
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Haptic-Based 3D Carving Simulator 299

Haptic-Based 3D Carving Simulator

Gabriel Telles O’Neill, Won-Sook Lee and Jeff William

X

Haptic-Based 3D Carving Simulator

Gabriel Telles O'Neill, Won-Sook Lee and Jeff William
University of Ottawa

Canada

Abstract

We aim to add realistic force-feedback to the process of real-time volume removal from a 3D
mesh object. We refer to this volume removal as “3D carving”. 3D carving is particularly
applicable to the computer simulation of surgical procedures involving bone reductions that
are performed with a motorized burr tool; however the methods and algorithms presented
here are generic enough to be used for other purposes, such as modeling, destructible
objects & terrains in games, etc.
The system represents the volume of the virtual objects using a voxel-set during carving
process. A polygonal mesh is created from this voxel-set to display a smoother rendition of
the virtual object. Out system also employs the novel Dynamic Ball-Pivoting Algorithm to
generate quick mesh updates when voxel-set revisions occur. The advantages of this being
that minor changes to the voxel-set only require minor changes to the mesh, whereas the
standard Ball-Pivoting Algorithm approach is to perform a global re-meshing.
In our haptic carving system interactions with the aforementioned voxel-set can provide
output force-feedback to the system operator. A pen-based haptic tool is used to act as a 3D
mouse in order to “feel” the surface of the model as well as to remove select volume
segments of the object. Two collision detection schemes are presented here which allow
users to feel the surface of virtual objects either using the voxels alone or by using
supplemental information from the polygonal mesh. When the burr-tool has its “cutting
mode” enabled, which sections of an object’s volume are to be removed is decided by
evaluating that volume’s proximity to the center of the burr.

1. Introduction

Traditionally, the majority of computing applications have relegated their output to what
can be seen or heard- modalities consistent with the hardware available on the average
desktop computer. However, the advantage gained from incorporating the sense of touch to
computing applications has recently increased in practicality as the hardware supporting
virtual touch decreases in cost and becomes more accessible. Haptic devices are a relative
new technology that provides humans a tactile interface to elements in a virtual world. Even
as a fledgling field it has already shown promise in virtual-reality systems, design of
computer-generated objects, medicine, robotics and gaming.

15

www.intechopen.com

Advances in Haptics300

In some cases, pre-existing audio-visual systems seeking to enhance the realism of a user’s
experience can do so by replacing one of the system’s input devices (e.g. a mouse) with one
of these haptic devices. The system to be described here is an example of this.
The graphical simulation system is to demonstrate their Dynamic Ball Pivoting Algorithm
(DBPA) 0. The aim was to develop a system for the real-time visualization of removing
volume for an object model. In the DBPA system, an object’s volume is represented using
voxels, but an associated triangle mesh is also maintained for display purposes since direct
visualization of voxels is unrealistic and unappealing. Tasks such as simulating the drilling
or carving of bone during medical procedures, boring wood, biting food and chiselling
marble can all be observed in real time by the operator of the DBPA system.
Our haptic simulation system was built on-top of the DBPA system; where control of the
volume-removing element was given to a haptic device, whereas the graphical simulation
system itself was mouse-driven. The result is a means to carve, drill and trim a three
dimensional object stored inside the computer while observing the removal of sections of
volume and receiving corresponding force feedback immediately.
While this system’s general scope is that of virtual-reality, it has been designed with the
ultimate goal of being used as a training environment for surgeons in order to help them
accumulate experience and muscle memory useful in actual operations involving bone
reductions. For example, motivational surgery around which this new system was designed
was a minimally invasive procedure to correct femoroacetabular impingements (FAIs). FAIs
describe a condition where there exists an overgrowth of bone on either a patient’s femur
neck or around the hip socket. These overgrowths often cause discomfort and chafe during
normal hip exercise, producing premature cartilage damage and labral tears, which lead to
further medical complications and pain. These impingements can be treated by using a
motorized burr tool to grind away the excess bone and reshape the affected regions for a
better fit between the femur head and hip socket. As such, a virtual burr with a spherical
head, fashioned to resemble the one depicted in Fig. 1 (without the hood), is used as the
default tool for volume removal inside our simulation.

Fig. 1. An example of a motorized burr tool with a hood

In our system, the force-feedback and the intersection points between the burr and object’s
volume can be computed using one of two methods. The first being the voxel-set, which
most directly represents to object’s volume, and the second being the set of triangles that
compose the polygonized mesh generated by the DBPA. Volume is removed from an object
by isolating sections of voxels intersecting with the virtual burr and eliminating them from
voxel-set. When voxels do get removed from the virtual model, the affected regions of the
corresponding triangle mesh are updated and re-displayed.

