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1. Introduction

The interest in the development of climbing robots has grown rapidly in the last years. Climb-
ing robots are useful devices that can be adopted in a variety of applications, such as main-
tenance and inspection in the process and construction industries. These systems are mainly
adopted in places where direct access by a human operator is very expensive, because of the
need for scaffolding, or very dangerous, due to the presence of an hostile environment. The
main motivations are to increase the operation efficiency, by eliminating the costly assembly
of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing
robots have already been developed, and other are under development, for applications rang-
ing from cleaning to inspection of difficult to reach constructions.
A wall climbing robot should not only be light, but also have large payload, so that it may
reduce excessive adhesion forces and carry instrumentations during navigation. These ma-
chines should be capable of travelling over different types of surfaces, with different inclina-
tions, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006);
Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for vari-
ous environment conditions and to be self-contained.
Up to now, considerable research was devoted to these machines and various types of exper-
imental models were already proposed (according to Chen et al. (2006), over 200 prototypes
aimed at such applications had been developed in the world by the year 2006). However,
we have to notice that the application of climbing robots is still limited. Apart from a couple
successful industrialized products, most are only prototypes and few of them can be found
in common use due to unsatisfactory performance in on-site tests (regarding aspects such as
their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting
the system performance of climbing robots and also suggest solutions to these problems.
The major two issues in the design of wall climbing robots are their locomotion and adhesion
methods.
With respect to the locomotion type, four types are often considered: the crawler, the wheeled,
the legged and the propulsion robots. Although the crawler type is able to move relatively
faster, it is not adequate to be applied in rough environments. On the other hand, the legged
type easily copes with obstacles found in the environment, whereas generally its speed is
lower and requires complex control systems.
Regarding the adhesion to the surface, the robots should be able to produce a secure gripping
force using a light-weight mechanism. The adhesion method is generally classified into four
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groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless,
recently new methods for assuring the adhesion, based in biological findings, were proposed.
The vacuum type principle is light and easy to control though it presents the problem of
supplying compressed air. An alternative, with costs in terms of weight, is the adoption of
a vacuum pump. The magnetic type principle implies heavy actuators and is used only for
ferromagnetic surfaces. The thrust force type robots make use of the forces developed by
thrusters to adhere to the surfaces, but are used in very restricted and specific applications.
Bearing these facts in mind, this chapter presents a survey of different applications and tech-
nologies adopted for the implementation of climbing robots locomotion and adhesion to sur-
faces, focusing on the new technologies that are recently being developed to fulfill these ob-
jectives. The chapter is organized as follows. Section two presents several applications of
climbing robots. Sections three and four present the main locomotion principles, and the
main "conventional" technologies for adhering to surfaces, respectively. Section five describes
recent biological inspired technologies for robot adhesion to surfaces. Section six introduces
several new architectures for climbing robots. Finally, section seven outlines the main conclu-
sions.

2. Climbing Robots Applications

Climbing robots are mainly adopted in places where direct access by a human operator is very
expensive, because of the need for scaffolding, or very dangerous, due to the presence of an
hostile environment.
In the last decades different applications have been envisioned for these robots, mainly in the
areas of cleaning, technical inspection, maintenance or breakdown diagnosis in dangerous
environments, or in the outside of tall buildings and human made constructions.
Several climbing robots have already been developed for the following application areas:

• Inspection: bridges (Balaguer et al. (2005); Robert T. Pack and Kawamura (1997)), nu-
clear power plants (Savall et al. (1999); Yan et al. (1999)), pipelines (Park et al. (2003)),
wind turbines (Rodriguez et al. (2008)), solar power plants (Azaiz (2008)), for scanning
the external and internal surfaces of gas or oil tanks (Longo and Muscato (2004b); Park
et al. (2003); Sattar et al. (2002); Yan et al. (1999)), offshore platforms (Balaguer et al.
(2005)), and container ships (Mondal et al. (2002));

• Testing: performing non-destructive tests in industrial structures (Choi et al. (2000);
Kang et al. (2003)), floating production storage oil tanks (Sattar et al. (2008; 2006)),
planes (Backes et al. (1997); Chen et al. (2005); Robert T. Pack and Kawamura (1997))
and ships (Armada et al. (2005); Robert T. Pack and Kawamura (1997); Sánchez et al.
(2006));

• Civil construction: civil construction repair and maintenance (Balaguer et al. (2005));

