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1. Introduction 

1.1 Hydroxyapatite 
Living bone consists of 69 wt % of inorganic substances whose main component is 
hydroxyapatite (Ca10(PO4)6(OH)2), 22 wt% of organic substances whose main component is 
collagen and 9 wt% of water (Park & Lakes, 1992; Bhat, 2005). It has a skillful woven 
structure constructed with collagen fiber on which hydroxyapatite nano-crystals are 
precipitated. Hydroxyapatite is a main inorganic component of living bone and has 
attracted much attention as a biomaterial with high bioaffinity. It has high affinity to living 
bone (Jarcho et al., 1977; LeGeros & LeGeros, 1993; LeGeros & LeGeros, 2008; Oonishi et al., 
2008) and cells (Deligianni et al., 2001;  Rizzi et al., 2001) and an ability to absorb biopolymer 
such as protein (Tiselius et al., 1956). From these properties, hydroxyapatite is considered as 
one of the most important biomaterials. 

 
1.2  Bioactivity 
Generally, most of artificial materials implanted into living body are encapsulated with non-
calcified fibrous tissue and isolated from surrounding tissue (Park & Lakes, 1992). This 
reaction is a normal protective reaction of living body against foreign substances. 
In early 1970s, Hench et al. discovered that glass in the system Na2O-CaO-SiO2-P2O5, called 
Bioglass®, spontaneously bonds to living bone without encapsulated with fibrous tissues 
(Hench et al., 1971; Hench, 1991; Hench & Andersson, 1993). Since the discovery of 
Bioglass®, ceramic materials such as glass-ceramic Ceravital® containing crystalline 
hydroxyapatite (Gross et al., 1993), sintered hydroxyapatite (Jarcho et al., 1977; LeGeros & 
LeGeros, 1993), glass-ceramics Cerabone® A-W containing crystalline hydroxyapatite and 
wollastonite (CaO·SiO2) (Kokubo et al., 1982; Kokubo, 1990a; Kokubo, 1993a; Kokubo, 2008), 
glass-ceramic Bioverit® containing crystalline hydroxyapatite and phlogopite 
((Na,K)Mg3(AlSiO10)F2) (Höland & Vogel, 1993) and sintered β-tricalcium phosphate 
(3CaO·P2O5) (Rejda et al., 1977) have been found to bond to living bone. 
Most of the ceramics mentioned above forms hydroxyapatite layer on their surface and can 
avoid the protective reaction in living body (Hench, 1991; Höland et al., 1985; Kitsugi et al., 
1987; Kitsugi et al., 1989; Kokubo, 1990d; Ohura et al., 1991; Ohtsuki et al., 1991; Neo et al., 
1992; Neo et al., 1993). This hydroxyapatite layer consists of minute crystals containing 
carbonate ions in chemical composition (Kokubo et al., 1990b) and is similar to 
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hydroxyapatite which composes living bone (Kim et al., 1999; Kim et al., 2000). On the 
hydroxyapatite layer, osteoblast actively proliferates and differentiates (Neo et al., 1992; 
Loty et al., 2000). As a result, a living bone is formed on the hydroxyapatite layer and the 
materials spontaneously bond to the surrounding living bone thorough the layer. This 
special property of the materials is termed bioactivity among researchers of ceramic-based 
biomaterials. 

 
1.3 Simulated body fluid 
Kokubo et al. invented a simulated body fluid (SBF) with ion concentrations nearly equal to 
those of human blood plasma (Kokubo et al., 1990c; Kokubo  & Takadama, 2006; Takadama 
& Kokubo, 2008). It became possible to imitate the reaction of hydroxyapatite formation in 
living body by using SBF. Kokubo, Yao and Tanahashi applied the biomimetic reaction in 
SBF and formed hydroxyapatite thin film on the surface of various kinds of substrates 
(Tanahashi et al., 1992; Kokubo et al., 1993b; Tanahashi et al., 1994a; Tanahashi et al., 1994b, 
Tanahashi et al., 1994c; Tanahashi et al., 1995a; Tanahashi et al., 1995b). 