2. Related Work

Increasing interest has developed over the past decade on developing carving simulators
with faithful haptic feedback for various medical fields. Of these the most technically
successful appear to be dental training systems. These systems are designed to allow dental
students to practice certain procedures on a virtual set of teeth such as drilling operations
and filling cavities with amalgam. In these simulators, the manner in which collision
detection and the resulting haptic force-feedback is calculated is intrinsically linked to how
the system’s designers chose to represent the volume of their carvable objects.
In Kim and Park’s dental simulator 0, their model’s volume was represented using a
Computational Solid Geometry (CSG) point-set. CSG expresses an object as the combination
from a set of solid primitives. These primitives can be parametric equations of a quadric
surface (e.g. planes, spheres, cones, cylinders, or paraboloids), or simple, regular prisms (e.g.
cubes). The primitives will form the leaves of a binary tree, in which internal nodes
represent rigid transformations (translations, rotations, or scalings) of the children nodes, or
represent regularized Boolean set operations (union, intersection, or difference) on the left or
right sub-tree. Performing volume removal (cutting, drilling, etc.) using CSG is a relatively
simple matter of representing the object that will have its volume removed as a CSG sub-
tree whose parent is a difference operation with the second sub-tree being the union of all
instalments of volume that have been “cut”. However a major drawback of this approach is
that the volume to be “cut” must first be converted to a CSG representation, which is
difficult and non-automated for complex objects such as human bones. A second drawback
is that the method does not scale well as the number of volume removals increases. This is
because the tree representing each “cut” must be added to the main tree of the object. As a
result, successive cuts to an object’s volume will make the tree representation grow large
quickly. Using this CSG model, the two researchers chose to implement collision detection
by calculating the distance from an offset field surrounding the surface of the virtual teeth to
the center of the user’s dental tool. If the tool’s center passed the offset field, the haptic
device controlling the dental tool would provide force-feedback in the direction of the field’s
implicit surface normal. The force’s direction is used to calculate the tool’s virtual contact
point with the object’s surface. This contact point is then used to calculate the force vector by
using a spring-damper model based on Hooke’s law.
Similarly, Yau et al. 0 also used a spring-damper model to calculate the force vector sent to
the haptic device of their dental training system. However, instead of representing the
volume of their objects using CSG, an adaptive voxel model is used. These researchers used
an implicit function to define their cutting tools, which in turn were used to decide exactly
what volume was to be removed from the model. As the voxels used to represent the object
are of varying sizes in this scheme, if the tool comes into contact with a large voxel,

www.intechopen.com

Haptic-Based 3D Carving Simulator 301

In some cases, pre-existing audio-visual systems seeking to enhance the realism of a user’s
experience can do so by replacing one of the system’s input devices (e.g. a mouse) with one
of these haptic devices. The system to be described here is an example of this.
The graphical simulation system is to demonstrate their Dynamic Ball Pivoting Algorithm
(DBPA) 0. The aim was to develop a system for the real-time visualization of removing
volume for an object model. In the DBPA system, an object’s volume is represented using
voxels, but an associated triangle mesh is also maintained for display purposes since direct
visualization of voxels is unrealistic and unappealing. Tasks such as simulating the drilling
or carving of bone during medical procedures, boring wood, biting food and chiselling
marble can all be observed in real time by the operator of the DBPA system.
Our haptic simulation system was built on-top of the DBPA system; where control of the
volume-removing element was given to a haptic device, whereas the graphical simulation
system itself was mouse-driven. The result is a means to carve, drill and trim a three
dimensional object stored inside the computer while observing the removal of sections of
volume and receiving corresponding force feedback immediately.
While this system’s general scope is that of virtual-reality, it has been designed with the
ultimate goal of being used as a training environment for surgeons in order to help them
accumulate experience and muscle memory useful in actual operations involving bone
reductions. For example, motivational surgery around which this new system was designed
was a minimally invasive procedure to correct femoroacetabular impingements (FAIs). FAIs
describe a condition where there exists an overgrowth of bone on either a patient’s femur
neck or around the hip socket. These overgrowths often cause discomfort and chafe during
normal hip exercise, producing premature cartilage damage and labral tears, which lead to
further medical complications and pain. These impingements can be treated by using a
motorized burr tool to grind away the excess bone and reshape the affected regions for a
better fit between the femur head and hip socket. As such, a virtual burr with a spherical
head, fashioned to resemble the one depicted in Fig. 1 (without the hood), is used as the
default tool for volume removal inside our simulation.

Fig. 1. An example of a motorized burr tool with a hood

In our system, the force-feedback and the intersection points between the burr and object’s
volume can be computed using one of two methods. The first being the voxel-set, which
most directly represents to object’s volume, and the second being the set of triangles that
compose the polygonized mesh generated by the DBPA. Volume is removed from an object
by isolating sections of voxels intersecting with the virtual burr and eliminating them from
voxel-set. When voxels do get removed from the virtual model, the affected regions of the
corresponding triangle mesh are updated and re-displayed.

