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1. Introduction 
 

Microwave and millimeter wave high-power vacuum electron devices (VEDs) are essential 
elements in specialized military, scientific, medical and space applications. They can 
produce mega watts of power which would be equal to the power of thousands of solid 
state power devices (SSPDs). Similarly, in most of today's T/R-Modules of active phased 
array antennas for radars and electronic warfare applications GaAs based hybrid and MMIC 
amplifiers are used. The early applications of millimeter-wave MMICs were in military, 
space and astronomy systems. They are now also utilized for civil applications, such as 
communications and automotive radars. As transmission speeds in next-generation wireless 
communications have become faster, wireless base stations that operate in the microwave 
frequency range consume an ever-increasing amount of power. The mm waves (above 30 
GHz) deliver high speed and good directionality and have a large amount of available 
bandwidth that is currently not being used. They have the potential for use in high-speed 
transmissions. Point-to-point wireless is a key market for growth since it can replace fiber-
optic cable in areas where fiber is too difficult or costly to install. But the real high volume 
action at mm-wave will likely be in the MMICs for automobile radar systems devices for 
short-range radar (24 GHz) and long-range radar (77 GHz). Such radars will not only be 
used for collision avoidance and warning, but also for side- and rear-looking sensors for 
lane changing, backup warning and parking assistance. While only available in high-end 
automobiles at present, cost reductions in MMIC chip manufacturing could lead to 
significant deployment in all cars in the future. 
SiC MESFETs and GaN HEMTs have wide bandgap features of high electric breakdown 
field strength, high electron saturation velocity and high operating temperature. The high 
power density combined with the comparably high impedance attainable by these devices 
also offers new possibilities for wideband power microwave systems. The SiC MESFETs has 
high cost and frequency limitation of X band. On the other hand the GaN transistors have 
the potential to disrupt at least part of the very large VEDs market and could replace at least 
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some microwave and millimeter wave VEDs. The hybrid and MMIC amplifiers based on 
AlGaN/GaN technology has demonstrated higher output power levels, broader bandwidth, 
increased power added efficiency and higher operating voltages compare to GaAs for 
performance improvement to meet future requirements. Very promising results up to 35 
GHz are demonstrated by GaN HEMT technology [1]-[8].  Resulting power density is about 
ten times higher than that demonstrated in GaAs.  
To make GaN cost competitive with other technologies, Nitronex Corp has developed GaN 
transistors on low-cost 100 mm silicon substrates (GaN-on-silicon growth technology). 
These transistors are commercially available which cover cellular phones, wireless LANs 
and other applications at the lower end of the microwave frequency spectrum (1-5 GHz). 
The devices for high frequencies and powers are in progress. This is believed to have a 
major impact in the future development of millimeter-wave systems. Since low-cost mass-
production potential pushes forward the technology, a very high integration of circuit 
functions on a single chip is possible. 
Si-based other solid-state transistor amplifiers are typically fabricated using a combination 
of silicon bipolar and laterally diffused metal oxide semiconductor (LDMOS) technologies. 
LDMOS technology works well in UHF and VHF frequencies up to around 3.5 GHz. Typical 
power levels for these devices are usually in the <200 W range; however multi-die modules 
can offer power levels up to 1000 W [9]. Although LDMOS transistors are also low cost but 
they have the power handling and frequency limitations. 

 
2. Classification of Power Devices 
 

RF power devices can be broadly classified into three families:  

 
2.1 Electron beam devices (EBD) 
Travelling-wave tubes (TWTs), klystrons and the inductive output tubes (“IOTs”) all belong 
to the EBD family. They all require multiple operating voltages, one of which is a high DC 
voltage (tens of kV) that accelerates the electron beam.  
The TWTs are presently produced for all common microwave communication and radar 
bands. It has been recently shown that it is feasible to build an active 2-D phased array at X-
band using TWTs that fit within the array lattice, one TWT per element [10]. The DC-to-RF 
conversion efficiency is poor, 25-35 %, implying severely increased operating costs 
compared to other devices.  
The Klystrons has very high output power per device. At 30 – 2000 kW per device, the 
output power is 30…1000 times greater than that needed to drive an individual array 
element, thus requiring a very complicated system of power dividers and high-power 
phase-shifters to distribute and control the power flow to as many as 1000 elements per 
klystron. In a feed system of this kind, variable power tapering is almost impossible to 
realize. Also a single failed device will result in a large fraction of the array losing power at 
once. Also, the instantaneous power bandwidth of a large klystrons is only marginally 
sufficient, or even insufficient, to meet the range resolution requirement.  
The IOTs also has output power levels in the 30 – 70 kilowatt range and are subject to the 
same complications as the klystrons with regard to the RF power distribution / feed / 
beam-steering system.  
 

2.2 Power grid tubes (PGTs) 
These tubes come in many shapes and sizes. There should be no problem finding a tube in 
the power range of one-kilowatt. A kilowatt is in the right power range for feeding an 
individual phased-array element, so tubes of this class could be used as the active elements 
of element-level power amplifiers. However, power grid tubes need multiple operating 
voltages, one of which is always a medium high DC voltage (> 2 kV), thus necessitating a 
fairly complicated power supply system, relatively short lifetimes and the more long-lived 
directly heated filament cathode types instead consume substantial amounts of filament-
heating power, which reduces the overall DC-to-RF conversion efficiency significantly.  