 
1.4 Apatite Nuclei 
When the pH or temperature of SBF is raised, fine particles of calcium phosphate are 
precipitated from the fluid. Yao discovered that the fine particles show high activity for 
forming hydroxyapatite in SBF and he named the particles Apatite Nuclei (Yao et al., 2006). 
The function of Apatite Nuclei is very attractive for development of various kinds of 
biomaterials and environmental materials in micron or nano scale. 
Applying the function of Apatite Nuclei, the authors fabricated bioactive polyethylene (PE)-
Apatite Nuclei composite (Yabutsuka et al., 2007) and titanium (Ti)-Apatite Nuclei 
composite (Yabutsuka et al., 2008a). They soaked porous PE or Ti plate formed many 
micropores by sulfuric acid treatment in SBF and precipitated Apatite Nuclei in the pores by 
raising pH or tremperature of SBF. By soaking in SBF, Apatite Nuclei precipitated in the 
pores induce hydroxyapatite and the composites show high bioactivity. Also, formed 
hydroxyapatite showed high adhesive strength to the composite by a mechanical 
interlocking effect. 
The authors also fabricated hydroxyapatite micropattern by using Apatite Nuclei (Yao, 2000; 
Yamaguchi et al., 2007). Resist pattern was developed on a cathode for electrophoretic 
deposition and a polytetrafluoroethylene (PTFE) film was set on the cathode. Then 
electrophoretic deposition was performed with a suspension of Apatite Nuclei in ethanol. In 
this process, Apatite Nuclei were deposited on a porous PTFE film so as to transcribe the 
resist pattern. The substrate was soaked in SBF and hydroxyapatite was selectively induced 
on Apatite Nuclei. As a result, apatite pattern whose resolution was as high as the resist 
pattern was fabricated. 

 
1.5 Fabrication of hydroxyapatite microcapsule by biomimetic method 
In living body, hydroxyapatite is not recognized as a foreign material and can avoid 
protective reaction of living body because hydroxyapatite induces bonelike hydroxyapatite 
from body fluid and forms its layer in living body. Therefore, microcapsules possessing high 
bioaffinity can be formed by using hydroxyapatite and the hydroxyapatite microcapsules 
are thought to be useful to drug delivery systems. 

 

Yao et al. proposed that hydroxyapatite microcapsules can be fabricated by using 
biomimetic method (Adachi, Takeuchi, Ozawa & Yao, 2002). For the first process, Apatite 
Nuclei are attached to the surfaces of microspheres. For the second process, the 
microspheres are soaked in SBF. By this treatment, hydroxyapatite is induced from the 
Apatite Nuclei and grows over the whole surface area of the microspheres. As a result, 
hydroxyapatite is coated on the whole surface of the microspheres and hydroxyapatite 
microcapsules can be obtained. By this method, it is expected to encapsulate various kinds 
of microspheres with hydroxyapatite. 

 
2. Fabrication of hollow hydroxyapatite microcapsule 
 

Hollow microcapsule is expected to have many applications to the chemotherapy because it 
can be filled with various medical agents. In this chapter, we fabricated hollow 
hydroxyapatite microcapsules by using biomimetic method (Tabe et al., 2007). First, Apatite 
Nuclei were attached to the surfaces of polylactic acid (PLA) microspheres used as molds of 
hollow microcapsules. When these PLA microspheres were soaked in SBF, hydroxyapatite 
was induced from Apatite Nuclei on the PLA microspheres and covered the whole surface 
of the PLA microspheres. As a result, encapsulated PLA microspheres with hydroxyapatite 
were fabricated. Finally, the PLA was dissolved out in acetone and hollow hydroxyapatite 
microcapsules were fabricated. 

 
2.1 Materials & Methods 
 

2.1.1 Preparation of SBF 
SBF was prepared by dissolving reagent-grade NaCl, NaHCO3, KCl, K2HPO4·3H2O, 
MgCl2·6H2O, CaCl2 and Na2SO4 in ultrapure water with the composition as shown in Table 
1 and buffered at pH 7.40 with tris(hydroxymethyl)aminomethane ((CH2OH)3CNH2) and 
hydrochloric acid at 36.5 °C (Kokubo & Takadama, 2006). 
 

  Ion concentration / mmol·dm-3 
  SBF Blood plasma 
Na+ 142.0 142.0 
K+ 5.0 5.0 
Ca2+ 2.5 2.5 
Mg2+ 1.5 1.5 
Cl– 147.8 103.0 
HCO3– 4.2 27.0 
HPO42– 1.0 1.0 
SO42– 0.5 0.5 

Table 1. Ion concentrations of simulated body fluid (SBF) and human blood plasma. 

 
2.1.2 Precipitation of Apatite Nuclei 
The pH of SBF was raised to pH 8.50 by dissolving (CH2OH)3CNH2 at 25.0 °C, and 
precipitated Apatite Nuclei in the SBF, which were collected by filtration using a 50 nm 
polytetrafluoroethylene (PTFE) membrane filter (Millipore, USA) and washed with distilled 
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hydroxyapatite which composes living bone (Kim et al., 1999; Kim et al., 2000). On the 
hydroxyapatite layer, osteoblast actively proliferates and differentiates (Neo et al., 1992; 
Loty et al., 2000). As a result, a living bone is formed on the hydroxyapatite layer and the 
materials spontaneously bond to the surrounding living bone thorough the layer. This 
special property of the materials is termed bioactivity among researchers of ceramic-based 
biomaterials. 