2. Related Work

Increasing interest has developed over the past decade on developing carving simulators
with faithful haptic feedback for various medical fields. Of these the most technically
successful appear to be dental training systems. These systems are designed to allow dental
students to practice certain procedures on a virtual set of teeth such as drilling operations
and filling cavities with amalgam. In these simulators, the manner in which collision
detection and the resulting haptic force-feedback is calculated is intrinsically linked to how
the system’s designers chose to represent the volume of their carvable objects.
In Kim and Park’s dental simulator 0, their model’s volume was represented using a
Computational Solid Geometry (CSG) point-set. CSG expresses an object as the combination
from a set of solid primitives. These primitives can be parametric equations of a quadric
surface (e.g. planes, spheres, cones, cylinders, or paraboloids), or simple, regular prisms (e.g.
cubes). The primitives will form the leaves of a binary tree, in which internal nodes
represent rigid transformations (translations, rotations, or scalings) of the children nodes, or
represent regularized Boolean set operations (union, intersection, or difference) on the left or
right sub-tree. Performing volume removal (cutting, drilling, etc.) using CSG is a relatively
simple matter of representing the object that will have its volume removed as a CSG sub-
tree whose parent is a difference operation with the second sub-tree being the union of all
instalments of volume that have been “cut”. However a major drawback of this approach is
that the volume to be “cut” must first be converted to a CSG representation, which is
difficult and non-automated for complex objects such as human bones. A second drawback
is that the method does not scale well as the number of volume removals increases. This is
because the tree representing each “cut” must be added to the main tree of the object. As a
result, successive cuts to an object’s volume will make the tree representation grow large
quickly. Using this CSG model, the two researchers chose to implement collision detection
by calculating the distance from an offset field surrounding the surface of the virtual teeth to
the center of the user’s dental tool. If the tool’s center passed the offset field, the haptic
device controlling the dental tool would provide force-feedback in the direction of the field’s
implicit surface normal. The force’s direction is used to calculate the tool’s virtual contact
point with the object’s surface. This contact point is then used to calculate the force vector by
using a spring-damper model based on Hooke’s law.
Similarly, Yau et al. 0 also used a spring-damper model to calculate the force vector sent to
the haptic device of their dental training system. However, instead of representing the
volume of their objects using CSG, an adaptive voxel model is used. These researchers used
an implicit function to define their cutting tools, which in turn were used to decide exactly
what volume was to be removed from the model. As the voxels used to represent the object
are of varying sizes in this scheme, if the tool comes into contact with a large voxel,

www.intechopen.com

Advances in Haptics302

recursive subdivision must be performed on that voxel until the voxels in contact with the
tool are small enough for removal. Any voxel whose volume is found to be completely
“inside” the tool will subsequently be remove from the model.
A real-time haptic and visual bone dissection simulator00 was also proposed by Agus et al.,
aimed as being used as a training tool for temporal bone surgery. This system most closely
resembles our own as it generates its object volume through the voxel discretization of 3D
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) data. In addition to
bone matter, secondary visual effects such as bone dust, debris, and water are realized using
a particle system to potentially heighten the realism of surgeon’s experience.

3. Graphical Carving System

Graphical simulation system is necessary before detailing our own hi-fidelity haptic
feedback improvements. The development goal of this graphical carving system, DBPA, is
the real-time visualization of volume removal for an object model. Updates in a model’s
volume resulting from simulated operations such as drilling, carving, boring, biting and
chiselling the object are performed and displayed back to the operator at a rate that appears
instantaneous to them. This method uses voxels (of a constant size) as a volumetric
representation of the object. Since renderings composed of voxels appear very blocky, they
fail to provide the realistic visual interface necessary for a surgical training simulator. A
further presentation step is required: from the object’s voxel-set, the system generates a
much nicer looking polygon mesh to visualize the object model before, during, and after
cutting. Triangulation is achieved using the Dynamic Ball Pivoting Algorithm0, which is an
extension of Ball Pivoting Algorithm (BPA)0.
The objects to be carved are represented by three major data structures: a voxel-set used for
volume representation, a triangle mesh used for display purposes, and a modified BPA
front-end used for updating the display mesh when the voxel-set is altered. Each surface
voxel in the voxel-set is also linked to its corresponding vertex in the triangle mesh. The
mesh is defined such that vertices are shared between adjacent edges, and edges are shared
between adjacent triangles.

3.1 Initialization
To start, the system needs one of the following inputs:

1) A solid pre-modeled as a voxel-set

This option is designed to facilitate the insertion of 3D CT or MRI data into the
program for patient/ object specific simulation.

2) A polygon model

The model provided will then subsequently be reduced to a voxel-set. Afterwards,
the voxel in which each vertex of the bounding box finds itself is found in order to
determine the voxel-space volume that binds the triangle. Then, for each voxel within
the volume, the fast 3D triangle-box overlap test from Akenine-Möller 0. All
intersecting voxels form a boundary around the mesh volume. The volume inside the
boundary is then filled using a 3D scanline filling algorithm.

Either way, once the voxel representation of the solid is determined, the system then
computes the corresponding polygonal mesh using the BPA. The algorithm is intended for
3D data-acquisition of real-world objects, but Williams et al 0 found it to be equally well
suited for generating a triangle mesh from a voxel-set by using the centers of the voxels as
the point set.

3.2 Carving Out Volume
Within the system, carving is performed by manipulating a virtual tool which resembles the
motorized burrs used by medical professionals. In practice, burrs are used by surgeons to
dexterously grind way at bone surfaces with a rotating, abrasive head while gripping the
tool’s handle. In this system, the tool is implemented as a spherical cutting head which is
attached to a non-cutting handle. When the user moves the cutting tool over the object being
carved, voxels are removed and the mesh is updated.

Fig. 2. Unmeshed voxelized apple with carved hole

Whenever the tool’s position is changed, the system uses the geometric equation for the
tool’s head to determine if there are the voxels whose centers are within its boundary. If so,
they are removed from the voxel-set. When voxels are removed from the set, the triangle
mesh must be updated to reflect the changes. The DBPA is responsible for these updates
and, for each voxel v removed from the set, performs the following procedure:

1) If v was not a surface voxel

no additional steps need to be taken.