 
2.3 Solid-state Semiconductor Power Devices (SSPDs) 
The maximum output power that can be obtained from an RF power transistor is limited by 
the physical properties of the semiconductor material, in particular the safe 
junction/channel power density. Increasing the junction/channel area and reducing the 
device thickness in an attempt to increase power also increases the junction/gate 
capacitance, consequently reducing frequency and power gain. The heat resistance between 
the semi-conductor die and the heat sink determines how much dissipated power can be 
transported away from the die at the maximum allowed device temperature and is often the 
factor that the ultimately limits the output power. Until recently, these factors combined to 
limit the practical output power of CW-rated semiconductor devices to about 150 watts at 
all frequencies from VHF upwards. But during the last decade, demands from industry for 
better devices for the base stations for 3rd generation mobile telephone systems have 
generated much R&D to push the upper frequency power limit to 100 Watt and even higher. 
When operated within their ratings, RF power semiconductors show excellent lifetimes, 
upwards of many tens of thousands of hours, primarily limited by slow electro-migration of 
the metal used in contact pads and bonds. Semiconductor devices often operated by a single 
power supply in the 28 – 50 volt range, thus simplifying the power supply problem 
dramatically as compared to all electron devices. An additional advantage of FETs is that, 
being majority carrier devices, they do not suffer from thermal runaway effects. Biasing is 
also very simple, requiring only a source of adjustable positive voltage; the bias voltage can 
be derived from the main power supply through a voltage divider or a small regulator IC. 
A comparison of these devices on the basis of device characteristics is given in Table 1. 
 

Device Type Pmax  

(kW) 

Drain Eff. 

% 

Gain 

(dB) 

Operating 

voltage (kV) 

Life time 

(hours) 

SSPDs 0.5 50-65 10-17 0.025-0.1 50x103 

PGTs 0.5-10 50-60 10-13 0.5-10 (3-10)x103 

EBDs 0.1-2000 25-60 20-40 25-100 (10-20)x103 

Table 1. Comparison of power devices  
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3. VEDs vs  SSPDs 
 

Following are the main fundamental physical differences in SSPDs and VEDs; 
1: In vacuum microwave electronic devices the electron stream moves without 

collision through an evacuated region between anode and cathode. As electrons pass 
without any collision, there is no loss in their energy (hence less efficiency loss) and thus no 
heat is generated during electron current flow through the device. The only heat is 
produced in the collector of VEDs, due to that energy of electrons which is not converted 
into microwaves. 
In SSPDs, the electron current drifts between Emitter/Source and collector/Drain through a 
solid material and experience collisions. The electrons current waste some of its KE inside 
the device. Thus these devices have lower electron mobility compare to vacuum devices, 
which is an advantage for VEDs in terms of high power at high frequencies. 

2: At long term high operating temperatures the performance of the device is 
degraded specially mobility is reduced which reduces performance at high frequencies. To 
keep the active region temperature of a microwave power transistor at acceptable low 
levels, the solid state devices need larger heat sink compare to VEDs, because the interaction 
region in VEDs is surrounded by Vacuum. For this purpose the base plate for solid state 
devices must be kept at or below 30 C, while VEDs can operate with base plate temperatures 
of 250 C.  

3: In solid state devices the long term ionizing radiations must be avoided to prevent 
device degradation, while VEDs are virtually immune to ionizing radiation fluxes which 
make them suitable choice for the applications in space. 

4: The VEDs have high electric field and power densities compare to solid state 
devices. 

5: The SSPDs are smaller in size and low cost compare to VEDs. 
6: The SSPDs are easy to fabricate compare to VEDs. 

 
4. Why GaN transistors but not GaAs? 
 

GaAs-based amplifiers are well-known devices currently used as pre-driver, driver, and 
even final-stage amplifiers for radar applications. GaN transistors and MMICs challenge 
GaAs technology mostly in high-bandwidth, high power applications, because, due to the 
smaller required device periphery for a given specified output power, good impedance 
matching can be achieved for GaN FETs over a broader frequency range than for GaAs 
pHEMTs. Also, Practical manufacturing of much higher power GaAs FETs than those 
currently available is facing significant technical difficulties. 
The wide bandgap of GaN increases the breakdown field by five times and the power 
density by a factor of 10 to 20, compared with GaAs-based devices. The GaN components 
are therefore smaller and have a lower capacitance for the same operating power, which 
means that amplifiers can operate over a wider bandwidth while exhibiting good input and 
output matching. 
GaN devices are also highly efficient because they can operate at higher voltages (24–35 V, 
compared with 5–8 V for GaAs-based devices at millimeter-wave frequencies), as well as 
having a lower on resistance. The high voltage also improves the power supply efficiency, 

while the two dimensional electron gas (2DEG) produces a high electron velocity, ensuring 
good signal gain at K, Q and even W band frequencies. 
The unique attribute of the AlGaN/GaN structure is the possibility of building high channel 
charge, which increases the device’s current handling capability. Because GaN is a strongly 
polar material, the strain resulting from growing lattice-mismatched AlGaN on GaN 
induces a piezoelectric charge. This supplies additional electrons to the HEMT channel. This 
total channel charge is roughly four to five times higher than for AlGaAs/GaAs HEMTs. 
This piezoelectric property is a unique power-boosting bonus factor for AlGaN/GaN 
HEMTs. 
GaN devices built on SiC substrates have a thermal conductivity 10 times higher than those 
fabricated using GaAs, which means that these wide bandgap devices can operate at higher 
power densities. GaN HEMTs can also work at higher temperatures, which reduce the need 
for cooling and allows for a more compact module design. The comparison in GaAs and 
GaN on the basis of parameters required for high power performance is summarized in 
Table 2. 
The introduction of GaN on Silicon (most highly refined semiconductor substrates in the 
world are silicon wafers) is another great advantage in terms of cost. High volume 
production is possible because of growth on large silicon substrate. This GaN-on-silicon 
approach yields a low-cost, high-performance platform for high-frequency, high-power 
products, which is a potentially exciting combination.  
The most important is the process similarities of HEMT in both technologies; hence GaN 
HEMT can share production process with GaAs HEMT. 
 

