint helps avoid those patterns vulnerable to inter-pixel interference 
effects in the holographic data storage systems. As for the constant-weight constraint, it 
enables a simple decoding scheme by sorting pixel intensities. Sparse modulation codes 
further decrease the probability of vulnerable patterns and increase the number of 
recordable pages. 

 
3. One-Dimensional Modulation Codes 
 

The modulation codes adopted by current optical data storage systems, i.e., CD, DVD, and 
Blu-ray disc, are developed according to the run-length limited constraint. As we mentioned 
previously, short runs result in small read-out signal power which tends to cause errors 
while long runs cause failure in time recovery. Therefore, a run-length limited code in the 
non-return-to-zero (NRZ) notation requires the number of “0”s between two “1”s to be at 
least d and at most k. The real bits recorded on the disc are then transformed from NRZ to 
non-return-to-zero inverted (NRZI) format consisting of sequence of runs which changes 
polarity when a “1” appears in the NRZ bit stream, as shown in Fig. 3. 
Under the EFM rule adopted by CD, 8-bit information sequences are transformed into 14-bit 
codewords using a table. The 14-bit codewords satisfy the (2, 10)-run-length limited 
constraint in the NRZ notation, that is, two “1”s are always separated by at least two “0”s 
and at most ten “0”s. To make sure bits across two adjacent codewords also comply with the 
run-length limited constraint, three emerging bits precede every 14-bit codeword. Although 
two merging bits are sufficient to meet this requirement, one additional bit is used in order 
to do DC-control, that is, make the running digital sum, which is the sum of bit value (±1) 
from the start of the disc up to the specified position, close to zero as much as possible. 
Therefore, total 17 bits are needed to store eight information bit in the EFM code. 
The EFMPlus code used in DVD translates sequences of eight information bit into 16-bit 
codewords satisfying the (2, 10)-run-length limited constraint. Unlike EFM, which is simply 
realized by a look-up table, EFMPlus code exploits a finite state machine with four states. 
No merging bits are required to promise no violation across codewords. In addition, to 
circumvent error propagation, the encoder is further designed to avoid state-dependent 
decoding.  
Blu-ray disc boosts data capacity by further shrinking physical bit size recorded on the disc, 
leading to severer interference than CD and DVD. In Blu-ray disc, the 17PP modulation code 
follows the (1, 7)-run-length limited constraint and exploits a new DC-control mechanism. 
The DC-control is realized by inserting DC-bits at certain DC-control points in the 
information stream. The polarity of the corresponding NRZI bit stream is flipped if a DC-bit 
is set as “1” while the polarity remains if a DC-bit is set as “0”. Therefore, the best DC-free 
bit stream that makes the running digital sum closest to zero can be obtained by properly 
setting the DC-bits.  The DC-control mechanism is illustrated in Fig. 4.  
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eight nearest neighboring pixels of an 
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decreasing ON pixel density. To be more exact, up to 15% improvement of total memory 
capacity can be achieved by sparse codes with the page weight decreased to 25% (King & 
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2.5 Summary 
We have introduced four types of constraints for modulation codes commonly adopted in 
optical data storage: run-length limited, conservative, low-pass and constant-weight 
constraints. The run-length limited constraint focuses on the density of ON pixels. The 
conservative constraint considers the frequency of transitions between ON and OFF pixels. 
The low-pass constraint helps avoid those patterns vulnerable to inter-pixel interference 
effects in the holographic data storage systems. As for the constant-weight constraint, it 
enables a simple decoding scheme by sorting pixel intensities. Sparse modulation codes 
further decrease the probability of vulnerable patterns and increase the number of 
recordable pages. 

 
3. One-Dimensional Modulation Codes 
 

The modulation codes adopted by current optical data storage systems, i.e., CD, DVD, and 
Blu-ray disc, are developed according to the run-length limited constraint. As we mentioned 
previously, short runs result in small read-out signal power which tends to cause errors 
while long runs cause failure in time recovery. Therefore, a run-length limited code in the 
non-return-to-zero (NRZ) notation requires the number of “0”s between two “1”s to be at 
least d and at most k. The real bits recorded on the disc are then transformed from NRZ to 
non-return-to-zero inverted (NRZI) format consisting of sequence of runs which changes 
polarity when a “1” appears in the NRZ bit stream, as shown in Fig. 3. 
Under the EFM rule adopted by CD, 8-bit information sequences are transformed into 14-bit 
codewords using a table. The 14-bit codewords satisfy the (2, 10)-run-length limited 
constraint in the NRZ notation, that is, two “1”s are always separated by at least two “0”s 
and at most ten “0”s. To make sure bits across two adjacent codewords also comply with the 
run-length limited constraint, three emerging bits precede every 14-bit codeword. Although 
two merging bits are sufficient to meet this requirement, one additional bit is used in order 
to do DC-control, that is, make the running digital sum, which is the sum of bit value (±1) 
from the start of the disc up to the specified position, close to zero as much as possible. 
Therefore, total 17 bits are needed to store eight information bit in the EFM code. 
The EFMPlus code used in DVD translates sequences of eight information bit into 16-bit 
codewords satisfying the (2, 10)-run-length limited constraint. Unlike EFM, which is simply 
realized by a look-up table, EFMPlus code exploits a finite state machine with four states. 
No merging bits are required to promise no violation across codewords. In addition, to 
circumvent error propagation, the encoder is further designed to avoid state-dependent 
decoding.  
Blu-ray disc boosts data capacity by further shrinking physical bit size recorded on the disc, 
leading to severer interference than CD and DVD. In Blu-ray disc, the 17PP modulation code 
follows the (1, 7)-run-length limited constraint and exploits a new DC-control mechanism. 
The DC-control is realized by inserting DC-bits at certain DC-control points in the 
information stream. The polarity of the corresponding NRZI bit stream is flipped if a DC-bit 
is set as “1” while the polarity remains if a DC-bit is set as “0”. Therefore, the best DC-free 
bit stream that makes the running digital sum closest to zero can be obtained by properly 
setting the DC-bits.  The DC-control mechanism is illustrated in Fig. 4.  
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Fig. 3. Actual patterns recorded on the disc through a change from the NRZ format to the 
NRZI format. 