2) Otherwise, if v was a surface voxel

It must have a corresponding mesh vertex with adjacent triangles. The voxel’s
removal indicates the removal of a vertex from the mesh, thus all triangles adjacent
to that vertex become invalid and must also be removed. After removal, a new loop
in the front-end is created that bounds the removed triangles. Care is taken when
adding the loops to ensure that the BPA front invariant property is preserved while

www.intechopen.com

Haptic-Based 3D Carving Simulator 303

recursive subdivision must be performed on that voxel until the voxels in contact with the
tool are small enough for removal. Any voxel whose volume is found to be completely
“inside” the tool will subsequently be remove from the model.
A real-time haptic and visual bone dissection simulator00 was also proposed by Agus et al.,
aimed as being used as a training tool for temporal bone surgery. This system most closely
resembles our own as it generates its object volume through the voxel discretization of 3D
Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) data. In addition to
bone matter, secondary visual effects such as bone dust, debris, and water are realized using
a particle system to potentially heighten the realism of surgeon’s experience.

3. Graphical Carving System

Graphical simulation system is necessary before detailing our own hi-fidelity haptic
feedback improvements. The development goal of this graphical carving system, DBPA, is
the real-time visualization of volume removal for an object model. Updates in a model’s
volume resulting from simulated operations such as drilling, carving, boring, biting and
chiselling the object are performed and displayed back to the operator at a rate that appears
instantaneous to them. This method uses voxels (of a constant size) as a volumetric
representation of the object. Since renderings composed of voxels appear very blocky, they
fail to provide the realistic visual interface necessary for a surgical training simulator. A
further presentation step is required: from the object’s voxel-set, the system generates a
much nicer looking polygon mesh to visualize the object model before, during, and after
cutting. Triangulation is achieved using the Dynamic Ball Pivoting Algorithm0, which is an
extension of Ball Pivoting Algorithm (BPA)0.
The objects to be carved are represented by three major data structures: a voxel-set used for
volume representation, a triangle mesh used for display purposes, and a modified BPA
front-end used for updating the display mesh when the voxel-set is altered. Each surface
voxel in the voxel-set is also linked to its corresponding vertex in the triangle mesh. The
mesh is defined such that vertices are shared between adjacent edges, and edges are shared
between adjacent triangles.

3.1 Initialization
To start, the system needs one of the following inputs:

1) A solid pre-modeled as a voxel-set

This option is designed to facilitate the insertion of 3D CT or MRI data into the
program for patient/ object specific simulation.

2) A polygon model

The model provided will then subsequently be reduced to a voxel-set. Afterwards,
the voxel in which each vertex of the bounding box finds itself is found in order to
determine the voxel-space volume that binds the triangle. Then, for each voxel within
the volume, the fast 3D triangle-box overlap test from Akenine-Möller 0. All
intersecting voxels form a boundary around the mesh volume. The volume inside the
boundary is then filled using a 3D scanline filling algorithm.

Either way, once the voxel representation of the solid is determined, the system then
computes the corresponding polygonal mesh using the BPA. The algorithm is intended for
3D data-acquisition of real-world objects, but Williams et al 0 found it to be equally well
suited for generating a triangle mesh from a voxel-set by using the centers of the voxels as
the point set.

3.2 Carving Out Volume
Within the system, carving is performed by manipulating a virtual tool which resembles the
motorized burrs used by medical professionals. In practice, burrs are used by surgeons to
dexterously grind way at bone surfaces with a rotating, abrasive head while gripping the
tool’s handle. In this system, the tool is implemented as a spherical cutting head which is
attached to a non-cutting handle. When the user moves the cutting tool over the object being
carved, voxels are removed and the mesh is updated.

Fig. 2. Unmeshed voxelized apple with carved hole

Whenever the tool’s position is changed, the system uses the geometric equation for the
tool’s head to determine if there are the voxels whose centers are within its boundary. If so,
they are removed from the voxel-set. When voxels are removed from the set, the triangle
mesh must be updated to reflect the changes. The DBPA is responsible for these updates
and, for each voxel v removed from the set, performs the following procedure:

1) If v was not a surface voxel

no additional steps need to be taken.

2) Otherwise, if v was a surface voxel

It must have a corresponding mesh vertex with adjacent triangles. The voxel’s
removal indicates the removal of a vertex from the mesh, thus all triangles adjacent
to that vertex become invalid and must also be removed. After removal, a new loop
in the front-end is created that bounds the removed triangles. Care is taken when
adding the loops to ensure that the BPA front invariant property is preserved while

www.intechopen.com

Advances in Haptics304

iteratively removing voxels and their associated mesh triangles. Adding these loops
sometimes cause undesirable adjacent edges which are removed using the BPA’s
“glue” operation.

In order for the DBPA to work properly, certain additional information must be stored at
each edge in the front. When the BPA processes a front, it pivots a ball around each edge in
that front until it strikes a point. This calculation requires not only the coordinates of the
pivotal edge’s vertices, but also (1) the “ball-center” (coordinates of the center of the BPA ρ-
ball when it had previously struck the point that generated the triangle) and (2) the
coordinates of the point (vertex) opposite to front edge in its binding triangle. In order to
have this information available, newly created triangles in the mesh also store their
respective ball-centers. Also, when an edge is added to the front, the front’s corresponding
edge will store both the ball-centre and opposite-point as additional data.

3.3 Texturing Meshes
To further enhance the visual fidelity of carvable objects, this system has the option of
applying textures to the voxels. An alternative to flatly colouring the voxels, a 2D texture
can be applied over the exterior of the shape while a 3D texture can be specified for the
object’s interior. The 2D texture is applied during the initialization stage and is attached
directly to the triangle mesh that represents the whole, un-carved object. Once object carving
is underway, the new triangles created through the DBPA are mapped to the contents of the
3D texture. Examples are shown in Fig. 3 and Fig. 4.