• Cleaning: cleaning operations in sky-scrapers (Derriche and Kouiss (2002); Elkmann et
al. (2002); Gao and Kikuchi (2004); Yan et al. (1999); Zhang et al. (2004); Zhu et al. (2003)),
for cleaning the walls and ceilings of restaurants, community kitchens and food prepa-
ration industrial environments (Cepolina et al. (2004)) and cleaning ship hulls (Fernán-
dez et al. (2002));

• Transport: for the transport of loads inside buildings (Minor et al. (2000));

• Security: for reconnaissance in urban environments (Elliot et al. (2006); Tummala et al.
(2002)) and in anti-terrorist activities (Li et al. (2007)).
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Finally, their application has also been proposed in the education (Bell and Balkcom (2006);
Berns et al. (2005)) and human care (Balaguer et al. (2005)) areas and in the prevention and fire
fighting actions (Chen et al. (2006); Nishi (1991)).

3. Principles of Locomotion

In this section are analyzed the characteristics of the four main locomotion technologies im-
plemented in climbing robots, namely the crawler, wheeled, legged and propulsion types.

3.1 Locomotion using Sliding Segments (Crawling)

With respect to the locomotion type, the simpler alternatives often make use of sliding seg-
ments, with suction cups (Backes et al. (1997); Cepolina et al. (2004); Choi et al. (2000); Elk-
mann et al. (2002); Savall et al. (1999); Zhang et al. (2004); Zhu et al. (2003)) or permanent
magnets (Yan et al. (1999)) that grab to surfaces, in order to move (Figure 1). The main disad-
vantage of this solution is the difficulty in crossing cracks and obstacles.

Fig. 1. ROBICEN III climbing robot (Savall et al. (1999))

3.2 Locomotion using Wheels

A second form of locomotion is to adopt wheels (Gao and Kikuchi (2004); Longo and Muscato
(2004b); Park et al. (2003); Sánchez et al. (2006); Yan et al. (1999)) (Figure 2). These robots
can achieve high velocities. However, some of the wheeled robots that use the suction force
for adhesion to the surface, need to maintain an air gap between the surface where they are
moving over and the robot base. This technique may create problems either with the loss of
pressure, or with the friction with the surface, namely if the air gap is too small, or if some
material is used to prevent the air leak (Hirose et al. (1991)).

3.3 Locomotion using Legs

A third form of locomotion consists in the adoption of legs. Legged climbing robots, equipped
with suction cups, or magnetic devices on the feet, have the disadvantage of low speed and re-
quire complex control systems, but allow the creation of a strong and stable adhesion force to
the surface. These machines also have the advantage of easily coping with obstacles or cracks
found in the environment (Hirose et al. (1991)). Structures having from two up to eight legs
are predominant for the development of these tasks. The adoption of a larger number of limbs
supplies redundant support and, frequently, raises the payload capacity and safety. These ad-
vantages are achieved at the cost of increased control complexity (regarding leg coordination),
size and weight. Therefore, when size and efficiency are critical, a structure with minimum
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Fig. 2. CAD representation of an wheeled climbing robot (left) and its real aspect
(right) (Sánchez et al. (2006))

weight and complexity is more adequate. For these reasons the biped structure is an excellent
candidate (Figure 3). Presently there are many biped robots with the ability of climbing over
surfaces with different slopes (Armada et al. (2005); Balaguer et al. (2005); Brockmann (2006);
Krosuri and Minor (2003); Resino et al. (2006); Robert T. Pack and Kawamura (1997); Shores
and Minor (2005); Tummala et al. (2002); Xiao et al. (2003; 2004)).

Fig. 3. RAMR1 biped climbing robot (Tummala et al. (2002))

When is needed an increased safety or payload capability are adopted quadrupeds (Armada
et al. (2005); Daltorio et al. (2005); Hirose and Arikawa (2000); Hirose et al. (1991); Kang et al.
(2003); Kennedy et al. (2006)) (such as MRWALLSPECT III, presented in Figure 4), or robots
with a larger number of legs (Armada et al. (2005); Inoue et al. (2006); Li et al. (2007)). The
control and leg coordination of these larger robots is, however, more complicated.