 
Fig. 4. Illustration of DC control in the 17PP modulation code (Blu-ray Disc Association, 
2006). 

 
4. Block Codes for Holographic Data Storage 
 

A block code used in holographic data storage maps a sequence of information bits into a 2-
D code block in a one-to-one manner. The encoded blocks are tiled to create a whole page. 
The ratio of the number of information bits to the number of block pixels is called code rate. 
For example, a simple block code, named differential code, uses two pixels to represent one bit 
and achieves a code rate of 1/2. Its code blocks are illustrated in Fig. 5. Basically, higher 
code rate is preferred since less redundant pixels are included and more information is 
carried in the final modulated page. For this purpose, enlarging block size or changing the 
average intensity is applied (Kume et al., 2001). Fig. 6 illustrates a 5:9 block code with a code 
rate of 5/9 and a 6:9 block code with a code rate of 2/3. With two of nine pixels in a code 
block turned ON, there exist 369

2 C  possible code blocks. Therefore, these coded blocks are 
sufficient to represent five information bits, giving a 5:9 block code. Similarly, with three of 
nine pixels in a code block turned ON, there are 849

3 C  possible coded blocks, thus 
achieving a 6:9 block code. 
However, a larger block size may deteriorate decoding performance due to biased intensity 
throughout the block. Higher intensity also degrades the quality of reconstructed images 
according to the sparse code principle. On the other hand, increasing the number of possible 
code blocks (and thus code rate) often leads to more complex decoding. Hence, modulation 

code design is a trade-off among higher code rate, simpler decoder and satisfactory BER 
performance. 
Block codes indeed provide a simple mapping in encoding and decoding. However, the risk 
of violating constraints becomes significant when tiling multiple blocks together since illegal 
patterns may occur across the boundary of neighboring blocks. To circumvent this problem, 
additional constraints may be required. Unfortunately, more constraints can eliminate some 
patterns that would have been legitimate. To maintain the code rate, a larger block size is 
called for. 

Fig. 5. Differential code. 

 
Fig. 6. (a) A code block in the 5:9 block code and (b) a code block in the 6:9 block code. 

 
4.1 6:8 Balanced Block Code 
The 6:8 balanced block code (Burr et al., 1997) is one of the most common block modulation 
codes used in the holographic data storage systems. A group of six information bits is 
encoded into a 2×4 block with exactly four ON pixels and four OFF pixels, satisfying the 

balanced constraint. Since 708
4 C  is larger than 26=64, we choose 64 patterns from 70 code 

blocks and assign Gray code to these blocks . Correlation detection (Burr et al., 1997) is also 
proposed to decode such block code. In this method the correlations between the retrieved 
block and all code blocks are computed and the code block with the maximum correlation to 
the received block is declared the stored pattern. 

 
4.2 6:8 Variable-Weight Block Code 
The constant-weight constraint can have negative impacts on the achievable code rate of a 
modulation code. For instance, if we apply a sparse constant-weight constraint to a 2×4 
block code and require two ON pixels and six OFF pixels in every code block, then there are 
only 28 legal code blocks, giving four information bits and a low code rate of 1/2. 
The 6:8 variable-weight modulation code (Chen & Chiueh, 2007) is a sparse block 
modulation code with variable weight and relatively high code rate. Similar to the 6:8 
balanced block code, the variable-weight code encodes a group of six data bits into a 2×4 
block. There are 88

1 C  codewords with one ON pixel and 568
3 C  codewords with three ON 

pixels, enough to represent 6-bit information. This design decreases the weight of a 
modulated page from 50% to 34.38%. Therefore, the variable-weight code provides better 
BER performance with the same coding scheme as the 6:8 balanced code performance due to 
lower interference level from fewer ON pixels. 
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Block codes indeed provide a simple mapping in encoding and decoding. However, the risk 
of violating constraints becomes significant when tiling multiple blocks together since illegal 
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called for. 
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The 6:8 balanced block code (Burr et al., 1997) is one of the most common block modulation 
codes used in the holographic data storage systems. A group of six information bits is 
encoded into a 2×4 block with exactly four ON pixels and four OFF pixels, satisfying the 

balanced constraint. Since 708
4 C  is larger than 26=64, we choose 64 patterns from 70 code 

blocks and assign Gray code to these blocks . Correlation detection (Burr et al., 1997) is also 
proposed to decode such block code. In this method the correlations between the retrieved 
block and all code blocks are computed and the code block with the maximum correlation to 
the received block is declared the stored pattern. 