Fig. 3. Meshed apple with external texture

Fig. 4. Demonstration of carving an externally and internally textured object. The cucumber
uses an external 2D texture as well as an internal 3D texture

4. Haptic system

While the DBPA 0 has the graphical solution using OpenSceneGraph (OSG), the haptic
simulation system chooses the NOVINT FalconTM along with its stock API to implement our
conjoined haptic solution. The Falcon is a pen-based haptic device intended as a joystick or
mouse substitute. It allows a user to control an application in a three dimensional space
while also providing him or her with high-fidelity force-feedback. When a user holds the
Falcon’s grip and moves the cursor to interact with a virtual scene, motors in the device turn
on and are updated at precise rate of 1000Hz, allowing the operator to feel texture, shape,
weight, dimension, and dynamics.

Fig. 5. NOVINT Falcon, reprinted from the NOVINT website

www.intechopen.com

Haptic-Based 3D Carving Simulator 305

iteratively removing voxels and their associated mesh triangles. Adding these loops
sometimes cause undesirable adjacent edges which are removed using the BPA’s
“glue” operation.

In order for the DBPA to work properly, certain additional information must be stored at
each edge in the front. When the BPA processes a front, it pivots a ball around each edge in
that front until it strikes a point. This calculation requires not only the coordinates of the
pivotal edge’s vertices, but also (1) the “ball-center” (coordinates of the center of the BPA ρ-
ball when it had previously struck the point that generated the triangle) and (2) the
coordinates of the point (vertex) opposite to front edge in its binding triangle. In order to
have this information available, newly created triangles in the mesh also store their
respective ball-centers. Also, when an edge is added to the front, the front’s corresponding
edge will store both the ball-centre and opposite-point as additional data.

3.3 Texturing Meshes
To further enhance the visual fidelity of carvable objects, this system has the option of
applying textures to the voxels. An alternative to flatly colouring the voxels, a 2D texture
can be applied over the exterior of the shape while a 3D texture can be specified for the
object’s interior. The 2D texture is applied during the initialization stage and is attached
directly to the triangle mesh that represents the whole, un-carved object. Once object carving
is underway, the new triangles created through the DBPA are mapped to the contents of the
3D texture. Examples are shown in Fig. 3 and Fig. 4.

Fig. 3. Meshed apple with external texture

Fig. 4. Demonstration of carving an externally and internally textured object. The cucumber
uses an external 2D texture as well as an internal 3D texture

4. Haptic system

While the DBPA 0 has the graphical solution using OpenSceneGraph (OSG), the haptic
simulation system chooses the NOVINT FalconTM along with its stock API to implement our
conjoined haptic solution. The Falcon is a pen-based haptic device intended as a joystick or
mouse substitute. It allows a user to control an application in a three dimensional space
while also providing him or her with high-fidelity force-feedback. When a user holds the
Falcon’s grip and moves the cursor to interact with a virtual scene, motors in the device turn
on and are updated at precise rate of 1000Hz, allowing the operator to feel texture, shape,
weight, dimension, and dynamics.

Fig. 5. NOVINT Falcon, reprinted from the NOVINT website

www.intechopen.com

Advances in Haptics306

Our system’s interface with the Falcon was the Haptic Device Abstraction Layer (HDAL)
which is NOVINT’s pre-packaged API. HDAL lacks the higher-level functions that other
haptic APIs (such as Sensable’s OpenHaptics or H3D.org’s HAPI) have, which means that
most operations such as force calculations and button status lack automation and need be
calculated manually. Also, because the haptic device needs to be updated a thousand times
a second, all operations performed inside the HDAL’s regular maintenance loop need to be
performed in under 1 ms in order to maintain “high-fidelity” haptic force feedback. The
implication here is that special effort must be taken in order to ensure that the haptic loop’s
tasks are performed as efficiently as possible to guarantee that the device operator does not
sense that the haptic output feels “choppy”.

4.1 System Overview
The sequence of steps used to implement this model-cutting strategy is illustrated in
Fig. 6. This activity diagram serves as an overview of the new haptic system’s two
intercommunicating threads of execution. The two concurrent threads begin executing at
runtime. There is an OSG thread responsible for what the user sees, and a haptic thread
responsible for what the user feels.

Haptic Thread

Graphics Thread

Find the voxels nearest to the burr

Send nearest voxels for caching

Remove voxels queued for “cutting”

Update mesh generated from voxels

Draw Scene

Initialize Haptic Device

Collision Detection

Force Calculation

Burr-tool is in
“cutting mode”?

Send “cut” voxels to the
removal queue

Set haptic device force

YES

NO

Fig. 6. Activity Diagram for the new haptic system

The haptic thread implements one of two collision detection methods which in turn provide
input values for the force calculation step. The first collision detection method uses only the
object’s voxel representation to detect collisions and scale to force feedback while the second
method takes advantage of the polygon mesh created from the voxel-set to perform these
tasks. The former has shown to be useful in quickly evaluating the effects of new features to
system but suffers from a somewhat “blocky” contact with the volume. The latter method
provides a smoother contact force while passing over the object but in turn requires the
management of a set of triangles from the mesh in addition to a cache of voxels.