3.4 Locomotion through Propulsion

The propulsion type robots make use of the forces developed by propellers to move and to
adhere to the surfaces (Nishi (1991)), but are used in very restricted and specific applications.
Nishi (1991) developed a climbing robot using the thrust force of propellers to locomote (Fig-
ure 5). The contact between the robot and the surface is maintained though a large number
of non-actuated wheels. The thrust force is inclined to the wall side to produce the frictional
force between the wheels and the surface. Since strong wind is predicted on the wall surfaces
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Fig. 4. MRWALLSPECT III quadruped climbing robot (Kang et al. (2003))

of high buildings, the direction of thrust force is controlled to compensate the wind force act-
ing on the robot. A frictional force augmentor is also considered, which is an airfoil to produce
the lift force directed to the wall side by the cross wind. Nevertheless, is has been shown that
slipping of this robot occurs for abrupt changes in the wind direction or speed.

Fig. 5. A conceptual model of a propeller based wall climbing robot (Nishi (1991))

4. Technologies for Adhering to Surfaces

The most important work in developing a climbing robot project is to design a proper ad-
hesion mechanism to ensure that the robot sticks to various wall surfaces reliably without
sacrificing mobility (Elliot et al. (2006)).
In this section are reviewed the main aspects of the four adhesion methods usually adopted
in climbing robots: suction force, magnetic, gripping to the surface and thrust force type. The
next section will review in some depth the new methods for assuring the adhesion, based in
biological findings.

4.1 Suction Force

The most frequent approach to guarantee the robot adhesion to a surface is to use the suction
force. The vacuum type principle requires light mechanisms and is easy to control. This oper-
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ating principle allows climbing over arbitrarily surfaces, made of distinct types of materials,
and can be implemented by using different strategies. Usually, more than one vacuum cup
is used in each feet in order to prevent loss of pressure (and adhesion force) due to surface
curvature or irregularities (Chen et al. (2006); Hirose et al. (1991)). Nevertheless, this type of
attachment has some associated drawbacks. The suction adhesion mechanism requires time
to develop enough vacuum to generate sufficient adhesion force. This delay may reduce the
speed at which the robot can locomote. Another issue associated with suction adhesion is that
any gap in the seal can cause the robot to fall. This drawback limits the suction cup adhesion
mechanism to relatively smooth, nonporous and non-cracked surfaces. Finally, the suction
adhesion mechanism relies on the ambient pressure to stick to a wall and, therefore, is not
useful in space applications, because the ambient pressure in space is essentially zero (Menon
et al. (2004)). Another problem is the supply of compressed air. The vacuum can be gener-
ated through the Venturi Principle (Balaguer et al. (2005); Choi et al. (2000); Elkmann et al.
(2002); Savall et al. (1999); Zhang et al. (2004)), or through a vacuum pump, either on-board
the robot (Cepolina et al. (2004); Gao and Kikuchi (2004); Kang et al. (2003); Li et al. (2007);
Tummala et al. (2002); Yan et al. (1999)), or external to it (Zhu et al. (2003)).
The RAMR1 is an example of a biped climbing robot, adopting suction cups for the adhesion
to the surface, being the vacuum generated through an on-board vacuum pump (Figure 3).
When the vacuum is generated through the Venturi Principle, or through vacuum pumps,
it makes climbing robots noisy. A solution for this noise problem has been proposed (Li et
al. (2007)). Vacuum pumps on-board the robot increase the weight and the costs of a robot,
also due to additional vacuum tubes, muffles, valves, and other necessary equipment. This
solution causes some level of steady, not negligible, energy consumption. Vacuum pumps
external to the robot imply the need for a tether cable, with the inherent problems of the
interference of the umbilical cord for the robot with its mobility and dynamics (Chen et al.
(2006)). Hence, it is desirable to avoid an active vacuum generation and a separate installation
for vacuum transportation.
Bearing these ideas in mind, Brockmann proposed the use of passive suction cups (see Fig-
ure 6) because they are low cost, simple and robust and allow a light-weight construction
of climbing robots. However, although being a promising approach, in order to construct a
proper system, several aspects related to the behavior of passive suction cups have to be better
understood (Brockmann (2006)).

Fig. 6. Passive suction cups with (left) and without (right) a strap (Brockmann (2006))

An alternative way to create the adhesion is to adopt air aspiration on a sliding chamber and
then to move the robot through wheels (Longo and Muscato (2004a;b)). A variation of this
adhesion method is presented by Elliot et al. (2006) and implemented in the City-Climber
robot. These researchers designed a device based on the aerodynamic attraction produced
by a vacuum rotor package which generates a low pressure zone enclosed by a chamber.
The vacuum rotor package consists of a vacuum motor with impeller and exhaust cowling to

www.intechopen.com



A Survey of Technologies and Applications for Climbing Robots Locomotion and Adhesion 7

direct air flow, as shown in Figure 6, left. It is essentially a radial flow device which combines
two types of air flow. The high speed rotation of the impeller causes the air to be accelerated
toward the outer perimeter of the rotor, away from the center radially. Air is then pulled along
the spin axis toward the device creating a low-pressure region, or partial vacuum region if
sealed adequately, in front of the device. With the exhaust cowling, the resultant exhaust of
air is directed toward the rear of the device, actually helping to increase the adhesion force by
thrusting the device forward.