 
1.3 Simulated body fluid 
Kokubo et al. invented a simulated body fluid (SBF) with ion concentrations nearly equal to 
those of human blood plasma (Kokubo et al., 1990c; Kokubo  & Takadama, 2006; Takadama 
& Kokubo, 2008). It became possible to imitate the reaction of hydroxyapatite formation in 
living body by using SBF. Kokubo, Yao and Tanahashi applied the biomimetic reaction in 
SBF and formed hydroxyapatite thin film on the surface of various kinds of substrates 
(Tanahashi et al., 1992; Kokubo et al., 1993b; Tanahashi et al., 1994a; Tanahashi et al., 1994b, 
Tanahashi et al., 1994c; Tanahashi et al., 1995a; Tanahashi et al., 1995b). 

 
1.4 Apatite Nuclei 
When the pH or temperature of SBF is raised, fine particles of calcium phosphate are 
precipitated from the fluid. Yao discovered that the fine particles show high activity for 
forming hydroxyapatite in SBF and he named the particles Apatite Nuclei (Yao et al., 2006). 
The function of Apatite Nuclei is very attractive for development of various kinds of 
biomaterials and environmental materials in micron or nano scale. 
Applying the function of Apatite Nuclei, the authors fabricated bioactive polyethylene (PE)-
Apatite Nuclei composite (Yabutsuka et al., 2007) and titanium (Ti)-Apatite Nuclei 
composite (Yabutsuka et al., 2008a). They soaked porous PE or Ti plate formed many 
micropores by sulfuric acid treatment in SBF and precipitated Apatite Nuclei in the pores by 
raising pH or tremperature of SBF. By soaking in SBF, Apatite Nuclei precipitated in the 
pores induce hydroxyapatite and the composites show high bioactivity. Also, formed 
hydroxyapatite showed high adhesive strength to the composite by a mechanical 
interlocking effect. 
The authors also fabricated hydroxyapatite micropattern by using Apatite Nuclei (Yao, 2000; 
Yamaguchi et al., 2007). Resist pattern was developed on a cathode for electrophoretic 
deposition and a polytetrafluoroethylene (PTFE) film was set on the cathode. Then 
electrophoretic deposition was performed with a suspension of Apatite Nuclei in ethanol. In 
this process, Apatite Nuclei were deposited on a porous PTFE film so as to transcribe the 
resist pattern. The substrate was soaked in SBF and hydroxyapatite was selectively induced 
on Apatite Nuclei. As a result, apatite pattern whose resolution was as high as the resist 
pattern was fabricated. 

 
1.5 Fabrication of hydroxyapatite microcapsule by biomimetic method 
In living body, hydroxyapatite is not recognized as a foreign material and can avoid 
protective reaction of living body because hydroxyapatite induces bonelike hydroxyapatite 
from body fluid and forms its layer in living body. Therefore, microcapsules possessing high 
bioaffinity can be formed by using hydroxyapatite and the hydroxyapatite microcapsules 
are thought to be useful to drug delivery systems. 

 

Yao et al. proposed that hydroxyapatite microcapsules can be fabricated by using 
biomimetic method (Adachi, Takeuchi, Ozawa & Yao, 2002). For the first process, Apatite 
Nuclei are attached to the surfaces of microspheres. For the second process, the 
microspheres are soaked in SBF. By this treatment, hydroxyapatite is induced from the 
Apatite Nuclei and grows over the whole surface area of the microspheres. As a result, 
hydroxyapatite is coated on the whole surface of the microspheres and hydroxyapatite 
microcapsules can be obtained. By this method, it is expected to encapsulate various kinds 
of microspheres with hydroxyapatite. 

 
2. Fabrication of hollow hydroxyapatite microcapsule 
 

Hollow microcapsule is expected to have many applications to the chemotherapy because it 
can be filled with various medical agents. In this chapter, we fabricated hollow 
hydroxyapatite microcapsules by using biomimetic method (Tabe et al., 2007). First, Apatite 
Nuclei were attached to the surfaces of polylactic acid (PLA) microspheres used as molds of 
hollow microcapsules. When these PLA microspheres were soaked in SBF, hydroxyapatite 
was induced from Apatite Nuclei on the PLA microspheres and covered the whole surface 
of the PLA microspheres. As a result, encapsulated PLA microspheres with hydroxyapatite 
were fabricated. Finally, the PLA was dissolved out in acetone and hollow hydroxyapatite 
microcapsules were fabricated. 