 
4.2 6:8 Variable-Weight Block Code 
The constant-weight constraint can have negative impacts on the achievable code rate of a 
modulation code. For instance, if we apply a sparse constant-weight constraint to a 2×4 
block code and require two ON pixels and six OFF pixels in every code block, then there are 
only 28 legal code blocks, giving four information bits and a low code rate of 1/2. 
The 6:8 variable-weight modulation code (Chen & Chiueh, 2007) is a sparse block 
modulation code with variable weight and relatively high code rate. Similar to the 6:8 
balanced block code, the variable-weight code encodes a group of six data bits into a 2×4 
block. There are 88

1 C  codewords with one ON pixel and 568
3 C  codewords with three ON 

pixels, enough to represent 6-bit information. This design decreases the weight of a 
modulated page from 50% to 34.38%. Therefore, the variable-weight code provides better 
BER performance with the same coding scheme as the 6:8 balanced code performance due to 
lower interference level from fewer ON pixels. 
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4.3 Codeword Complementing Block Modulation Code 
The codeword complementing block modulation code (Hwang et al., 2003) adopts an 
indirect encoding scheme so as to satisfy the pseudo-balanced constraint and thus achieve 
uniform spectrum of the modulated pages. The coding procedure consists of two steps: 
constant weight encoding and selective complementary encoding. The constant weight encoder 
maps input information bits into one-dimensional constant-weight codewords. Each one-
dimensional N-bit codeword forms a row in an (N+1)×N code matrix. Then, some rows are 
flipped according to the elements in the last row of the current code matrix. If a pixel in the 
last row is “1”, the selective complementary encoder flips the corresponding row. In this 
way, the final N×N modulated block has constant weight and relatively uniform spectrum 
in the Fourier plane. An example of the codeword complementing block modulation code 
encoding process with N=11 is illustrated in Fig. 7. 
The decoding procedure is simple. By calculating the average intensity of each row of a 
retrieved block, rows that have been complemented by the selective complementary encoder 
are easily identified and the polarities of the pixels are reversed. Moreover, the last row in 
the code matrix can be decided. Decoding the constant weight encoded blocks is achieved 
by first sorting the intensity of the received pixels in each codeword and marking proper 
number of pixels with higher intensity as “ON” and the other pixels of the codeword as 
“OFF.” Then information bits are obtained by inverse mapping of constant weight encoding. 

Fig. 7. Illustration of codeword complementing block modulation code encoding process 
(N=11). (a) Input information block, (b) constant weight encoded block and (c) selective 
complementary encoded block (Hwang et al., 2003).  

 
4.4 Conservative Codes 
Conservative codes are designed to satisfy the conservative constraint discussed previously. 
The coding scheme consists of a set of modulation blocks which is used as masks for the 
pixel-wise exclusive-OR operation with input information blocks. The encoded output 
blocks will be conservative of strength t, meaning that there exist no less than t transitions in 
each row and column. A method based on an error correcting code having minimum 
Hamming distance d and d≥2t-3 is proposed in (Vardy et al., 1996).  
First define a mapping φ: FnEn as follows: 

   xxx    (1) 

where Fn is the set of all binary column vectors and En is the subset of Fn consisting of all 
even-weight vectors; σ(x) is the 1-bit cyclic downward shift of a column vector x. Given two 
sets of codewords, C1 and C2, produced by two (t-2)-error correcting codes of length m and 
n, respectively, two sets of column vectors {a1, a2,…, an} and {b1, b2, …, bm} are obtained by 
inverse-mapping of φ-1(C1) and φ-1(C2). A theorem in (Vardy et al., 1996) states that for any 

vector x in Fn, if ix a  has less than t transitions, jx a  will have has at least t transitions 
for all j≠i.  
Next one constructs matrices A1,A2,An and B1,B2,Bm all with the size of m×n, from the 
aforementioned sets of column vectors, {a0, a1,…, an} and {b0, b1, …, bm}. Ai is formed by 
tiling ai n times horizontally while Bj is formed by tiling transposed bj m times vertically. 
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Finally, a modulation block is obtained by component-wise exclusive-OR of an Ai and a Bj. 
On the total, there are (m+1)×(n+1) such modulation blocks. With such modulation block 
construction, it can be shown that pixel-wise exclusive-OR operation of an input 
information block with a modulation block yields an modulated block that satisfies the 
conservative constraint with strength t. To indicate which modulation block is applied, 
several bits are inserted as an extra row or column to each recorded page.  

 
4.5 Block Code with 2-D Run-Length-Limited Constraint 
In 2-D run-length limited block codes, only the minimum distance (dmin) between ON pixels 
is enforced. Codebook design involves an exhaustive search of all possible binary blocks and 
prunes any blocks containing two ON pixels with a square distance smaller than dmin. A 
mapping between segments of information bits and these code blocks is then developed. 