Parameter GaAs GaN 

Maximum Operating Voltage 

(Volts) 

20 48 

Maximum Current (mA) 500 ~1000 

Maximum Breakdown Voltage 

(Volts) 

40 >100 

Maximum Power Density (W/mm) 1.5 >8 

Table 2. Comparison of GaN and GaAs  

 
5. New Developments in GaN Technology 
 

In only 16 years (since 1993), GaN-based transistors have evolved tremendously from a poor 
initial performance [11] to worldwide commercialization as power amplifiers in the S and X 
bands [12]. To increase their frequency of operation to millimeter and sub millimeter wave 
frequencies, improved growth in combination with the introduction of new device 
structures [13]-[15] have been reported. These new structures have allowed devices with a 
current gain cutoff frequency fT in excess of 150 GHz and a maximum oscillation frequency 
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fmax of 230 GHz in AlGaN/GaN HEMTs with a gate length of 100 nm [13]. GaN MMICs up 
to Ka-Band have been presented [16-19], showing power densities up to 5 W/mm at 50 Ω 
load impedance. 
AlGaN/GaN HEMTs grown on silicon (111) high-resistivity substrates with cutoff 
frequencies fT = 90 GHz and fMAX = 105 GHz have been demonstrated [20]. The results 
indicate that GaN-on-Si technology is a viable low-cost alternative to mm-wave transistors 
and that it suffers no significant raw speed disadvantages in terms of channel electron 
transport in comparison to devices fabricated on sapphire or SiC substrates. Further device 
scaling and improvements in epitaxial layer design are expected to lead to fT values well in 
excess of 100 GHz for AlGaN/GaN on Si technology. 
Fujitsu Develops World's First Gallium-Nitride HEMT able to cut power in standby mode 
and achieve high output of over 100 W, that features a new structure ideal for use in 
amplifiers for microwave and millimeter-wave transmissions, frequency ranges for which 
usage is expected to grow. This technological advance will contribute to higher output and 
lower power consumption in microwave and millimeter-wave transmission amplifiers for 
high-speed wireless communications [21]. A record power density of 10.5 W/mm with 34% 
power added efficiency (PAE) has been measured at 40 GHz in MOCVD-grown HEMTs 
biased at DS = 30 V [22]. A commercial company Aethercomm believes that if the trends in 
GaN advancement are maintained at their current rate, the predicted performance of GaN 
HEMTs in the year 2010 will be as depicted in Figure 1. As shown, GaN will soon overtake 
all of its competitors in every category [23]. 
The low parasitic capacitance and high breakdown voltage of GaN HEMTs makes them 
ideal for class-E and class-F high efficiency amplifier modes. Recently, several GaN 
transistor vendors have implemented class-E & F amplifiers in hybrid form. Typical results 
are ten watts output power with efficiencies above 80 percent [24], [25]. 
 

 
Fig. 1. Evolution of GaN FET performance [23] 

A Comtech PST company has released a new high power 500 W broadband amplifier based 
on latest Gallium Nitride (GaN) device technology biased in class-AB mode at an input 
power of 0 dBm, covering the frequency range of 1-3 GHz. The amplifier offers excellent 
efficiency, high gain (minimum 57 dB), and linear dynamic range [26]. 
An S-band, 800 W GaN HEMT is released from Eudyna Device Co. Ltd. An output power of 
851 W and a drain efficiency of 57.4 percent were reported at 2.9 GHz, with a 200 μs pulse 
width, a 10 percent duty cycle and 65 V drain-source voltage supply (Vds) [27]. 
GaN devices are now becoming available for pulse operated applications. A high power 
amplifier developed for X-band weather radar [28]. It delivers over 250 W of output power 
in the range of 9.1 to 9.6 GHz with at least 38 dB gains and a PAE of 21 percent. Figure 2 
shows a photograph of a GaN SSPA transmitter for radar that uses GaN HEMT amplifiers 
and a photo of the weather radar using that amplifier [29]. SSPAs, have successfully reduced 
the equipment size to one sixth of that of the existing equipment, using electronic tubes. It is 
the first practical weather radar using SSPA. 
Power amplifiers for a next generation of T/R modules in future active array antennas are 
realized as monolithically integrated circuits on the bases of novel AlGaN/GaN HEMT 
structures. Both, driver and high power amplifiers were designed for X-band frequencies. 
Amplifier chains integrated on multi-layer LTCC substrates demonstrated an output power 
levels up to 30W [30]. A photo of another X-band 20 W T/R module is shown in Fig. 3 [31]. 

 

 
Fig. 2. Photo of a T/R-Module front-end with GaN MMIC chips [31] 
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power added efficiency (PAE) has been measured at 40 GHz in MOCVD-grown HEMTs 
biased at DS = 30 V [22]. A commercial company Aethercomm believes that if the trends in 
GaN advancement are maintained at their current rate, the predicted performance of GaN 
HEMTs in the year 2010 will be as depicted in Figure 1. As shown, GaN will soon overtake 
all of its competitors in every category [23]. 
The low parasitic capacitance and high breakdown voltage of GaN HEMTs makes them 
ideal for class-E and class-F high efficiency amplifier modes. Recently, several GaN 
transistor vendors have implemented class-E & F amplifiers in hybrid form. Typical results 
are ten watts output power with efficiencies above 80 percent [24], [25]. 
 