 
2.1 Materials & Methods 
 

2.1.1 Preparation of SBF 
SBF was prepared by dissolving reagent-grade NaCl, NaHCO3, KCl, K2HPO4·3H2O, 
MgCl2·6H2O, CaCl2 and Na2SO4 in ultrapure water with the composition as shown in Table 
1 and buffered at pH 7.40 with tris(hydroxymethyl)aminomethane ((CH2OH)3CNH2) and 
hydrochloric acid at 36.5 °C (Kokubo & Takadama, 2006). 
 

  Ion concentration / mmol·dm-3 
  SBF Blood plasma 
Na+ 142.0 142.0 
K+ 5.0 5.0 
Ca2+ 2.5 2.5 
Mg2+ 1.5 1.5 
Cl– 147.8 103.0 
HCO3– 4.2 27.0 
HPO42– 1.0 1.0 
SO42– 0.5 0.5 

Table 1. Ion concentrations of simulated body fluid (SBF) and human blood plasma. 

 
2.1.2 Precipitation of Apatite Nuclei 
The pH of SBF was raised to pH 8.50 by dissolving (CH2OH)3CNH2 at 25.0 °C, and 
precipitated Apatite Nuclei in the SBF, which were collected by filtration using a 50 nm 
polytetrafluoroethylene (PTFE) membrane filter (Millipore, USA) and washed with distilled 
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water, were dispersed in 200 ml of ethanol with ultrasonic vibration, and Apatite Nuclei-
dispersed ethanol was obtained. 

 
2.1.3 Fabrication of encapsulated PLA microspheres with hydroxyapatite 
The ethanol contained in the Apatite Nuclei-dispersed ethanol was replaced with ultrapure 
water by an evaporator for the purpose of prevention of elution of PLA microsphere. By this 
treatment, Apatite Nuclei-dispersed water was obtained. 0.2 mg of commercially obtained 
PLA microspheres with 2 µm of average diameter (Corefront, Japan) were soaked in the 
Apatite Nuclei-dispersed water mentioned above and held for 1 d. The PLA microspheres 
were collected by filtration using a 100 nm PTFE membrane filter. These PLA microspheres 
were soaked in SBF at pH 7.40 at 36.5 °C for 7 d. After that, the PLA microspheres were 
collected by filtration, washed with ultrapure water, and dried at 36.5 °C. The surfaces of the 
PLA microspheres were analyzed by scanning electron microscopy (SEM: ESEM-2700, 
Nikon, Japan) and energy dispersive X-ray analysis (EDX: DX-4, EDAX International, USA). 
For the reference, the PLA microspheres not soaked in Apatite Nuclei suspension were also 
soaked in 1.0 SBF. The surfaces of these PLA microspheres were also analyzed by SEM and 
EDX. 

 
2.1.3 Fabrication of hollow hydroxyapatite microcapsules 
The encapsulated PLA microspheres with hydroxyapatite were soaked in acetone for 1 d. 
The samples thus obtained were analyzed by SEM. For the reference, not-treated PLA 
microspheres were also analyzed by SEM and EDX. 

 
2.2 Results & Discussion 
 

2.2.1 Observation of the encapsulated PLA microspheres 
Fig. 1 shows (a) SEM micrograph and (b) the result of EDX analysis of not-treated PLA 
microsphere after the soak in SBF for 7 d. In Fig. 1(a), it was observed that the not-treated 
PLA microsphere have smooth surface, maybe due to the production process, and no 
evidence of hydroxyapatite were detected. In Fig. 1(b), no peaks of P and Ca were detected. 
Fig. 2 shows (a) SEM micrograph and (b) the result of EDX analysis of PLA microspheres 
soaked in the Apatite Nuclei-dispersed water for 1 d, and then soaked in SBF for 7 d. In Fig. 
2(a), it was observed that needle like crystals characteristic to hydroxyapatite coated whole 
surface of the PLA microsphere. In Fig. 2(b), peaks of P and Ca, constituents of 
hydroxyapatite, were detected on the surface. These results indicate that hydroxyapatite 
was induced from the Apatite Nuclei attached to the surface of the PLA microsphere and 
spread over whole surface area of the PLA microsphere in SBF. 
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Fig. 1. (a) SEM micrograph and (b) the result of EDX analysis of the not-treated PLA 
microsphere after the soak in SBF for 7 d. 
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Fig. 2. (a) SEM micrograph and (b) the result of EDX analysis of PLA microsphere soaked in 
the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in SBF for 7 d. 