4.2 Graphics Thread
Our system adds a double-ended queue to the Graphics OSG thread. Named the
“removalQueue”. This structure contains the coordinates of voxels which ought to be
removed from the object during the next execution loop. This queue is populated by the
haptic thread when it has been decided that certain sections of volume have been “cut”
during the user’s operation of the burr-tool. At the start of each OSG loop, the queue will be
emptied and all corresponding voxels in the model will be removed. In addition, the
polygonizer will be informed of any change to the voxel set so that it can re-mesh the
isolated changed regions rather than re-polygonizing the whole model.

Fig. 7. A 2D slice showing how nearby voxel are found
In order to minimize the number of voxels the haptic thread needs to investigate for
collisions, only the nearest voxels to the burr’s head are sent for caching to the haptic class.
The nearest voxels are found using an iterative, step-based approach: if the burr radius is
designated the symbol r, the loop will first look for any voxels within 3r of the burr-head
center, then 5r, then 7r, etc. until it finds at least one voxel which it can send to the haptic
thread for caching. If no voxels are found within 23r of the voxel head, the searching quits. It
was determined through experimentation that after 23r, the voxel set is sufficiently far
enough from the burr-tool that that, even at high speeds, the tool was unlikely to come into
contact with the objects in between cache updates. If the haptic thread’s collision detection is

Iteration 1

Iteration 2

Iteration 1

www.intechopen.com

Haptic-Based 3D Carving Simulator 307

Our system’s interface with the Falcon was the Haptic Device Abstraction Layer (HDAL)
which is NOVINT’s pre-packaged API. HDAL lacks the higher-level functions that other
haptic APIs (such as Sensable’s OpenHaptics or H3D.org’s HAPI) have, which means that
most operations such as force calculations and button status lack automation and need be
calculated manually. Also, because the haptic device needs to be updated a thousand times
a second, all operations performed inside the HDAL’s regular maintenance loop need to be
performed in under 1 ms in order to maintain “high-fidelity” haptic force feedback. The
implication here is that special effort must be taken in order to ensure that the haptic loop’s
tasks are performed as efficiently as possible to guarantee that the device operator does not
sense that the haptic output feels “choppy”.

4.1 System Overview
The sequence of steps used to implement this model-cutting strategy is illustrated in
Fig. 6. This activity diagram serves as an overview of the new haptic system’s two
intercommunicating threads of execution. The two concurrent threads begin executing at
runtime. There is an OSG thread responsible for what the user sees, and a haptic thread
responsible for what the user feels.

Haptic Thread

Graphics Thread

Find the voxels nearest to the burr

Send nearest voxels for caching

Remove voxels queued for “cutting”

Update mesh generated from voxels

Draw Scene

Initialize Haptic Device

Collision Detection

Force Calculation

Burr-tool is in
“cutting mode”?

Send “cut” voxels to the
removal queue

Set haptic device force

YES

NO

Fig. 6. Activity Diagram for the new haptic system

The haptic thread implements one of two collision detection methods which in turn provide
input values for the force calculation step. The first collision detection method uses only the
object’s voxel representation to detect collisions and scale to force feedback while the second
method takes advantage of the polygon mesh created from the voxel-set to perform these
tasks. The former has shown to be useful in quickly evaluating the effects of new features to
system but suffers from a somewhat “blocky” contact with the volume. The latter method
provides a smoother contact force while passing over the object but in turn requires the
management of a set of triangles from the mesh in addition to a cache of voxels.

4.2 Graphics Thread
Our system adds a double-ended queue to the Graphics OSG thread. Named the
“removalQueue”. This structure contains the coordinates of voxels which ought to be
removed from the object during the next execution loop. This queue is populated by the
haptic thread when it has been decided that certain sections of volume have been “cut”
during the user’s operation of the burr-tool. At the start of each OSG loop, the queue will be
emptied and all corresponding voxels in the model will be removed. In addition, the
polygonizer will be informed of any change to the voxel set so that it can re-mesh the
isolated changed regions rather than re-polygonizing the whole model.

Fig. 7. A 2D slice showing how nearby voxel are found
In order to minimize the number of voxels the haptic thread needs to investigate for
collisions, only the nearest voxels to the burr’s head are sent for caching to the haptic class.
The nearest voxels are found using an iterative, step-based approach: if the burr radius is
designated the symbol r, the loop will first look for any voxels within 3r of the burr-head
center, then 5r, then 7r, etc. until it finds at least one voxel which it can send to the haptic
thread for caching. If no voxels are found within 23r of the voxel head, the searching quits. It
was determined through experimentation that after 23r, the voxel set is sufficiently far
enough from the burr-tool that that, even at high speeds, the tool was unlikely to come into
contact with the objects in between cache updates. If the haptic thread’s collision detection is

Iteration 1

Iteration 2

Iteration 1

www.intechopen.com

Advances in Haptics308

to be performed using the voxel-only method, this step ends here. Otherwise, all the
triangles part of the mesh within the same “nearest distance” to the burr head are also sent
to the haptic thread to be part of its cache.

4.3 Haptic Thread
It is worth mentioning that since the 3D space coordinates, roll, pitch and heading of the
voxel model can be altered in the scene to get a better view of the object from all angles,
conversion from local to world coordinates (and back) is required. Upon entering the haptic
loop, the burr’s position is converted to the model’s local coordinate system to simplify the
calculation of burr-to-voxel distances. Conversely, the initial force feedback direction is
calculated in the voxel model’s local coordinate system, so it is converted to world
coordinates before being sent to the haptic device as a force command.