Fig. 7. Vacuum rotor package to generate aerodynamic attraction (left) and exploded view of
the City-Climber prototype-II (right) (Elliot et al. (2006))

The experimental test demonstrated that the City-Climber with the module weight of 1 kg
(Figure 6, right), can handle 4.0 kg additional payload when moving on brick walls.
Recently, a new technology, named Vortex Regenerative Air Movement (VRAM), was
patented (Reinfeld and Illingworth (2002)). This adhesion system adopts vortex to generate
high adhesion forces with a low power consumption, and allows the robot to travel on both
smooth and rough surfaces. However, the adhesion force generated by the vortex technology
is not enough to support large payload (Elliot et al. (2006)) and it is difficult for the robot to
make wall-to-wall, and wall-to-ceiling transitions.

4.2 Magnetic Force

The magnetic adhesion is an alternative principle adopted for creating the adhesion force, in
specific cases where the surface allows it. Magnetic attachment can be highly desirable due
to its inherent reliability. This method is fast, but implies the adoption of heavy actuators.
Despite that, magnetic attachment is useful only in specific environments where the surface is
ferromagnetic and, therefore, for most applications it represents an unsuitable option (Menon
et al. (2004)).
The most frequent solution is the use of electromagnets (Armada et al. (2005); Shores and
Minor (2005)). Another possibility is the use of permanent magnets to adhere to the surface,
combined with wheels or tracks to move along it (Mondal et al. (2002); Sánchez et al. (2006);
Yan et al. (1999)). The main advantages of this last solution are the fact that there is not the
need to spend energy for the adhesion process, it will not occur any loss of adhesion in the
event of a power failure and permanent magnets are suitable for application in hazardous
environments (Berns et al. (2005); Mondal et al. (2002)). A third solution is to use magnetic
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wheels that allow to implement the locomotion and the adhesion at the same time (Park et al.
(2003)).
The adoption of permanent magnets makes the robot more reliable and safer but there is a
drawback: it is more difficult to control the adhesion and release of the robot to the surfaces
in which it must work (Yan et al. (1999).

4.3 Gripping to the Surface

The previous adhesion techniques make the robots suitable for moving on flat walls and ceil-
ings. However, it is difficult for them to move on irregular surfaces or surfaces like wire
meshes.
In order to surpass this difficulty, some robots climb through man made structures or through
natural environments, by gripping themselves to the surface where they are moving. These
robots typically exhibit grippers (Balaguer et al. (2005)) (Figure 8), or other special designed
gripping systems (Balaguer et al. (2005); Bell and Balkcom (2006); Inoue et al. (2006); Kennedy
et al. (2006); Linder et al. (2005)), at the extremity of their limbs.
Examples of this kind of robots, are the ROMA 1 robot (Figure 8), that has two legs with
grippers at their ends, for travelling in complex metallic-based environment (Balaguer et al.
(2005)).

Fig. 8. ROMA1 robot climbing a beam-based structure (Balaguer et al. (2005))

Another example, is the ASIBOT robot (Figure 9), able to move between different points
(Docking Stations) of the rooms through an innovative grasping method based on special
connectors and a bayonet fitting (Balaguer et al. (2005)).
The Lemur IIb quadruped (Figure 10), intended for free climbing in steep terrain found in
space exploration (Kennedy et al. (2006)), climbs over irregular surfaces just like if it was
escalating a rock wall.
Finally, the ASTERISK robot (Inoue et al. (2006)) (Figure 11) is equipped with a special mech-
anism at the extremities of its limbs in order to grab and move on surfaces like wire meshes.
It is also worth mentioning, the toy climbing robot developed at the University of Dart-
mouth (Figure 12). A major design goal was to keep the project as simple as possible, making
feasible for the general public to buy an inexpensive kit for building the robot. Based on these
ideas, the robot was built of hobby servo-motors and LEGO pieces, and is capable of climbing
a wall of pegs (Bell and Balkcom (2006); Linder et al. (2005)).
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Fig. 9. ASIBOT climbing robot locomotion principle (Balaguer et al. (2005))