 
2.2.2 Observation of hollow hydroxyapatite microcapsules 
Fig. 3(a) and (b) show SEM micrographs of the above mentioned encapsulated PLA 
microspheres with hydroxyapatite after the soak in acetone for 1 d. By the soak in acetone, 
the PLA microsphere was dissolved out and a spherical hollow hydroxyapatite 
microcapsule was obtained. In Fig. 3(a), the spherical microcapsule constructed with 
hydroxyapatite was observed. In Fig. 3(b), a broken spherical microcapsule of 
hydroxyapatite was also observed. Fig. 3(b) is shown that PLA microspheres were 
completely dissolved by acetone and this result confirmed that the microsphere shown in 
Fig. 3(a) have a hollow structure. Consequently, the microcapsule constructed of 
hydroxyapatite was fabricated. 
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water, were dispersed in 200 ml of ethanol with ultrasonic vibration, and Apatite Nuclei-
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were soaked in SBF at pH 7.40 at 36.5 °C for 7 d. After that, the PLA microspheres were 
collected by filtration, washed with ultrapure water, and dried at 36.5 °C. The surfaces of the 
PLA microspheres were analyzed by scanning electron microscopy (SEM: ESEM-2700, 
Nikon, Japan) and energy dispersive X-ray analysis (EDX: DX-4, EDAX International, USA). 
For the reference, the PLA microspheres not soaked in Apatite Nuclei suspension were also 
soaked in 1.0 SBF. The surfaces of these PLA microspheres were also analyzed by SEM and 
EDX. 

 
2.1.3 Fabrication of hollow hydroxyapatite microcapsules 
The encapsulated PLA microspheres with hydroxyapatite were soaked in acetone for 1 d. 
The samples thus obtained were analyzed by SEM. For the reference, not-treated PLA 
microspheres were also analyzed by SEM and EDX. 

 
2.2 Results & Discussion 
 

2.2.1 Observation of the encapsulated PLA microspheres 
Fig. 1 shows (a) SEM micrograph and (b) the result of EDX analysis of not-treated PLA 
microsphere after the soak in SBF for 7 d. In Fig. 1(a), it was observed that the not-treated 
PLA microsphere have smooth surface, maybe due to the production process, and no 
evidence of hydroxyapatite were detected. In Fig. 1(b), no peaks of P and Ca were detected. 
Fig. 2 shows (a) SEM micrograph and (b) the result of EDX analysis of PLA microspheres 
soaked in the Apatite Nuclei-dispersed water for 1 d, and then soaked in SBF for 7 d. In Fig. 
2(a), it was observed that needle like crystals characteristic to hydroxyapatite coated whole 
surface of the PLA microsphere. In Fig. 2(b), peaks of P and Ca, constituents of 
hydroxyapatite, were detected on the surface. These results indicate that hydroxyapatite 
was induced from the Apatite Nuclei attached to the surface of the PLA microsphere and 
spread over whole surface area of the PLA microsphere in SBF. 
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Fig. 1. (a) SEM micrograph and (b) the result of EDX analysis of the not-treated PLA 
microsphere after the soak in SBF for 7 d. 
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Fig. 2. (a) SEM micrograph and (b) the result of EDX analysis of PLA microsphere soaked in 
the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in SBF for 7 d. 

 
2.2.2 Observation of hollow hydroxyapatite microcapsules 
Fig. 3(a) and (b) show SEM micrographs of the above mentioned encapsulated PLA 
microspheres with hydroxyapatite after the soak in acetone for 1 d. By the soak in acetone, 
the PLA microsphere was dissolved out and a spherical hollow hydroxyapatite 
microcapsule was obtained. In Fig. 3(a), the spherical microcapsule constructed with 
hydroxyapatite was observed. In Fig. 3(b), a broken spherical microcapsule of 
hydroxyapatite was also observed. Fig. 3(b) is shown that PLA microspheres were 
completely dissolved by acetone and this result confirmed that the microsphere shown in 
Fig. 3(a) have a hollow structure. Consequently, the microcapsule constructed of 
hydroxyapatite was fabricated. 
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Fig. 3. SEM micrographs of encapsulated PLA microspheres with hydroxyapatite after the 
soak in acetone for 1 d. 

 
3. Fabrication of encapsulated Ag microsphere with hydroxyapatite 
 

It has been established that Ag ion has the antimicrobial activity (Russell & Hugo, 1994). If 
Ag ion is sustainably released at an affected part, more effective cure is expected. In this 
chapter, the authors fabricated encapsulated Ag microspheres with hydroxyapatite by using 
biomimetic method (Yabustuka et al., 2008b). First, Apatite Nuclei were attached to the 
surfaces of Ag microspheres. When these Ag microspheres were soaked in SBF, 
hydroxyapatite was induced from Apatite Nuclei on the Ag microspheres and covered the 
whole surface of the Ag microspheres. As a result, encapsulated Ag microspheres with 
hydroxyapatite were fabricated. In order to evaluate sustained-release of Ag ion, the amount 
of Ag ion release in saline was measured. 