Fig. 8. An example of 8×8 block with three all-ON sub-blocks (Malki et al., 2008). 
 
In (Malki et al., 2008), a fixed number of all-ON sub-blocks are present in each code block. 
This scheme lets the proposed code comply with the constant-weight constraint 
automatically. An example of three 2×2 all-ON sub-blocks is shown in Fig. 8. For an 8×8 
block without any constraints, there are (8-1)×(8-1)=49 possible positions for each sub-block, 
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4.3 Codeword Complementing Block Modulation Code 
The codeword complementing block modulation code (Hwang et al., 2003) adopts an 
indirect encoding scheme so as to satisfy the pseudo-balanced constraint and thus achieve 
uniform spectrum of the modulated pages. The coding procedure consists of two steps: 
constant weight encoding and selective complementary encoding. The constant weight encoder 
maps input information bits into one-dimensional constant-weight codewords. Each one-
dimensional N-bit codeword forms a row in an (N+1)×N code matrix. Then, some rows are 
flipped according to the elements in the last row of the current code matrix. If a pixel in the 
last row is “1”, the selective complementary encoder flips the corresponding row. In this 
way, the final N×N modulated block has constant weight and relatively uniform spectrum 
in the Fourier plane. An example of the codeword complementing block modulation code 
encoding process with N=11 is illustrated in Fig. 7. 
The decoding procedure is simple. By calculating the average intensity of each row of a 
retrieved block, rows that have been complemented by the selective complementary encoder 
are easily identified and the polarities of the pixels are reversed. Moreover, the last row in 
the code matrix can be decided. Decoding the constant weight encoded blocks is achieved 
by first sorting the intensity of the received pixels in each codeword and marking proper 
number of pixels with higher intensity as “ON” and the other pixels of the codeword as 
“OFF.” Then information bits are obtained by inverse mapping of constant weight encoding. 

Fig. 7. Illustration of codeword complementing block modulation code encoding process 
(N=11). (a) Input information block, (b) constant weight encoded block and (c) selective 
complementary encoded block (Hwang et al., 2003).  

 
4.4 Conservative Codes 
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The coding scheme consists of a set of modulation blocks which is used as masks for the 
pixel-wise exclusive-OR operation with input information blocks. The encoded output 
blocks will be conservative of strength t, meaning that there exist no less than t transitions in 
each row and column. A method based on an error correcting code having minimum 
Hamming distance d and d≥2t-3 is proposed in (Vardy et al., 1996).  
First define a mapping φ: FnEn as follows: 
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where Fn is the set of all binary column vectors and En is the subset of Fn consisting of all 
even-weight vectors; σ(x) is the 1-bit cyclic downward shift of a column vector x. Given two 
sets of codewords, C1 and C2, produced by two (t-2)-error correcting codes of length m and 
n, respectively, two sets of column vectors {a1, a2,…, an} and {b1, b2, …, bm} are obtained by 
inverse-mapping of φ-1(C1) and φ-1(C2). A theorem in (Vardy et al., 1996) states that for any 

vector x in Fn, if ix a  has less than t transitions, jx a  will have has at least t transitions 
for all j≠i.  
Next one constructs matrices A1,A2,An and B1,B2,Bm all with the size of m×n, from the 
aforementioned sets of column vectors, {a0, a1,…, an} and {b0, b1, …, bm}. Ai is formed by 
tiling ai n times horizontally while Bj is formed by tiling transposed bj m times vertically. 
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Finally, a modulation block is obtained by component-wise exclusive-OR of an Ai and a Bj. 
On the total, there are (m+1)×(n+1) such modulation blocks. With such modulation block 
construction, it can be shown that pixel-wise exclusive-OR operation of an input 
information block with a modulation block yields an modulated block that satisfies the 
conservative constraint with strength t. To indicate which modulation block is applied, 
several bits are inserted as an extra row or column to each recorded page.  

 
4.5 Block Code with 2-D Run-Length-Limited Constraint 
In 2-D run-length limited block codes, only the minimum distance (dmin) between ON pixels 
is enforced. Codebook design involves an exhaustive search of all possible binary blocks and 
prunes any blocks containing two ON pixels with a square distance smaller than dmin. A 
mapping between segments of information bits and these code blocks is then developed. 

Fig. 8. An example of 8×8 block with three all-ON sub-blocks (Malki et al., 2008). 
 
In (Malki et al., 2008), a fixed number of all-ON sub-blocks are present in each code block. 
This scheme lets the proposed code comply with the constant-weight constraint 
automatically. An example of three 2×2 all-ON sub-blocks is shown in Fig. 8. For an 8×8 
block without any constraints, there are (8-1)×(8-1)=49 possible positions for each sub-block, 
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denoted by filled circles. The value of dmin determines the available number of legal code 
blocks. 