Fig. 10. LEMUR IIb robot climbing a test wall (Kennedy et al. (2006))

Fig. 11. ASTERISK robot hanging from a grid-like structure (Inoue et al. (2006))
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Fig. 12. The robot on the climbing wall (Bell and Balkcom (2006))

4.4 Thrust Force Adhesion

The prototypes that make use of this adhesion principle have been developed for working in
submerged applications. These machines mainly allow to perform in-service inspection of the
floor and walls of oil, petroleum and chemical storage tanks while submerged in the liquid,
thereby saving the cost of emptying, cleaning and manually inspecting the tank (Sattar et al.
(2002)).
The RobTank climbing robot, developed by Sattar et al. (2002), can enter oil and chemical
storage tanks through 300 mm, or more, diameter openings in their roof, travel on the floor,
rotate through any angle within the full 360o, and change surfaces from the floor to the wall
and back to the floor. Regarding the locomotion, two servomotors provide the drive for the
wheels of the vehicle while one propeller, mounted on top of the vehicle, provides the thrust
force for adhesion to the wall. This way, this vehicle is able to climb on all types of surfaces.
Latter, Sattar et al. (2006) developed a climbing robot for Non-Destructive Testing of the in-
ternal tank wall and floor surfaces on Floating Production Storage Oil (FPSO) (see Figure 13,
left).
This robot is equipped with two independent, speed controlled, thrusters that move the robot
in a horizontal plane in the forward and reverse direction or rotate it to face in any direction.
After contact with a wall, thrust forces generated by these two thrusters guarantee the adhe-
sion to the wall, while actuated wheels move the robot on the wall. The robot manoeuvres
freely on the wall and can be driven down from a wall to the floor of the tank and back on to
it (see Figure 13, right).
A variable buoyancy tank was latter developed to change buoyancy around neutral by ob-
taining volume change (Sattar et al. (2008)). The tank enables the robot to swim to a given
depth and to be parked on the floor with negative buoyancy when inspecting the floor.

5. Biological Inspired Adhesion Principles

In spite of all the developments made up to now, the proposed technologies still need to be
improved and no definite and stable solution has yet been found. Therefore, developments
continue in this research area.
In the last years a considerable inspiration has been gathered from climbing animals (Daltorio
et al. (2005); Menon et al. (2004)). Insects, beetles, skinks, anoles, frogs and geckos have been
studied for their sticking abilities (Figure 14). Beetles and Tokay geckos adhere to surfaces
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Fig. 13. Conceptual design of FPSO swimming and wall climbing robot (left) and wall-
climbing robot climbing a tank glass wall without buoyancy tank (Sattar et al. (2006))

using patches of microscopic hairs that provide a mechanism for dry adhesion by van der
Waals forces. Cockroaches climb a wide variety of substrates using their active claws, passive
spines, and smooth adhesive pads. Inspired by these animals mechanisms, new methods for
assuring the adhesion, based in biological findings, have recently been proposed.

Fig. 14. Gecko foot while climbing a glass surface (Tørrissen (Last Acessed: October 1, 2009))

Using bio-inspired adhesive technology, robots could potentially be developed to traverse a
wide variety of surfaces, regardless of the presence of air pressure or the specific material
properties of the substrate. Robots using such adhesives might some day be able to climb
uneven, wet surfaces.
Bearing these ideas in mind, this section is organized as follows. The next subsection presents
some climbing robots that use gecko inspired synthetic dry adhesives. The following subsec-
tion introduces climbing robots using micro-structured polymer feet in order to adhere to the
surfaces. Lastly, the third subsection, describes some climbing robots using microspines.

5.1 Climbing Robots Using Gecko Inspired Synthetic Dry Adhesives

The ability of Geckos to climb surfaces, whether wet or dry, smooth or rough, has attracted
people attention for decades. According to Menon et al. (2004), by means of compliant
micro/nano-scale high aspect ratio beta-keratin structures at their feet, geckos manage to ad-
here to almost any surface with a controlled contact area. It has been shown that adhesion
is mainly due to molecular forces such as van der Waals forces. The geckot’s ability to stick
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to surfaces lies in their feet, specifically the very fine hairs on its toes, as can be seen if Fig-
ure 15. Those hairs are roughly 5 microns in diameter, and atop each of these micro-fibers sit
hundreds of nano-fibers (spatulae) which are 200 nanometers in diameter. There are billions
of these tiny fibers which make contact with the surface and create a significant collective sur-
face area of contact. The hairs have physical properties which let them bend and conform
to a wide variety of surface roughness, meaning that the adhesion arises from the structure
of these hairs themselves. Also, because of their hydrophobic nature, the gecko fibers are
self-cleaning.