 
3.1 Materials & Methods 
 

3.1.1 Fabrication of encapsulated Ag microspheres with hydroxyapatite 
SBF was preparaed by the method shown in 2.1.1. Apatite Nuclei-dispersed ethanol was 
prepared by the method shown in 2.1.2. 2 mg of commercially obtained Ag microspheres 
with 1.71 µm of average diameter (Daiken Chemical, Japan) were soaked in the Apatite 
Nuclei-dispersed ethanol mentioned in 2.1.2 and held for 1 d. The Ag microspheres were 
collected by filtration using a 100 nm PTFE membrane filter. These Ag microspheres were 
soaked in SBF at pH 7.40 at 36.5 °C for 7 d. After that, the Ag microspheres were collected by 
filtration, washed with ultrapure water, and dried at 36.5 °C. The surfaces of the Ag 
microspheres were analyzed by thin film X-ray diffraction (TF-XRD: Rint 2500, Rigaku, 
Japan), SEM and EDX. For the reference, not-treated Ag microspheres were alsoanalyzed by 
TF-XRD, SEM and EDX. 

 
3.1.2 Evaluation of sustained-release for hydroxyapatite microcapsules 
2 mg of the encapsulated Ag microspheres with hydroxyapatite were soaked in 100 cm3 
saline (0.01 mol·dm-3 phosphate buffered saline, pH at 25 °C: 7.2-7.4, Wako Pure Chemical 

0.5 µm 0.5 µm 0.5 µm 0.5 µm 0.5 µm 1 µm 1 µm 1 µm 1 µm 1 µm 

 

Industries, Japan). The saline was continued to shake by using shaking apparatus for up to 
192 h in an incubator held at 36.5 °C. Changes in Ag ion concentration in saline were 
measured by inductively coupled plasma atomic emission spectroscopy (ICP: ICPS-7500, 
Shimadzu, Japan). For the reference, not-treated Ag microspheres were also dispersed in 
saline and conducted the same measurement. 

 
3.2 Results & Discussion 
 

3.2.1 TF-XRD measurement 
Fig.4 shows (a) TF-XRD profile of the not-treated Ag microspheres and (b) that of the Ag 
microspheres soaked in the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in 
SBF for 7 d. After the soak in SBF for 7 d, diffraction peaks of hydroxyapatite were detected. 
This result indicates that hydroxyapatite was induced from the Apatite Nuclei attached to 
the surfaces of Ag microspheres. 
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Fig. 4. TF-XRD profiles of the surface of (a) not-treated Ag microspheres and (b) Ag 
microspheres soaked in the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in 
SBF for 7 d. 

 
3.2.2 Observation by SEM and EDX 
Fig. 5 shows (a) SEM micrograph and (b) the result of EDX analysis of not-treated Ag 
microsphere. In Fig. 5(a), it was observed that the not-treated Ag microsphere have 
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Fig. 3. SEM micrographs of encapsulated PLA microspheres with hydroxyapatite after the 
soak in acetone for 1 d. 

 
3. Fabrication of encapsulated Ag microsphere with hydroxyapatite 
 

It has been established that Ag ion has the antimicrobial activity (Russell & Hugo, 1994). If 
Ag ion is sustainably released at an affected part, more effective cure is expected. In this 
chapter, the authors fabricated encapsulated Ag microspheres with hydroxyapatite by using 
biomimetic method (Yabustuka et al., 2008b). First, Apatite Nuclei were attached to the 
surfaces of Ag microspheres. When these Ag microspheres were soaked in SBF, 
hydroxyapatite was induced from Apatite Nuclei on the Ag microspheres and covered the 
whole surface of the Ag microspheres. As a result, encapsulated Ag microspheres with 
hydroxyapatite were fabricated. In order to evaluate sustained-release of Ag ion, the amount 
of Ag ion release in saline was measured. 

 
3.1 Materials & Methods 
 

3.1.1 Fabrication of encapsulated Ag microspheres with hydroxyapatite 
SBF was preparaed by the method shown in 2.1.1. Apatite Nuclei-dispersed ethanol was 
prepared by the method shown in 2.1.2. 2 mg of commercially obtained Ag microspheres 
with 1.71 µm of average diameter (Daiken Chemical, Japan) were soaked in the Apatite 
Nuclei-dispersed ethanol mentioned in 2.1.2 and held for 1 d. The Ag microspheres were 
collected by filtration using a 100 nm PTFE membrane filter. These Ag microspheres were 
soaked in SBF at pH 7.40 at 36.5 °C for 7 d. After that, the Ag microspheres were collected by 
filtration, washed with ultrapure water, and dried at 36.5 °C. The surfaces of the Ag 
microspheres were analyzed by thin film X-ray diffraction (TF-XRD: Rint 2500, Rigaku, 
Japan), SEM and EDX. For the reference, not-treated Ag microspheres were alsoanalyzed by 
TF-XRD, SEM and EDX. 
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Industries, Japan). The saline was continued to shake by using shaking apparatus for up to 
192 h in an incubator held at 36.5 °C. Changes in Ag ion concentration in saline were 
measured by inductively coupled plasma atomic emission spectroscopy (ICP: ICPS-7500, 
Shimadzu, Japan). For the reference, not-treated Ag microspheres were also dispersed in 
saline and conducted the same measurement. 