 
5. Strip Codes for Holographic Data Storage 
 

In contrast to block codes, which create modulated pages by tiling code blocks 
independently, strip codes exploit a finite state machine to encode information streams 
taking adjacent blocks into consideration. The name of “strip” comes from dividing a whole 
page into several non-overlapping strips and encoding/decoding within each strip 
independently. To decode such modulation codes, a sliding block decoder (Coufal et al., 2000) 
is required. Such a decoder has a decoding window containing preceding (memory), current 
and subsequent (anticipation) blocks.  
Strip codes provide an advantage of ensuring that the modulated patterns across borders of 
blocks can still comply with the prescribed constraints if the coding scheme is well designed. 
However, additional constraints for patterns across borders of strips are still required. These 
additional constraints are called strip constraints (Ashley & Marcus, 1998; Coufal et al., 2000). 
Another advantage of strip codes is their better error-rate performance due to the fact that 
adjacent modulated blocks are used to help decode the current block.  
In terms of the decoding procedure, strip codes need decoders with higher complexity when 
compared with block codes. Another concern for strip codes is that using a finite state 
machine as the encoder may fail to achieve the 2-D capacity C (Ashley & Marcus, 1998) 
defined as 

  
hw

whNC
wh

,loglim 2

, 


,
 (4) 

where N(h,w) is the number of legal code blocks on an h×w block.  
Strip codes solve problems of violating constraints across block borders by considering 
adjacent modulated blocks during encoding/decoding operation of the current block. As 
such, better conformance to the constraints and BER performance are attained at the cost of 
higher encoding/decoding complexity.  

 
5.1 8:12 Balanced Strip Code 
The 8:12 strip modulation code proposed in (Burr et al.,1997) is a typical balanced strip code. 
A page is first divided into non-overlapping strips with height of two pixels. Balanced code 
blocks with size of 2×6 are prepared in advance with minimum Hamming distance of four. 
During encoding, a finite state machine with four states is used to map 8-bit information 
into a 2×6 block based on the current state and input information bits, achieving a code rate 
of 2/3. The process goes on until a complete modulated page is obtained. As for decoding, 
the Viterbi decoder can be adopted for better performance. The 8:12 modulation code is 
block-decodable and can be decoded using the correlation detection. However, the error rate 
performance will not be as good as those using Viterbi decoders. 

 
5.2 9:12 Pseudo-Balanced Strip Code 
The 9:12 pseudo-balanced code (Hwang et al., 2002) is a strip code which maps 9-bit 
information into a 12-bit codeword with a code rate of ¾. It is similar to the 8:12 balanced 

modulation code, but with higher code rate by relaxing the balanced constraint to allow 
certain degree of codeword imbalance. The 9:12 pseudo-balanced code maps information 
bits to codewords according to a trellis with eight diverging and eight merging states. Each 
branch represents a set of 64 pseudo-balanced 12-bit codewords with minimum Hamming 
distance of four. These codewords are divided into 16 groups. The most-significant three 
information bits of the current data word and the most-significant three bits of the previous 
data word indicate the states in the previous stage and the current stage, respectively. The 
codeword set is determined uniquely by these two states. The least-significant six bits of the 
current information word are used to select a codeword within the set.  
The decoding is similar to Viterbi decoder for trellis codes (Proakis, 2001). First, the best 
codeword with respect to the acquired codeword for each codeword set is found. The index 
of that best codeword and the associate distance are recorded. Then the Viterbi algorithm 
finds the best state sequence using those aforementioned distances as branch metrics. In 
(Hwang et al., 2002), it is shown that the 9:12 pseudo-balanced code, though with a higher 
code rate, provides similar performance as the 8:12 balanced strip code.  

 
5.3 2-D Low-Pass Codes 
Previously, several low-pass constraints which prohibit some particular patterns with high 
spatial frequency components are introduced. Strip codes are better suited for compliance 
with these constraints since they can control patterns across block borders more easily. 
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Table 2. Encoder for the third constraint in Table 1 (Ashley & Marcus, 1998).  
 

Code block 00 
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11 
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Information 
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Table 3. Decoder for the third constraint in Table 1 (Ashley & Marcus, 1998). 
Besides, the high-frequency patterns may not only appear within strips but also across 
strips. Strip constraint is therefore very important when we require a low-pass property over 
the whole modulated page. Below is an example of the strip constraint applying to a strip 
code that satisfies the low-pass constraint. Given a forbidden pattern in Table 1 with height 
L, a strip constraint banning the top/bottom m top/bottom rows of this forbidden pattern to 
appear in the top/bottom of the current strip, where m is between L/2 and L. With this extra 
strip constraint, it is guaranteed that the low-pass constraint will be satisfied across strip 
boundary. Table 2 and Table 3 are an example of encoder/decoder designed for the third 
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denoted by filled circles. The value of dmin determines the available number of legal code 
blocks. 