 
Fig. 1. Evolution of GaN FET performance [23] 

A Comtech PST company has released a new high power 500 W broadband amplifier based 
on latest Gallium Nitride (GaN) device technology biased in class-AB mode at an input 
power of 0 dBm, covering the frequency range of 1-3 GHz. The amplifier offers excellent 
efficiency, high gain (minimum 57 dB), and linear dynamic range [26]. 
An S-band, 800 W GaN HEMT is released from Eudyna Device Co. Ltd. An output power of 
851 W and a drain efficiency of 57.4 percent were reported at 2.9 GHz, with a 200 μs pulse 
width, a 10 percent duty cycle and 65 V drain-source voltage supply (Vds) [27]. 
GaN devices are now becoming available for pulse operated applications. A high power 
amplifier developed for X-band weather radar [28]. It delivers over 250 W of output power 
in the range of 9.1 to 9.6 GHz with at least 38 dB gains and a PAE of 21 percent. Figure 2 
shows a photograph of a GaN SSPA transmitter for radar that uses GaN HEMT amplifiers 
and a photo of the weather radar using that amplifier [29]. SSPAs, have successfully reduced 
the equipment size to one sixth of that of the existing equipment, using electronic tubes. It is 
the first practical weather radar using SSPA. 
Power amplifiers for a next generation of T/R modules in future active array antennas are 
realized as monolithically integrated circuits on the bases of novel AlGaN/GaN HEMT 
structures. Both, driver and high power amplifiers were designed for X-band frequencies. 
Amplifier chains integrated on multi-layer LTCC substrates demonstrated an output power 
levels up to 30W [30]. A photo of another X-band 20 W T/R module is shown in Fig. 3 [31]. 

 

 
Fig. 2. Photo of a T/R-Module front-end with GaN MMIC chips [31] 
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Fig. 3. Weather radar with GaN SSPA transmitter [29]. 

 
6. Emerging applications 
 

Millimeter (mm) wavelengths reside at 30-300 GHz. The current and emerging applications 
are in the early stages of creating a demand for MMICs based on gallium arsenide (GaAs) 
and GaN technologies. Digital radio transceivers for cellular communications backhaul and 
ground terminal transceivers for very small aperture terminals (VSATs) already employ 
mm-wave band MMICs. Most VSATs now operate in the Ku band (12 GHz to 18 GHz) but 
in the future will be moving higher in frequency to Ka band (26 GHz to 40 GHz). Most of 
the excitement, however, for the future growth of mm-wave technology lies in E-band (60 
GHz to 90 GHz). 
These bands are intended to encourage a range of new products and services including 
point-to-point wireless local-area networks and broadband Internet access. Point-to-point 
wireless is a key market for growth since it can replace fiber-optic cable in areas where fiber 
is too difficult or costly to install. But the real high volume action at mm-wave will likely be 
in the automotive radar market at 77 GHz. While only available in high-end automobiles at 
present, cost reductions in MMIC chip manufacturing could lead to significant deployment 
in all cars in the future. Such radars will not only be used for collision avoidance and 
warning, but also for side- and rear-looking sensors for lane changing, backup warning and 
parking assistance.  
Similarly active antenna arrays and radar transmitters operating at W-band, especially 94 
GHz, offer superior performance through clouds, fog, and smoke. W band spans roughly 70 
to 110 GHz and can be used for communications, radar and non-lethal weapons systems. 

Novel wide bandgap RF circuit technology is sought for radar operation at W-band in 
brownout and degraded visibility conditions. This need has led to interest in the 
development of W-band high power, high efficiency amplifiers, which are currently realized 
almost exclusively in gallium arsenide (GaAs) and indium phosphide (InP) material systems 
due to their high transition frequency (Ft) performance [32], [33]. However, use of these 
devices has resulted in larger device peripheries for a given specified output power, more 
combining structures, higher combining losses, and lower power densities. These device 
technologies are not capable of meeting future peak power requirements. On the other 
hand, wide bandgap device technologies such as gallium nitride (GaN) can overcome these 
limitations as they can operate at higher voltages and have demonstrated power handling 
capabilities on the order 10 xs greater than that of GaAs or InP technologies.  A three stage 
GaN MMIC power amplifiers for E-band radio applications is demonstrated that produce 
500 mW of saturated output power in CW mode and have > 12 dB of associated power gain. 
The output power density from 300 μm output gate width GaN MMICs is seven times 
higher than the power density of commercially available GaAs pHEMT MMICs in this 
frequency range [34]. 

 
7. Millimeter band is not yet widely used. Why? 
 

Due to faster transmission speeds in next-generation wireless communications, wireless 
base stations consume an ever-increasing amount of power. The millimeter wave frequency 
range above 30 GHz has a large amount of available bandwidth, because it delivers high 
speed and good directionality, its potential for use in high-speed transmissions is 
significant. However, due to millimeter-wave frequencies being higher than frequencies for 
conventional wireless transmissions, it has been difficult to develop amplifiers for practical 
use that are both compact and economical, and thus the millimeter band is not yet widely 
used.  

 
8. CONCLUSIONS 
 

Future Communication, EW and radar systems such as Base station, auto radars, the active 
phased-array radar (APAR) etc. will require increasingly smaller, more highly efficient 
SSPAs. In case of APAR, the desire for extremely fast scanning rates, much higher range, the 
ability to track and engage a tremendous number of targets, low probability of intercept and 
the ability to function as EW system, will require an innovative and cost-effective SSPD 
technology. The EBDs and PGTs are seen to be poor alternatives for the power amplifier of 
radars and other communication electronics in respect of power supply requirements, 
output power, bandwidth, fabrication and potential for graceful degradation compare to 
SSPDs especially PAs and MMICs based on wideband gap GaN technology transistors. 
Recent developments in the GaN HEMT have made it possible to realize highly efficient 
amplifiers at microwave frequencies. The results of GaN technology in terms of fT, fmax, 
power density, efficiency, band width etc. both at microwave and mm waves indicate that it 
will be the possible first choice for applications in future microwave and mm wave 
technologies. 
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Fig. 3. Weather radar with GaN SSPA transmitter [29]. 