4.3.1 Collision Detection (with only voxels)
Detecting a collision between the burr and the voxel model (or between a prospective
anchor and the voxel model) is fairly simple for a spherical burr head.

(a) (b)

Fig. 8. (a) Voxels causing a collision to be detected (b) Example positioning of a burr head
and anchor point as a collision is being detected

An iterator is created to traverse the set of cached voxels. While doing so, if the distance
from a voxel to the center of the burr-head is less than or equal to the burr’s radius, then a
collision has occurred and the iteration is halted. If the iterator has traverses the voxel cache
completely, no collision has occurred. As shown in Fig. 8(a), the coloured squares represent
the set of voxels cached by the haptic class, but only the voxels marked as orange squares
would cause a collision to occur. If no collision has occurred for any of the nearby voxels,
then the “anchor” is set to the burr head’s current position. This anchor represents an
approximation of closest point to the burr head that does not intersect with any voxels. This
becomes important later when the next collision does occur, since this system scales the
magnitude of the force feedback based on the distance between the burr center and the
anchor center.

When a collision has been detected, the first thing the haptic thread will do is to determine if
there is an alternate anchor point within “anchor drag” distance which is closer to the burr
head than the current anchor point.

burr

ancho
r

(a) (b)

Fig. 9. (a) A 2D slice of 8 new anchor candidates placed around the original anchor (b)
Distances from the candidate anchors to the burr-head

Twenty-six new anchor candidates are generated by applying a fixed “anchor drag”
distance in each combination of x/y/z direction around the old anchor. New anchor positions
that collide with one or more voxel points are disqualified from being candidate anchor
points (coloured red in Fig. 9(a)). The reason why the anchor is permitted to “drag” in any
direction is to let the burr tool slide across the surface of the voxel model after it has collided.
This allows the operator to get an impression of the model landscape. If a drag feature were
not implemented, the burr-tool would be virtually glued to a spot on the model where it
collided and would only relinquish its spot when the burr tool was fully pulled away.
As shown in Fig. 9(b), the candidate anchor with the shortest distance to the burr-head’s
current position, circled here in green, becomes the new anchor point. With the anchor point
established, the following two values are computed:

forceVector ← anchor center – burr center

linkDist ← distance between anchor center and burr center

4.3.2 Collision Detection (with triangle mesh)
Using the cache of nearest triangles to the burr head allows us calculate the force vector and
link distance without have to evaluate candidate anchor points. First the nearest triangle to
the burr head is identified from the triangle cache (coloured red in Fig. 10). The plane on
which this nearest triangle lies is determined and the distance from the burr center to that
plane is calculated.

Fig. 10. A 2D slice of a collision between the burr head and some triangles from the mesh

r
d

www.intechopen.com

Haptic-Based 3D Carving Simulator 309

to be performed using the voxel-only method, this step ends here. Otherwise, all the
triangles part of the mesh within the same “nearest distance” to the burr head are also sent
to the haptic thread to be part of its cache.

4.3 Haptic Thread
It is worth mentioning that since the 3D space coordinates, roll, pitch and heading of the
voxel model can be altered in the scene to get a better view of the object from all angles,
conversion from local to world coordinates (and back) is required. Upon entering the haptic
loop, the burr’s position is converted to the model’s local coordinate system to simplify the
calculation of burr-to-voxel distances. Conversely, the initial force feedback direction is
calculated in the voxel model’s local coordinate system, so it is converted to world
coordinates before being sent to the haptic device as a force command.

4.3.1 Collision Detection (with only voxels)
Detecting a collision between the burr and the voxel model (or between a prospective
anchor and the voxel model) is fairly simple for a spherical burr head.

(a) (b)

Fig. 8. (a) Voxels causing a collision to be detected (b) Example positioning of a burr head
and anchor point as a collision is being detected

An iterator is created to traverse the set of cached voxels. While doing so, if the distance
from a voxel to the center of the burr-head is less than or equal to the burr’s radius, then a
collision has occurred and the iteration is halted. If the iterator has traverses the voxel cache
completely, no collision has occurred. As shown in Fig. 8(a), the coloured squares represent
the set of voxels cached by the haptic class, but only the voxels marked as orange squares
would cause a collision to occur. If no collision has occurred for any of the nearby voxels,
then the “anchor” is set to the burr head’s current position. This anchor represents an
approximation of closest point to the burr head that does not intersect with any voxels. This
becomes important later when the next collision does occur, since this system scales the
magnitude of the force feedback based on the distance between the burr center and the
anchor center.

When a collision has been detected, the first thing the haptic thread will do is to determine if
there is an alternate anchor point within “anchor drag” distance which is closer to the burr
head than the current anchor point.

burr

ancho
r

(a) (b)

Fig. 9. (a) A 2D slice of 8 new anchor candidates placed around the original anchor (b)
Distances from the candidate anchors to the burr-head

Twenty-six new anchor candidates are generated by applying a fixed “anchor drag”
distance in each combination of x/y/z direction around the old anchor. New anchor positions
that collide with one or more voxel points are disqualified from being candidate anchor
points (coloured red in Fig. 9(a)). The reason why the anchor is permitted to “drag” in any
direction is to let the burr tool slide across the surface of the voxel model after it has collided.
This allows the operator to get an impression of the model landscape. If a drag feature were
not implemented, the burr-tool would be virtually glued to a spot on the model where it
collided and would only relinquish its spot when the burr tool was fully pulled away.
As shown in Fig. 9(b), the candidate anchor with the shortest distance to the burr-head’s
current position, circled here in green, becomes the new anchor point. With the anchor point
established, the following two values are computed:

forceVector ← anchor center – burr center

linkDist ← distance between anchor center and burr center

4.3.2 Collision Detection (with triangle mesh)
Using the cache of nearest triangles to the burr head allows us calculate the force vector and
link distance without have to evaluate candidate anchor points. First the nearest triangle to
the burr head is identified from the triangle cache (coloured red in Fig. 10). The plane on
which this nearest triangle lies is determined and the distance from the burr center to that
plane is calculated.