 
5. Strip Codes for Holographic Data Storage 
 

In contrast to block codes, which create modulated pages by tiling code blocks 
independently, strip codes exploit a finite state machine to encode information streams 
taking adjacent blocks into consideration. The name of “strip” comes from dividing a whole 
page into several non-overlapping strips and encoding/decoding within each strip 
independently. To decode such modulation codes, a sliding block decoder (Coufal et al., 2000) 
is required. Such a decoder has a decoding window containing preceding (memory), current 
and subsequent (anticipation) blocks.  
Strip codes provide an advantage of ensuring that the modulated patterns across borders of 
blocks can still comply with the prescribed constraints if the coding scheme is well designed. 
However, additional constraints for patterns across borders of strips are still required. These 
additional constraints are called strip constraints (Ashley & Marcus, 1998; Coufal et al., 2000). 
Another advantage of strip codes is their better error-rate performance due to the fact that 
adjacent modulated blocks are used to help decode the current block.  
In terms of the decoding procedure, strip codes need decoders with higher complexity when 
compared with block codes. Another concern for strip codes is that using a finite state 
machine as the encoder may fail to achieve the 2-D capacity C (Ashley & Marcus, 1998) 
defined as 
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where N(h,w) is the number of legal code blocks on an h×w block.  
Strip codes solve problems of violating constraints across block borders by considering 
adjacent modulated blocks during encoding/decoding operation of the current block. As 
such, better conformance to the constraints and BER performance are attained at the cost of 
higher encoding/decoding complexity.  

 
5.1 8:12 Balanced Strip Code 
The 8:12 strip modulation code proposed in (Burr et al.,1997) is a typical balanced strip code. 
A page is first divided into non-overlapping strips with height of two pixels. Balanced code 
blocks with size of 2×6 are prepared in advance with minimum Hamming distance of four. 
During encoding, a finite state machine with four states is used to map 8-bit information 
into a 2×6 block based on the current state and input information bits, achieving a code rate 
of 2/3. The process goes on until a complete modulated page is obtained. As for decoding, 
the Viterbi decoder can be adopted for better performance. The 8:12 modulation code is 
block-decodable and can be decoded using the correlation detection. However, the error rate 
performance will not be as good as those using Viterbi decoders. 

 
5.2 9:12 Pseudo-Balanced Strip Code 
The 9:12 pseudo-balanced code (Hwang et al., 2002) is a strip code which maps 9-bit 
information into a 12-bit codeword with a code rate of ¾. It is similar to the 8:12 balanced 

modulation code, but with higher code rate by relaxing the balanced constraint to allow 
certain degree of codeword imbalance. The 9:12 pseudo-balanced code maps information 
bits to codewords according to a trellis with eight diverging and eight merging states. Each 
branch represents a set of 64 pseudo-balanced 12-bit codewords with minimum Hamming 
distance of four. These codewords are divided into 16 groups. The most-significant three 
information bits of the current data word and the most-significant three bits of the previous 
data word indicate the states in the previous stage and the current stage, respectively. The 
codeword set is determined uniquely by these two states. The least-significant six bits of the 
current information word are used to select a codeword within the set.  
The decoding is similar to Viterbi decoder for trellis codes (Proakis, 2001). First, the best 
codeword with respect to the acquired codeword for each codeword set is found. The index 
of that best codeword and the associate distance are recorded. Then the Viterbi algorithm 
finds the best state sequence using those aforementioned distances as branch metrics. In 
(Hwang et al., 2002), it is shown that the 9:12 pseudo-balanced code, though with a higher 
code rate, provides similar performance as the 8:12 balanced strip code.  

 
5.3 2-D Low-Pass Codes 
Previously, several low-pass constraints which prohibit some particular patterns with high 
spatial frequency components are introduced. Strip codes are better suited for compliance 
with these constraints since they can control patterns across block borders more easily. 
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Table 3. Decoder for the third constraint in Table 1 (Ashley & Marcus, 1998). 
Besides, the high-frequency patterns may not only appear within strips but also across 
strips. Strip constraint is therefore very important when we require a low-pass property over 
the whole modulated page. Below is an example of the strip constraint applying to a strip 
code that satisfies the low-pass constraint. Given a forbidden pattern in Table 1 with height 
L, a strip constraint banning the top/bottom m top/bottom rows of this forbidden pattern to 
appear in the top/bottom of the current strip, where m is between L/2 and L. With this extra 
strip constraint, it is guaranteed that the low-pass constraint will be satisfied across strip 
boundary. Table 2 and Table 3 are an example of encoder/decoder designed for the third 
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constraint in Table 1. Using a finite state machine with four states, the encoder transforms 
three information bits into a 2×2 code block based on the current state. The code block and 
the next state are designated in the Table 2. The three information bits are easily decoded 
from the single retrieved block. The mapping manner is shown in Table 3. 