 
6. Emerging applications 
 

Millimeter (mm) wavelengths reside at 30-300 GHz. The current and emerging applications 
are in the early stages of creating a demand for MMICs based on gallium arsenide (GaAs) 
and GaN technologies. Digital radio transceivers for cellular communications backhaul and 
ground terminal transceivers for very small aperture terminals (VSATs) already employ 
mm-wave band MMICs. Most VSATs now operate in the Ku band (12 GHz to 18 GHz) but 
in the future will be moving higher in frequency to Ka band (26 GHz to 40 GHz). Most of 
the excitement, however, for the future growth of mm-wave technology lies in E-band (60 
GHz to 90 GHz). 
These bands are intended to encourage a range of new products and services including 
point-to-point wireless local-area networks and broadband Internet access. Point-to-point 
wireless is a key market for growth since it can replace fiber-optic cable in areas where fiber 
is too difficult or costly to install. But the real high volume action at mm-wave will likely be 
in the automotive radar market at 77 GHz. While only available in high-end automobiles at 
present, cost reductions in MMIC chip manufacturing could lead to significant deployment 
in all cars in the future. Such radars will not only be used for collision avoidance and 
warning, but also for side- and rear-looking sensors for lane changing, backup warning and 
parking assistance.  
Similarly active antenna arrays and radar transmitters operating at W-band, especially 94 
GHz, offer superior performance through clouds, fog, and smoke. W band spans roughly 70 
to 110 GHz and can be used for communications, radar and non-lethal weapons systems. 

Novel wide bandgap RF circuit technology is sought for radar operation at W-band in 
brownout and degraded visibility conditions. This need has led to interest in the 
development of W-band high power, high efficiency amplifiers, which are currently realized 
almost exclusively in gallium arsenide (GaAs) and indium phosphide (InP) material systems 
due to their high transition frequency (Ft) performance [32], [33]. However, use of these 
devices has resulted in larger device peripheries for a given specified output power, more 
combining structures, higher combining losses, and lower power densities. These device 
technologies are not capable of meeting future peak power requirements. On the other 
hand, wide bandgap device technologies such as gallium nitride (GaN) can overcome these 
limitations as they can operate at higher voltages and have demonstrated power handling 
capabilities on the order 10 xs greater than that of GaAs or InP technologies.  A three stage 
GaN MMIC power amplifiers for E-band radio applications is demonstrated that produce 
500 mW of saturated output power in CW mode and have > 12 dB of associated power gain. 
The output power density from 300 μm output gate width GaN MMICs is seven times 
higher than the power density of commercially available GaAs pHEMT MMICs in this 
frequency range [34]. 

 
7. Millimeter band is not yet widely used. Why? 
 

Due to faster transmission speeds in next-generation wireless communications, wireless 
base stations consume an ever-increasing amount of power. The millimeter wave frequency 
range above 30 GHz has a large amount of available bandwidth, because it delivers high 
speed and good directionality, its potential for use in high-speed transmissions is 
significant. However, due to millimeter-wave frequencies being higher than frequencies for 
conventional wireless transmissions, it has been difficult to develop amplifiers for practical 
use that are both compact and economical, and thus the millimeter band is not yet widely 
used.  

 
8. CONCLUSIONS 
 

Future Communication, EW and radar systems such as Base station, auto radars, the active 
phased-array radar (APAR) etc. will require increasingly smaller, more highly efficient 
SSPAs. In case of APAR, the desire for extremely fast scanning rates, much higher range, the 
ability to track and engage a tremendous number of targets, low probability of intercept and 
the ability to function as EW system, will require an innovative and cost-effective SSPD 
technology. The EBDs and PGTs are seen to be poor alternatives for the power amplifier of 
radars and other communication electronics in respect of power supply requirements, 
output power, bandwidth, fabrication and potential for graceful degradation compare to 
SSPDs especially PAs and MMICs based on wideband gap GaN technology transistors. 
Recent developments in the GaN HEMT have made it possible to realize highly efficient 
amplifiers at microwave frequencies. The results of GaN technology in terms of fT, fmax, 
power density, efficiency, band width etc. both at microwave and mm waves indicate that it 
will be the possible first choice for applications in future microwave and mm wave 
technologies. 

 

www.intechopen.com



Advanced Microwave and Millimeter Wave 
Technologies: Semiconductor Devices, Circuits and Systems10

9. Acknowledgement 
The authors wish to acknowledge efforts of the Government of Oman for the financial 
support of this work and creating and financing the Sultan Qabos IT Chair at NED 
University of Engineering and Technology, Karachi, Pakistan. 

 
10. References 
 

[1]  A. M. Darwish, K. Boutros, B. Luo, B. D. Huebschman, E. Viveiros, and H. A. 
Hung. Algan/gan ka-band 5-w mmic amplifier. IEEE Transactions on Microwave 
Theory and Techniques, 54(12):4456– 4463, 2006. 

[2]  K.S. Boutros, W.B. Luo, Y. Ma, G. Nagy, and J. Hacker. 5 W GaN mmic for 
millimeter-wave applications. IEEE Compound Semiconductor Integrated Circuit 
Symposium, 2006, pages 93–95, 2006. 

[3]  M. van Heijningen, F.E. van Vliet, R. Quay, F. van Raay, R. Kiefer, S. Muller, D. 
Krausse, M. Seelmann-Eggebert, M. Mikulla, and M. Schlechtweg. Ka-band 
algan/gan hemt high power and driver amplifier mmics. Gallium Arsenide and 
Other Semiconductor Application Symposium, 2005. EGAAS 2005. European, pages 237–
240, 2005. 