Fig. 15. Detail of the gecko foot (Wikipedia (Last Acessed: October 1, 2009))

Since dry adhesion is caused by van der Waals forces, surface chemistry is not of great impor-
tance. This means that dry adhesion will work on almost any surface.
Dry adhesion is more robust than the suction adhesion mechanism. If the dry adhesion pad
encounters a crack or gap, there will still be adhesion on the parts of the pad that have made
contact. This behavior allows a robot, using dry adhesion, to climb on a wider variety of
surfaces. Also, since dry adhesion does not rely heavily on the surface material or the atmo-
sphere, it is suitable for use in the vacuum of space as well as inside liquid environments
Another benefit of dry adhesion is the speed at which attachment and detachment is possible.
The attachment is nearly instantaneous as is the detachment, and they both only depend on
the force applied. This leads to almost no delay in the locomotion, thus allowing very fast
locomotion speeds. Furthermore, it is not necessary to control the timing of the attachment as
critically as with the electromagnetic attachment. There is only the need to exert a pressure
against the surface, so the attachment is passive in nature and, therefore, simple to control.
Inspired by these ideas, Menon et al. (2004) presented two alternative methods to replicate the
structure of the micro-hairs present at the geckos feet.
The first one is based on the development of a synthetic adhesive. Much like the real gecko
material it is expected that, in the future, the synthetic adhesive will be super-hydrophobic
and, therefore, will be self-cleaning allowing for long lifetime robots. The nature of the adhe-
sion force is such that no energy is required to maintain attachment after it has been initiated.
Therefore, a robot using dry adhesion could hang on a wall indefinitely with no power con-
sumption.
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In order to test these synthetic dry fibrillar adhesives inspired in the geckos feet, Menon et al.
(2004) developed two different vehicles to show the feasibility of the climbing mechanisms:
the first one using legged wheels and the second robot consisting in a tread vehicle with cus-
tomized tire. The legged-wheeled machine was latter improved by Murphy et al. (2006), giv-
ing rise to a small-scale agile wall climbing robot, named Waalbot. The Waalbot is able to
navigate over smooth surfaces of any orientation, including vertical and inverted surfaces,
taking advantage of adhesive elastomer materials for attachment (Figure 16, left). This robot
can climb and steer in any orientation using two actuated legs with rotary motion and two
passive revolute joints at each foot. The presented prototype can climb 90o slopes at a speed
of 6 cm/s and steer to any angle.

Fig. 16. Photographs of prototype Tri-Foot Waalbot climbing a 90o vertical surface (left) (Mur-
phy et al. (2006)) and of Geckobot (right) (Unver et al. (2006))

More recently, Menon and Sitti (2005) developed two other climbing robots with different
concepts. The first robot, called the Rigid Gecko Robot (RGR), was designed for operating
both in Earth and space environments. Reliability and robustness were the most important re-
quirements for the RGR. It was a relatively large robot actuated by conventional motors. The
second robot, called the Compliant Gecko Robot (CGR), was designed using unconventional
technologies, allowing its miniaturization up to a few centimeters scale and was designed for
terrestrial applications. The CGR prototype had a composite structure and its Gecko mimick-
ing locomotion relies on shape memory alloy wire actuators. Unver et al. (2006) developed
the climbing robot Geckobot (Figure 16, right) based on these two. The robot has an overall
weight of 100 grams (including the electronic board) and featuring a peeling mechanism for
the robot feet, since this aspect is very crucial for climbing robots power-efficient detachment
(as seen in geckos). Geckobot can climb up to 85o stably on Plexiglas surfaces. However, it
was verified that beyond this angle stability diminishes abruptly.
The fibrillar adhesive presented by Menon et al. (2004) is still under development and does
not achieve yet as high performances as other soft and dry adhesives. Synthetic gecko adhe-
sive was tested and compared to soft adhesives such as Silly Puttyï£¡ and flat polydimethyl
siloxane (PDMS). It was experimentally verified that Silly Puttyï£¡ exerts the highest normal
adhesive force and, therefore, it was chosen for testing their robotic application (Menon and
Sitti (2005)). For testing the Geckobot it was used the PDMS adhesive (Unver et al. (2006)).
Although PDMS is a stable material, it is degraded and contaminated by dust and dirt. There-
fore, after some time it looses its adhesive characteristics. This problem would be improved by
using micro-patterned PDMS, in order to have self-cleaning characteristics like geckos (Unver
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et al. (2006)). For testing the Waalbot, Murphy et al. (2006) equiped the robot feet with polymer
adhesive material (Smooth-On Vytaflex 10), which shares many performance characteristics
with the envisioned dry adhesive material. As the adhesives used on the feet of the robot
gather dust and other contaminants their performance degrades quickly. Therefore, these ad-
hesives are not suitable for dirty outdoor environments, walking across indoor floors, or for
long term tasks.