 
3.2 Results & Discussion 
 

3.2.1 TF-XRD measurement 
Fig.4 shows (a) TF-XRD profile of the not-treated Ag microspheres and (b) that of the Ag 
microspheres soaked in the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in 
SBF for 7 d. After the soak in SBF for 7 d, diffraction peaks of hydroxyapatite were detected. 
This result indicates that hydroxyapatite was induced from the Apatite Nuclei attached to 
the surfaces of Ag microspheres. 
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Fig. 4. TF-XRD profiles of the surface of (a) not-treated Ag microspheres and (b) Ag 
microspheres soaked in the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in 
SBF for 7 d. 

 
3.2.2 Observation by SEM and EDX 
Fig. 5 shows (a) SEM micrograph and (b) the result of EDX analysis of not-treated Ag 
microsphere. In Fig. 5(a), it was observed that the not-treated Ag microsphere have 
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characteristic wrinkle surface, maybe due to the production process. In Fig. 5(b), no peak 
other than Ag, except C due to a carbon tape, was detected. 
Fig.6 shows SEM micrograph of the Ag microspheres soaked in the Apatite Nuclei-
dispersed ethanol for 1 d, and then soaked in SBF for 7 d of low magnification. In Fig. 6, 
many encapsulated Ag microspheres with hydroxyapatite were observed. This result 
indicates that this method has high reproducibility. 
Fig. 7 shows (a) picture of a microcapsule by magnification and (b) the result of EDX 
analysis of the Ag microspheres soaked in the Apatite Nuclei-dispersed ethanol for 1 d, and 
then soaked in SBF for 7 d. In Fig. 7(a), it was observed that needle like crystals characteristic 
to hydroxyapatite coated whole surface of the Ag microsphere. In Fig. 7(b), peaks of P and 
Ca, constituents of hydroxyapatite, were detected on the surface. These results indicate that 
hydroxyapatite was induced from the Apatite Nuclei attached to the surface of the Ag 
microsphere and spread over whole surface area of the Ag microsphere in SBF. 
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Fig. 5. (a) SEM micrograph and (b) the result of EDX analysis of the not-treated Ag 
microsphere. 
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Fig. 7. (a) SEM micrograph and (b) the result of EDX analysis of Ag microsphere soaked in 
the Apatite Nuclei-dispersed ethanol for 1 d, and then soaked in SBF for 7 d. 

 
4.2.3 Amount of Ag ion release 
Fig.8 shows (a) the amount of Ag ion release for the not-treated Ag microspheres and (b) 
that for the above mentioned encapsulated Ag microspheres with hydroxyapatite in saline 
up to 192 h at 36.5 °C. The concentration of Ag ion for the encapsulated Ag microspheres 
with hydroxyapatite was approximately one over ten of that for not-treated ones. This result 
indicates that sustained-release of Ag ion is achieved by encapsulating Ag microsphere with 
hydroxyapatite. 
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Ag microspheres with hydroxyapatite in saline up to 192 h at 36.5 oC. 
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microspheres with hydroxyapatite are expected as carriers of drug delivery system. When 
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porous material is soaked in SBF and the pH is raised, Apatite Nuclei precipitated in the 
pores. Thus treated porous material has high bioactivity because precipitated Apatite Nuclei 
in the pores induce hydroxyapatite (Yao et al., 2007). In this chapter, the authors fabricated 
encapsulated silicagel microspheres with hydroxyapatite by using biomimetic method 
(Yamane et al., 2009). First, Apatite Nuclei were precipitated in the pores of silicagel 
microspheres. When these silicagel microspheres were soaked in SBF, hydroxyapatite was 
induced from Apatite Nuclei in the pores of the silicagel microspheres and covered the 
whole surface of the microspheres. As a result, encapsulated silicagel microspheres with 
hydroxyapatite were fabricated. 

 
4.1 Materials & Methods 
SBF was preparaed by the method shown in 2.1.1. Silicagel microspheres (4.4 µm of average 
diameter, 6 nm of average pore diameter, Fuji Silysia Chemical, Japan) were soaked in SBF. 
The pH of SBF was raised to pH 8.60 by using (CH2OH)3CNH2 at 25.0 °C. By this treatment, 
Apatite Nuclei were precipitated in the pores of the silicagel microspheres. The silicagel 
microspheres were collected by filtration using a 0.1 μm PTFE membrane filter (Millipore, 
USA), washed with ultrapure water and soaked in SBF at pH 7.40 at 36.5 °C for 7 d. The SBF 
was renewed every 4 d. After that, the silicagel microspheres were collected by filtration, 
washed with ultrapure water, and dried at 36.5 °C. The surface of the silicagel microspheres 
were analyzed by TF-XRD, SEM and EDX.  