[4]  Y.-F.Wu, A. Saxler, M. Moore, T.Wisleder, U.K. Mishra, and P. Parikh. “Field-
plated gan hemts and amplifiers.” IEEE Compound Semiconductor Integrated Circuit 
Symposium (IEEE Cat. No.05CH37701), page 4, 2005. 

[5]  M. Nishijima, et al.; “A k-band algan/gan hfet mmic amplifier on sapphire using 
novel superlattice cap layer.” Microwave Symposium Digest, 2005 IEEE MTT-S 
International, 2005. 

[6]  M. Micovic, et al.; “Ka-band MMIC power amplifier in GaN HFET technology.“ 
Microwave Symposium Digest, 2004 IEEE MTT-S International, pages 3:1653–1656, 
2004. 

[7]  Y.-F.Wu, M. Moore, A. Saxler, P. Smith, P.M. Chavarkar, and P. Parikh. 3.5-watt 
algan/gan hemts and amplifiers at 35 ghz. Electron Devices Meeting, 2003. IEDM ’03 
Technical Digest. IEEE International, page 23.5.1, 2003. 

[8]  W.L. Pribble, J.W. Palmour, S.T. Sheppard, R.P. Smith, S.T. Allen, T.J. Smith, Z. 
Ring, J.J. Sumakeris, A.W. Saxler, and J.W. Milligan. Applications of sic mesfets and 
gan hemts in power amplifier design. Microwave Symposium Digest, 2002 IEEE MTT-
S International, 3:1819–1822 vol.3, 2002. 

[9] www.freescale.com/files/rf_if/doc/data_sheet/MRF6VP11KH.pdf 
[10] B. Levush and E.J. Dutkowski, “Vacuum Electronics: Status and Trends,” 2007 IEEE 

Radar Conference, April 17–20, 2007, Boston, MA. 
[11] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214, 

1993. 
[12] Cree, Inc., www.cree.com. 
[13] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. 

Mishra, “AlGaN/GaN high electron mobility transistors with InGaN back-barrier,” 
IEEE Electron Device Lett., vol. 27, no. 1, pp. 13–15, Jan. 2006. 

 
 

[14] M. Micovic, A. Kurdoghlian, P. Hashimoto, M. Hu, M. Antcliffe, P. J. Willadsen, W. 
S. Wong, R. Bowen, I. Milosavljevic, A. Schmitz, M. Wetzel, and D. H. Chow, BGaN 
HFET for W-band power applications,[ in IEEE International Electron Devices 
Meeting, 2006.  

[15] M. Higashiwaki, T. Matsui, and T. Mimura, IEEE Electron Device Lett. 27, 16, 2006.
[16] J.W. Palmour, J.W. Milligan, J. Henning, S.T. Allen, A. Ward, P. Parikh, R.P. Smith, 

A. Saxler, M. Moore and Y. Wu, "SiC and GaN Based Transistor and Circuit 
Advances", Proc. GAAS 2004, Amsterdam, pp. 555–558. 

[17]  T. Inoue, Y. Ando, H. Miyamoto, Ta Nakayama, Y. Okamoto, K. Hataya and M. 
Kuzuhara, “30GHz-band 5.8 W High-Power AlGaN/GaN Heterojunction-FET”, 
MTTS 2004, Fort Worth, pp. 1649-1651. 

[18]  M. Micovic, Ara Kurdoghlian, H.P. Moyer, P. Hashimoto, A. Schmitz, I. 
Milosavljevic, P. J. Willadsen, W.-S. Wong, J. Duvall, M. Hu, M. J. Delaney, D. H. 
Chow, “Ka-band MMIC Power Amplifier in GaN HFET Technology”, MTT-S 2004, 
Fort Worth, pp. 1653-1656. 

[19]  Y.-F. Wu, M. Moore, A. Saxler, P. Smith, P.M. Chavarkar, P. Parikh, “3.5-Watt 
AlGaN/GaN HEMTs and Amplifiers at 35 GHz”, 2003 IEEE Int. Electron Device 

  Meeting.Dig., pp. 579-581, December 2003. 
[20] H.F. Sun, A.R. Alt, H. Benedickter and C.R. Bolognesi, “100 nm gate AlGaN/GaN 

HEMTs on Silicon with fT = 90 GHz”, ELECTRONICS LETTERS 26th March 2009 
Vol. 45 No. 7

[21] Fujitsu Limited and Fujitsu Laboratories Ltd. International Symposium on 
Compound Semiconductors (ISCS), held in Rust, Germany from September 21 – 24, 
2008. 

[22] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. 
Speck, and U. K. Mishra, “High-Power AlGaN/GaN HEMTs for Ka-Band 
Applications”, IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 11, pp. 781-783, 
NOVEMBER 2005 

[23] http://www.mwjournal.com/search/article.asp?HH_ID=AR_5370,“Gallium 
Nitride Microwave Transistor Technology for Radar Applications”, Technical 
feature, Microwave Journal, Vol. 51 | No. 1 | January 2008 | Page 106 

[24]  Yong-Sub Lee *, Mun-Woo Lee, Yoon-Ha Jeong, "A 1-GHz GaN HEMT based class-
E power amplifier with 80% efficiency" DOI 10.1002/mop.23803, 2008. 

[25]  David Schmelzer and Stephen I. Long, "A GaN HEMT Class F Amplifier at 2 GHz 
with > 80 % PAE" Compound Semiconductor Integrated Circuit Symposium, CSIC 
2006. IEEE, pages: 96-99, 2006. 