5.2 Climbing Robots Using Micro-structured Polymer Feet

Daltorio et al. (2005) converted Mini-Whegsï£¡ (Figure 17, left), a small robot that uses four
wheel-legs for locomotion, to a wall-walking robot with compliant, conventional-adhesive
feet (5.4 cm by 8.9 cm, 87 grams). The feet are bonded to contact areas on the ends of the spokes
and the flexibility of the feet acts as a hinge between the feet and spokes. The feet contact the
substrate, bend as the hub turns, peel off the substrate gradually, and spring back to their
initial position for the next contact. These researchers report that the Mini-Whegsï£¡ 7 can
climb glass walls and walk on ceilings, and perform transitions between orthogonal surfaces,
using standard pressure sensitive adhesives. The main problem with this approach (although
some tests were made to find the best foot design and adhesive tape contact area (Daltorio
et al. (2007))) is that after some runs, the robot falls with increasing frequency as the tape
becomes dirty or damaged.

Fig. 17. Mini-Whegsï£¡ 7 on vertical glass (a) with office tape feet and (b) with micro-structured
polymer feet and 25 cm long tail (tail not shown) (Daltorio et al. (2006))

Further developments of this robot, reported by Daltorio et al. (2006), lead to the replacement
of the feet with a novel, reusable insect-inspired adhesive (Figure 17, right). Two polymer sam-
ples were tested: a smooth one and an insect-inspired surface-structured one. The reusable
structured polymer adhesive presents less tenacity than the previous adhesive, resulting in
an inferior climbing capability. However, after the addition of a tail, changing to off-board
power, and widening the feet, the robot was capable of ascending vertical surfaces using the
novel adhesive. Comparing with the previous approach, the polymer feet retained their trac-
tion/adhesive properties for several hours of testing and could be renewed by washing with
soap and water.
While the current robot only walks on clean smooth glass, a practical climbing robot should
be able to traverse rougher surfaces as well. This requires adhesives to be resistant to dust and
to oils. Additionally, alternative attachment mechanisms, such as insect-like claws or spines,
could be added to take advantage of surface roughness.
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Based on these ideas, Wei et al. (2006) added claws, spines, and compliant ankles to Mini-
Whegs, which allowed the machine to climb on soft or porous surfaces. The new front wheel-
legs have each three spokes, with a foot (tarsus) connected at the end of each spoke.

5.3 Climbing Robots Using Microspines

According to what has been described, none of the above approaches is suitable for porous,
and typically dusty, building surfaces such as brick, concrete, stucco or stone.
Inspired by the mechanisms observed in some climbing insects and spiders, Asbeck et al.
(2006) developed a technology that enables robots to scale flat, hard vertical surfaces, includ-
ing concrete, brick, stucco and masonry, without using suction or adhesives. The scheme
employs arrays of miniature spines that catch on surface asperities. Unlike the claws of a cat,
small spines do not need to penetrate surfaces. Instead, they exploit small asperities (bumps
or pits) on the surface.
According to these authors, as spines become smaller it is possible to ascend smoother sur-
faces because the density of useable spine/asperity contacts increases rapidly. However, it is
needed a large number of spines because each contact sustains only a limited force. Therefore,
the key design principles behind climbing with microspines are to ensure that (i) as many
spines as possible will independently attach to the asperities, and that (ii) the total load is
distributed among the spines as uniformly as possible.
The above principles have been demonstrated in a 0.4 kg climbing robot, named Spinybot, that
readily climbs hard surfaces such as concrete, brick, stucco and sandstone walls (Asbeck et al.
(2006)). The robot has six limbs, and each one is an under-actuated mechanism powered using
a single actuator in combination with passive compliance, which is responsible for engaging
and disengaging the spines. A seventh actuator produces a ratcheting motion that alternately
advances the legs in each of two tripods up the wall. Each feet of the Spinybot consists of
ten planar toe mechanisms with two spines per toe. The mechanisms are created using a
rapid prototyping process that permits hard and soft materials to be combined into a single
structure. As shown in Figure 18, each toe includes several hard members, connected by soft
links, with the spines embedded in the hard plastic. Each toe mechanism can deflect and
stretch independently of its neighbors. This maximizes the probability that multiple spines,
on each foot, will find asperities where they can "grab" and share the robot load.