 
6. Variable-Length Modulation Codes for Holographic Data Storage 
 

In Sections 4 and 5, we have introduced block codes and strip codes for holographic data 
storage, respectively. The code rates of the modulation codes we discussed are generally 
fixed. This kind of modulation codes is called fixed-length since they map a fixed number of 
information bits into a fixed-size code block. To allow for more flexibility in modulation 
codes, variable-length modulation codes were proposed. With such modulation codes, a 
variable number of information bits are mapped into a variable-size code block. Despite its 
advantage of more freedom in choosing legal code blocks that comply with certain 
constraints, variable-length modulation codes need a more elaborate decoding scheme to 
correctly extract code blocks without causing error propagation.  
A variable-length modulation code designed to obey the low-pass constraint is proposed in 
(Pansatiankul & Sawchuk, 2003). It eliminates patterns which contain high spatial frequency 
not only within blocks but also across block borders. With this strict constraint and a given 
code rate, variable-length modulation codes produce better modulated pages than fixed-
length modulation codes. Instead of preventing forbidden patterns such as those listed in 
Table 1, (Pansatiankul & Sawchuk, 2003) sets maximum numbers of ON pixels surrounding 
an OFF pixel. The notation of this variable-length modulation code is ([m1, m2, …], [n1, n2, 
…]; [k1, k2, …]; α, β), where mi and ni are the size of 2-D blocks, ki is the length of one-
dimensional input information bits, α is a maximum number of ON pixels in the four 
connected neighbor positions surrounding an OFF pixel and β is another maximum number 
of ON pixels in the rest four of eight nearest neighbor positions surrounding an OFF pixel. 
Parts of the modulated page produced by (4,[1,2,3];[2,4,6];2,3) and (1,[4,6,8]; [2,3,4];3,0) 
variable-length modulation codes are given in Fig. 9. Rectangles indicate 3×3 blocks with 
highest allowable number of ON-pixels around an OFF-pixel according to the respective (α, 
β) constraints. 
The encoding process is the same as those in conventional block codes, giving a one-to-one 
manner between information bits and code blocks. In contrast to the straightforward 
encoding scheme, the decoding has the challenge of correctly determining the size of the 
current code block to do inverse-mapping. A decoding scheme for the (4,[1,2,3];[2,4,6];2,3) 
variable-length modulation code is provided in (Pansatiankul & Sawchuk, 2003). We first 
grab a 4×1 retrieved block and compare it to all 4×1 code blocks corresponding to 2-bit 
information. Note that in (4,[1,2,3];[2,4,6];2,3) variable-length modulation code, all 4×2 and 
4×3 coded patterns are designed to have an all-OFF last column. If we cannot find a 4×1 
code block that is close to the retrieved block and the next column contains only OFF pixels, 
we enlarge the retrieved block size from 4×1 to 4×2 and compare it to all 4×2 code blocks 
corresponding to 4-bit information. If still we cannot find any good 4×2 code block, then an 
error is declared. Similarly, we can check the second column to the right of the current 4×2 
retrieved block for all OFF pixels and enlarge the retrieved block to 4×3 if the check turns 
out positive. Then compare the extended retrieved block to all 4×3 code blocks 

corresponding to 6-bit information. Similarly, an error is declared when no code block 
matches the retrieved block. 

Fig. 9. Sample modulated page produced by two variable-length modulation codes 
(Pansatiankul & Sawchuk, 2003). 

 
7. Conclusion 
 

In this chapter, modulation codes for optical data storage have been discussed. At first, four 
types of constraints are introduced, including run-length limited, conservative, low-pass 
and constant-weight constraints. Since high spatial frequency components tend to be 
attenuated during recording/reading procedures and long runs of OFF pixels increase 
difficulty in tracking, the former three types of constraints are proposed to avoid these 
adverse situations as much as possible. On the other hand, the constant-weight constraint 
gives modulated pages that are easier to decode. In addition, experiments indicate that 
better performance can be obtained for modulation codes that have sparse weight. 
Based on the constraints, several modulation codes are discussed. The one-dimensional 
modulation codes adopted in current optical storage systems, i.e., EFM for CD, EFMPlus for 
DVD and 17PP for Blu-ray disc, are first introduced. All of these modulation codes are 
developed for the run-length limited constraint.  
Next, we focus on 2-D modulation codes for holographic data storage systems. They are 
classified into block codes and strip codes. Information bits and code blocks have a one-to-
one relationship in block codes whose encoder/decoder can be simply realized by look-up 
tables. However, block codes cannot guarantee that patterns across block borders comply 
with the required constraints. This shortcoming can be circumvented by strip codes, which 
produce code blocks based on not only the input information bits but also neighboring 
modulated blocks. A finite state machine and a Viterbi decoder are typical schemes for the 
encoding and decoding of the strip codes, respectively.  
Variable-length modulation codes, in contrast to fixed-length modulation codes, do not fix 
the number of input information bits or the code block size. The relaxed design increases the 
number of legal patterns and provides better performance than the fixed-length modulation 
codes with the same code rate. However, error propagation problems necessitate a more 
elaborated decoder scheme.  
Finally, comparisons among different types of modulation codes introduced in this chapter 
are listed in Table 4 and Table 5. 
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constraint in Table 1. Using a finite state machine with four states, the encoder transforms 
three information bits into a 2×2 code block based on the current state. The code block and 
the next state are designated in the Table 2. The three information bits are easily decoded 
from the single retrieved block. The mapping manner is shown in Table 3. 