[26] http://www.comtechpst.com/products/specs/114.pdf 
[27] E. Mitani, et al, “An 800 W AlGaN/GaN HEMT for S-band High-power 

Application,” 2009 CS Mantech Conference Digest, p. 213. 
[28]  K. Kanto, et al, “An X-band 250 W Solid-state Power Amplifier Using GaN Power 

HEMTs,” 2008 IEEE RWS Conference Digest, p. 77. 
[29]  Toshiba Press Release, http://www.toshiba.co.jp/about/press/2009_11/ 

pr_j2801.htm. 
[30]  Schuh, P.  et al "Advanced High Power Amplifier Chain for X-Band T/R-Modules 

based on GaN MMICs," The 1st European Microwave Integrated Circuits 
Conference, 2006. Page(s):241 - 244. 

www.intechopen.com



The present and future trends in High Power Microwave and Millimeter Wave Technologies 11

9. Acknowledgement 
The authors wish to acknowledge efforts of the Government of Oman for the financial 
support of this work and creating and financing the Sultan Qabos IT Chair at NED 
University of Engineering and Technology, Karachi, Pakistan. 

 
10. References 
 

[1]  A. M. Darwish, K. Boutros, B. Luo, B. D. Huebschman, E. Viveiros, and H. A. 
Hung. Algan/gan ka-band 5-w mmic amplifier. IEEE Transactions on Microwave 
Theory and Techniques, 54(12):4456– 4463, 2006. 

[2]  K.S. Boutros, W.B. Luo, Y. Ma, G. Nagy, and J. Hacker. 5 W GaN mmic for 
millimeter-wave applications. IEEE Compound Semiconductor Integrated Circuit 
Symposium, 2006, pages 93–95, 2006. 

[3]  M. van Heijningen, F.E. van Vliet, R. Quay, F. van Raay, R. Kiefer, S. Muller, D. 
Krausse, M. Seelmann-Eggebert, M. Mikulla, and M. Schlechtweg. Ka-band 
algan/gan hemt high power and driver amplifier mmics. Gallium Arsenide and 
Other Semiconductor Application Symposium, 2005. EGAAS 2005. European, pages 237–
240, 2005. 

[4]  Y.-F.Wu, A. Saxler, M. Moore, T.Wisleder, U.K. Mishra, and P. Parikh. “Field-
plated gan hemts and amplifiers.” IEEE Compound Semiconductor Integrated Circuit 
Symposium (IEEE Cat. No.05CH37701), page 4, 2005. 

[5]  M. Nishijima, et al.; “A k-band algan/gan hfet mmic amplifier on sapphire using 
novel superlattice cap layer.” Microwave Symposium Digest, 2005 IEEE MTT-S 
International, 2005. 

[6]  M. Micovic, et al.; “Ka-band MMIC power amplifier in GaN HFET technology.“ 
Microwave Symposium Digest, 2004 IEEE MTT-S International, pages 3:1653–1656, 
2004. 

[7]  Y.-F.Wu, M. Moore, A. Saxler, P. Smith, P.M. Chavarkar, and P. Parikh. 3.5-watt 
algan/gan hemts and amplifiers at 35 ghz. Electron Devices Meeting, 2003. IEDM ’03 
Technical Digest. IEEE International, page 23.5.1, 2003. 

[8]  W.L. Pribble, J.W. Palmour, S.T. Sheppard, R.P. Smith, S.T. Allen, T.J. Smith, Z. 
Ring, J.J. Sumakeris, A.W. Saxler, and J.W. Milligan. Applications of sic mesfets and 
gan hemts in power amplifier design. Microwave Symposium Digest, 2002 IEEE MTT-
S International, 3:1819–1822 vol.3, 2002. 

[9] www.freescale.com/files/rf_if/doc/data_sheet/MRF6VP11KH.pdf 
[10] B. Levush and E.J. Dutkowski, “Vacuum Electronics: Status and Trends,” 2007 IEEE 

Radar Conference, April 17–20, 2007, Boston, MA. 
[11] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214, 

1993. 
[12] Cree, Inc., www.cree.com. 
[13] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. 

Mishra, “AlGaN/GaN high electron mobility transistors with InGaN back-barrier,” 
IEEE Electron Device Lett., vol. 27, no. 1, pp. 13–15, Jan. 2006. 

 
 

[14] M. Micovic, A. Kurdoghlian, P. Hashimoto, M. Hu, M. Antcliffe, P. J. Willadsen, W. 
S. Wong, R. Bowen, I. Milosavljevic, A. Schmitz, M. Wetzel, and D. H. Chow, BGaN 
HFET for W-band power applications,[ in IEEE International Electron Devices 
Meeting, 2006.  

[15] M. Higashiwaki, T. Matsui, and T. Mimura, IEEE Electron Device Lett. 27, 16, 2006.
[16] J.W. Palmour, J.W. Milligan, J. Henning, S.T. Allen, A. Ward, P. Parikh, R.P. Smith, 

A. Saxler, M. Moore and Y. Wu, "SiC and GaN Based Transistor and Circuit 
Advances", Proc. GAAS 2004, Amsterdam, pp. 555–558. 

[17]  T. Inoue, Y. Ando, H. Miyamoto, Ta Nakayama, Y. Okamoto, K. Hataya and M. 
Kuzuhara, “30GHz-band 5.8 W High-Power AlGaN/GaN Heterojunction-FET”, 
MTTS 2004, Fort Worth, pp. 1649-1651. 

[18]  M. Micovic, Ara Kurdoghlian, H.P. Moyer, P. Hashimoto, A. Schmitz, I. 
Milosavljevic, P. J. Willadsen, W.-S. Wong, J. Duvall, M. Hu, M. J. Delaney, D. H. 
Chow, “Ka-band MMIC Power Amplifier in GaN HFET Technology”, MTT-S 2004, 
Fort Worth, pp. 1653-1656. 