 
4.2 Results and Discussion 
 

4.2.1 TF-XRD measurement 
Fig. 9 shows TF-XRD profiles of the not-treated silicagel microspheres and silicagel 
microspheres Apatite Nuclei precipitated then soaked in SBF for 7 d. After the soak for 7 d, 
diffraction peaks of hydroxyapatite were detected. This result indicates that hydroxyapatite 
was induced from Apatite Nuclei precipitated in the pores of silicagel microspheres. 

 
4.2.2 Observation by SEM and EDX 
Fig. 10(a) and (b) show SEM micrographs and (c) shows the result of EDX analysis of not-
treated silicagel microspheres. Fig. 10(b) is higher magnification. In Fig. 10(c), peaks of Si, 
constituent of silicagel was detected by the EDX analysis. 
Fig. 11(a) and (b) show the SEM micrographs and (c) shows the result of EDX analysis of 
silicagel microspheres Apatite Nuclei precipitated and soaked in SBF for 7 d. In Fig. 11(a), 
many encapusulated silicagel microspheres with hydroxyapatite were observed. This 
indicates that this method has high reproducibility. In Fig. 11(b), higher magnification, it 
was observed that needle like crystals characteristic to hydroxyapatite coated whole surface 
of the silicagel microsphere. In Fig. 11(c), peaks of P and Ca, constituents of hydroxyapatite, 
were detected on the surface. 
From these results, it is considered that hydroxyapatite was induced from the Apatite 
Nuclei precipitated in the pores of the silicagel microspheres and spread over whole surface 
area of the silicagel microspheres in SBF.  
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Fig. 9. TF-XRD profiles of the (a) not-treated silicagel microspheres and (b) silicagel 
microspheres Apatite Nuclei precipitated then soaked in SBF for 7 d. 
 

  
(a)                                                                             (b) 

0 1 2 3 4 5

Si

O

C

In
te

n
si

ty

Energy / keV  
(c) 

Fig. 10. SEM micrographs of (a) not-treated silicagel microspheres, (b) higher magnification 
of (a), and (c) result of EDX of (b).  
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Fig. 9. TF-XRD profiles of the (a) not-treated silicagel microspheres and (b) silicagel 
microspheres Apatite Nuclei precipitated then soaked in SBF for 7 d. 
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Fig. 10. SEM micrographs of (a) not-treated silicagel microspheres, (b) higher magnification 
of (a), and (c) result of EDX of (b).  
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Fig. 11. SEM micrographs of (a) silicagel microspheres Apatite Nuclei precipitated and 
soaked in SBF for 7 d, (b) higher magnification, and (c) result of EDX of (b). 

 
5. Conclusion 

When the pH or the temperature of SBF is raised, fine particles of calcium phosphate are 
precipitated in the fluid. It was found that these particles are very active for forming 
hydroxyapatite from SBF and these particles were named Apatite Nuclei. By the discovery 
of Apatite Nuclei, it became possible to develop various multifunctional biomaterials 
possesing high bioaffinity in micron or nano scale by using biomimetic method. 
The authors have successfully encapsulated Ag, PLA and silicagel microspheres with 
hydroxyapatite by biomimetic method. For encapsulated Ag and PLA microspheres, Apatite 
Nuclei were synthesized by raising pH of SBF. Hydroxyapatite was formed from Apatite 
Nuclei attached on the microspheres by soaking in SBF, and then the encapsulated Ag and 
PLA microspheres with hydroxyapatite were obtained. For encapsulated silicagel 
microspheres, silicagel microspheres were soaked in SBF and precipitated Apatite Nuclei in 
the pores of the microspheres by raising pH of SBF. Hydroxyapatite was formed from 
Apatite Nuclei precipitated in the pores of the microspheres by soaking in SBF, and then the 
encapsulated silicagel microspheres with hydroxyapatite were obtained. For the 
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encapsulated Ag microspheres with hydroxyapatite, sustained-release of Ag ion was 
achieved. Hollow hydroxyapatite microcapsules were obtained by soaking the encapsulated 
PLA microsphere with hydroxyapatite in acetone. These hydroxyapatite microcapsules 
mentioned above possessed high bioaffinity. This method is promising for fabrication of 
carriers for drug delivery systems. 
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Fig. 11. SEM micrographs of (a) silicagel microspheres Apatite Nuclei precipitated and 
soaked in SBF for 7 d, (b) higher magnification, and (c) result of EDX of (b). 
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