 
6. Variable-Length Modulation Codes for Holographic Data Storage 
 

In Sections 4 and 5, we have introduced block codes and strip codes for holographic data 
storage, respectively. The code rates of the modulation codes we discussed are generally 
fixed. This kind of modulation codes is called fixed-length since they map a fixed number of 
information bits into a fixed-size code block. To allow for more flexibility in modulation 
codes, variable-length modulation codes were proposed. With such modulation codes, a 
variable number of information bits are mapped into a variable-size code block. Despite its 
advantage of more freedom in choosing legal code blocks that comply with certain 
constraints, variable-length modulation codes need a more elaborate decoding scheme to 
correctly extract code blocks without causing error propagation.  
A variable-length modulation code designed to obey the low-pass constraint is proposed in 
(Pansatiankul & Sawchuk, 2003). It eliminates patterns which contain high spatial frequency 
not only within blocks but also across block borders. With this strict constraint and a given 
code rate, variable-length modulation codes produce better modulated pages than fixed-
length modulation codes. Instead of preventing forbidden patterns such as those listed in 
Table 1, (Pansatiankul & Sawchuk, 2003) sets maximum numbers of ON pixels surrounding 
an OFF pixel. The notation of this variable-length modulation code is ([m1, m2, …], [n1, n2, 
…]; [k1, k2, …]; α, β), where mi and ni are the size of 2-D blocks, ki is the length of one-
dimensional input information bits, α is a maximum number of ON pixels in the four 
connected neighbor positions surrounding an OFF pixel and β is another maximum number 
of ON pixels in the rest four of eight nearest neighbor positions surrounding an OFF pixel. 
Parts of the modulated page produced by (4,[1,2,3];[2,4,6];2,3) and (1,[4,6,8]; [2,3,4];3,0) 
variable-length modulation codes are given in Fig. 9. Rectangles indicate 3×3 blocks with 
highest allowable number of ON-pixels around an OFF-pixel according to the respective (α, 
β) constraints. 
The encoding process is the same as those in conventional block codes, giving a one-to-one 
manner between information bits and code blocks. In contrast to the straightforward 
encoding scheme, the decoding has the challenge of correctly determining the size of the 
current code block to do inverse-mapping. A decoding scheme for the (4,[1,2,3];[2,4,6];2,3) 
variable-length modulation code is provided in (Pansatiankul & Sawchuk, 2003). We first 
grab a 4×1 retrieved block and compare it to all 4×1 code blocks corresponding to 2-bit 
information. Note that in (4,[1,2,3];[2,4,6];2,3) variable-length modulation code, all 4×2 and 
4×3 coded patterns are designed to have an all-OFF last column. If we cannot find a 4×1 
code block that is close to the retrieved block and the next column contains only OFF pixels, 
we enlarge the retrieved block size from 4×1 to 4×2 and compare it to all 4×2 code blocks 
corresponding to 4-bit information. If still we cannot find any good 4×2 code block, then an 
error is declared. Similarly, we can check the second column to the right of the current 4×2 
retrieved block for all OFF pixels and enlarge the retrieved block to 4×3 if the check turns 
out positive. Then compare the extended retrieved block to all 4×3 code blocks 

corresponding to 6-bit information. Similarly, an error is declared when no code block 
matches the retrieved block. 

Fig. 9. Sample modulated page produced by two variable-length modulation codes 
(Pansatiankul & Sawchuk, 2003). 

 
7. Conclusion 
 

In this chapter, modulation codes for optical data storage have been discussed. At first, four 
types of constraints are introduced, including run-length limited, conservative, low-pass 
and constant-weight constraints. Since high spatial frequency components tend to be 
attenuated during recording/reading procedures and long runs of OFF pixels increase 
difficulty in tracking, the former three types of constraints are proposed to avoid these 
adverse situations as much as possible. On the other hand, the constant-weight constraint 
gives modulated pages that are easier to decode. In addition, experiments indicate that 
better performance can be obtained for modulation codes that have sparse weight. 
Based on the constraints, several modulation codes are discussed. The one-dimensional 
modulation codes adopted in current optical storage systems, i.e., EFM for CD, EFMPlus for 
DVD and 17PP for Blu-ray disc, are first introduced. All of these modulation codes are 
developed for the run-length limited constraint.  
Next, we focus on 2-D modulation codes for holographic data storage systems. They are 
classified into block codes and strip codes. Information bits and code blocks have a one-to-
one relationship in block codes whose encoder/decoder can be simply realized by look-up 
tables. However, block codes cannot guarantee that patterns across block borders comply 
with the required constraints. This shortcoming can be circumvented by strip codes, which 
produce code blocks based on not only the input information bits but also neighboring 
modulated blocks. A finite state machine and a Viterbi decoder are typical schemes for the 
encoding and decoding of the strip codes, respectively.  
Variable-length modulation codes, in contrast to fixed-length modulation codes, do not fix 
the number of input information bits or the code block size. The relaxed design increases the 
number of legal patterns and provides better performance than the fixed-length modulation 
codes with the same code rate. However, error propagation problems necessitate a more 
elaborated decoder scheme.  
Finally, comparisons among different types of modulation codes introduced in this chapter 
are listed in Table 4 and Table 5. 
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 Block code Strip codes 
One-to-one manner between information 
bits and code blocks Yes No 

Constraint satisfaction across block borders Difficult Simple 
Encoding/decoding complexity Low High 

Table 4. Comparison between block codes and strip codes. 
 

 Fixed-length Variable-length 
Freedom of choosing legal pattern Low High 
Error propagation problem during decoding No Yes 
BER performance with the same code rate Poor Good 
Code rate with the same BER performance Low High 

Table 5. Comparison between fixed-length and variable-length modulation codes 
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