[19]  Y.-F. Wu, M. Moore, A. Saxler, P. Smith, P.M. Chavarkar, P. Parikh, “3.5-Watt 
AlGaN/GaN HEMTs and Amplifiers at 35 GHz”, 2003 IEEE Int. Electron Device 

  Meeting.Dig., pp. 579-581, December 2003. 
[20] H.F. Sun, A.R. Alt, H. Benedickter and C.R. Bolognesi, “100 nm gate AlGaN/GaN 

HEMTs on Silicon with fT = 90 GHz”, ELECTRONICS LETTERS 26th March 2009 
Vol. 45 No. 7

[21] Fujitsu Limited and Fujitsu Laboratories Ltd. International Symposium on 
Compound Semiconductors (ISCS), held in Rust, Germany from September 21 – 24, 
2008. 

[22] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. 
Speck, and U. K. Mishra, “High-Power AlGaN/GaN HEMTs for Ka-Band 
Applications”, IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 11, pp. 781-783, 
NOVEMBER 2005 

[23] http://www.mwjournal.com/search/article.asp?HH_ID=AR_5370,“Gallium 
Nitride Microwave Transistor Technology for Radar Applications”, Technical 
feature, Microwave Journal, Vol. 51 | No. 1 | January 2008 | Page 106 

[24]  Yong-Sub Lee *, Mun-Woo Lee, Yoon-Ha Jeong, "A 1-GHz GaN HEMT based class-
E power amplifier with 80% efficiency" DOI 10.1002/mop.23803, 2008. 

[25]  David Schmelzer and Stephen I. Long, "A GaN HEMT Class F Amplifier at 2 GHz 
with > 80 % PAE" Compound Semiconductor Integrated Circuit Symposium, CSIC 
2006. IEEE, pages: 96-99, 2006. 

[26] http://www.comtechpst.com/products/specs/114.pdf 
[27] E. Mitani, et al, “An 800 W AlGaN/GaN HEMT for S-band High-power 

Application,” 2009 CS Mantech Conference Digest, p. 213. 
[28]  K. Kanto, et al, “An X-band 250 W Solid-state Power Amplifier Using GaN Power 

HEMTs,” 2008 IEEE RWS Conference Digest, p. 77. 
[29]  Toshiba Press Release, http://www.toshiba.co.jp/about/press/2009_11/ 

pr_j2801.htm. 
[30]  Schuh, P.  et al "Advanced High Power Amplifier Chain for X-Band T/R-Modules 

based on GaN MMICs," The 1st European Microwave Integrated Circuits 
Conference, 2006. Page(s):241 - 244. 

www.intechopen.com



Advanced Microwave and Millimeter Wave 
Technologies: Semiconductor Devices, Circuits and Systems12

[31]  Schuh, P.  et al "GaN MMIC based T/R-Module Front-End for X-Band 
Applications," The 3rd European Microwave Integrated Circuits Conference, 2008. 
Page(s):274 - 277. 

[32]  L. Marosi, M. Sholley, et al "94 GHz Power Amplifier using PHEMT Technology," 
Microwave Symposium Digest, 1995, IEEE MTT-S International, 16-20 May 1995 
Page(s):1597 - 1600 vol.3. 

[33]  Pin-Pin Huang; Tian-Wei Huang; et al.; Elliott, J.H, "A 94-GHz 0.35-W power 
amplifier module", Microwave Theory and Techniques, IEEE Transactions on 
Volume 45, Issue 12, Part 2, Dec. 1997 Page(s):2418 – 2423. 

[34]  M. Micovic, et al.; “GaN MMIC PAs for E-Band (71 GHz - 95 GHz) Radio”, 
Compound Semiconductor Integrated Circuits Symposium, 2008. CSICS '08. IEEE, 
pp. 1-4. 

www.intechopen.com



Advanced Microwave and Millimeter Wave Technologies

Semiconductor Devices Circuits and Systems

Edited by Moumita Mukherjee

ISBN 978-953-307-031-5

Hard cover, 642 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book is planned to publish with an objective to provide a state-of-the-art reference book in the areas of

advanced microwave, MM-Wave and THz devices, antennas and systemtechnologies for microwave

communication engineers, Scientists and post-graduate students of electrical and electronics engineering,

applied physicists. This reference book is a collection of 30 Chapters characterized in 3 parts: Advanced

Microwave and MM-wave devices, integrated microwave and MM-wave circuits and Antennas and advanced

microwave computer techniques, focusing on simulation, theories and applications. This book provides a

comprehensive overview of the components and devices used in microwave and MM-Wave circuits, including

microwave transmission lines, resonators, filters, ferrite devices, solid state devices, transistor oscillators and

amplifiers, directional couplers, microstripeline components, microwave detectors, mixers, converters and

harmonic generators, and microwave solid-state switches, phase shifters and attenuators. Several applications

area also discusses here, like consumer, industrial, biomedical, and chemical applications of microwave

technology. It also covers microwave instrumentation and measurement, thermodynamics, and applications in

navigation and radio communication.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

S. Azam and Q. Wahab (2010). The Present and Future Trends in High Power Microwave and Millimeter

Wave Technologies, Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits

and Systems, Moumita Mukherjee (Ed.), ISBN: 978-953-307-031-5, InTech, Available from:

http://www.intechopen.com/books/advanced-microwave-and-millimeter-wave-technologies-semiconductor-

devices-circuits-and-systems/the-present-and-future-trends-in-high-power-microwave-and-millimeter-wave-

technologies

www.intechopen.com



www.intechopen.com



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