6. New Architectures for Climbing Robots

New architectures have also been proposed for climbing robots in order to allow them to
surpass different specific problems and applications.
In most cases, large, clumsy gantries are necessary to guarantee access for cleaning staff, or
climbers are hired at great cost, to clean the glass of the inner side of atriums and glass roofs.
Therefore, this is an application suited to the use of climbing robots. However, the main
problem is finding a means to safeguard the robot against falling. Moreover, it is extremely
difficult for technical personnel to reach the robot and repair it, in the event of malfunctioning.
With these ideas on mind, Elkmann et al. (2002) proposed a balloon-based robot for cleaning
the inner side of atriums and glass roofs (Figure 19). The solution proposed by the researchers
for automating this particular task, consists of a two-legged walking mechanism, with suction
cups in contact with the glass, being the balloon guided by the walking mechanism along the
roof.
This system consists of a cigar-formed, helium-filled balloon with a walking mechanism and
a cleaning tool located at the front end of the balloon. At the other end of the balloon are
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Fig. 18. View of upper section of Spinybot on concrete wall and detailed view of a toe on the
foot (Asbeck et al. (2006))

Fig. 19. Balloon-based robot consisting of a walking mechanism and a cleaning tool (Elkmann
et al. (2002))
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modules like the control box, a water tank, and other systems for weight compensation. The
balloon serves to lift the walking mechanism and the cleaning tool up to the glass surface.
The robot cannot fall down and, if it is somehow damaged, the robot can be recovered by
personnel by simply pulling the cables to the balloon down.
Shores and Minor (2005) presented a morphic bipedal robot with hybrid locomotion, combin-
ing the benefits of rolling, walking, and climbing locomotion (Figure 20).

Fig. 20. A hybridized robot transitioning between climbing, walking, and rolling (Shores and
Minor (2005))

The design provides these locomotion primitives without the addition of actuators, beyond
those required for climbing through the use of a disklike exoskeleton that provides a rolling
surface. The feet are equipped with electromagnets that allow the robot to anchor each foot to
a ferrous climbing surface. These magnetic feet are centered in the footprint of the exoskeleton
to distribute the force of the magnet over a larger area and enable the magnets to support
larger moments than they could normally.
Degani et al. (2007) introduced a climbing robot mechanism, which uses dynamic movements
to climb between two parallel vertical walls (Figure 21). This robot relies on its own internal
dynamic motions to gain height. One benefit of this mechanism is that it allows climbing with
only a single actuated degree of freedom.

Fig. 21. Two typical motions of the dynamic climbing robot (the main body is traced over
time) (a) Purely dynamic (single support) and (b) Double support. (Degani et al. (2007))
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7. Conclusions

Considering the severity of many environments where there is the need for human labor, the
exploitation of wall-climbing robots has undoubtedly a broad prospect. The main intended
applications of these machines ranges from cleaning to inspection of difficult to reach con-
structions.
Up to now, considerable research was devoted to these machines and over 200 prototypes
aimed at such applications had been developed in the world by the year 2006. Nonetheless,
the application of climbing robots is still limited. Apart from a couple successful industrial-
ized products, most are only prototypes and few of them can be found in common use due to
unsatisfactory performance in on-site tests.
To make wall-climbing robots a popular replacement of manual work, indispensable prereq-
uisites are an high reliability and high efficiency, and, on the other hand, affordable prices.
The fulfilment of these requirements is still far, which indicates that there is yet a long way of
development and improvement.
Given these considerations, this chapter presented a survey of several climbing robots, adopt-
ing different technologies for locomotion and for the adhesion to surfaces. Several possible
applications of the presented robots have also been discussed. A special emphasis has been
given on the new technologies (mainly biological inspired) that are presently being developed
for the robots adhesion to surfaces.
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