Fig. 10. A 2D slice of a collision between the burr head and some triangles from the mesh

r
d

www.intechopen.com

Advances in Haptics310

If the distance from that burr center to the plane is greater than the burr’s radius (d > r), no
collision has occurred. Otherwise, a collision is recorded and the following two values are
computed:

forceVector ← nearest triangle’s normal

linkDist ← burr radius – burr centre’s distance from the plane

4.3.3 Force Calculation
Finally, the actual calculation for the local force is computed using equation (1).

rforceVectolinkDistrscaleFactongthmatUltStreFt ***

 (1)

This above force equation is inspired by Hooke’s Law (Force = -k × x). However, instead of
using the spring constant k, this equation uses a material’s “ultimate strength”. The ultimate
strength of a material being defined as the “maximum stress a material can withstand”.
Some examples which were used as material parameters in our system can be found in
Table 1.

Material Ultimate Strength (Su) 106 N/m2

Steel (ASTM-A36) 400

Bone (limb) 170

Wood (Douglas fir) 50

Table 1. Comparative ultimate strength values0

In the previous equation, forceVector is the 3D directionality component along which the
(local) force feedback will be aligned, linkDistance is the depth to which the burr has been
pushed into the object’s volume and is used to scale the magnitude of the force according to
how strongly a user is pushing into the volume of the model, materialUltStrength is the
ultimate strength of the material from which the model is made, and scaleFactor is a
downscaling factor to place the final force magnitudes within range of the NOVINT Falcon’s
capabilities.
In order to ensure a smoother transition from one force to the next, a force-filter, as
implemented by Yau et al.0, is adopted by applying a damper to our spring system. This is
applied to the local force by using the method described in Equation (2) where δ is a
predefined threshold for the force change.

FFF

F
F
FFF

FFF

tt

tt

tt

'

1
'

1

 (2)

Following this method, the new force is converted back into the global coordinate system,
where a few force effects are added (e.g. a slight vibration in the tool tip to simulate the
rotating nature of the burr) and finally, this force value is sent to the Falcon as an output
force command.

4.3.4 Voxel Cutting
Any voxel whose distance to the center of the burr head is less than or equal to ¾ of the burr
radius is considered “cut”. To cut a voxel, first, its coordinates will be pushed to the back of
the OSG removal queue. Second, its unique identifier (based on its position in the voxel
model) is placed in a hash-map so that the haptic thread will no longer process that voxel for
collisions while waiting for the OSG thread to send it an updated cache of the nearby and
uncut voxels.

Fig. 11. Distinction between simply colliding (orange) and colliding & cut (red) voxels

5. Results

The results thus far have been promising. The surface features of our apple, femur and
pelvis models can easily be felt using either collision detection method. Surface contact is
definitely smoother using the mesh collision detection scheme. However, carving and, even
more so, drilling operations tend to perform more reliably using the anchor based, voxel-
only method at the moment. Using a material’s ultimate strength has also shown to be
useful in providing the user with haptic feedback on how difficult it is to cut different
materials.

www.intechopen.com

Haptic-Based 3D Carving Simulator 311

If the distance from that burr center to the plane is greater than the burr’s radius (d > r), no
collision has occurred. Otherwise, a collision is recorded and the following two values are
computed:

forceVector ← nearest triangle’s normal

linkDist ← burr radius – burr centre’s distance from the plane

4.3.3 Force Calculation
Finally, the actual calculation for the local force is computed using equation (1).

rforceVectolinkDistrscaleFactongthmatUltStreFt ***

 (1)

This above force equation is inspired by Hooke’s Law (Force = -k × x). However, instead of
using the spring constant k, this equation uses a material’s “ultimate strength”. The ultimate
strength of a material being defined as the “maximum stress a material can withstand”.
Some examples which were used as material parameters in our system can be found in
Table 1.

Material Ultimate Strength (Su) 106 N/m2

Steel (ASTM-A36) 400

Bone (limb) 170

Wood (Douglas fir) 50

Table 1. Comparative ultimate strength values0

In the previous equation, forceVector is the 3D directionality component along which the
(local) force feedback will be aligned, linkDistance is the depth to which the burr has been
pushed into the object’s volume and is used to scale the magnitude of the force according to
how strongly a user is pushing into the volume of the model, materialUltStrength is the
ultimate strength of the material from which the model is made, and scaleFactor is a
downscaling factor to place the final force magnitudes within range of the NOVINT Falcon’s
capabilities.
In order to ensure a smoother transition from one force to the next, a force-filter, as
implemented by Yau et al.0, is adopted by applying a damper to our spring system. This is
applied to the local force by using the method described in Equation (2) where δ is a
predefined threshold for the force change.

FFF

F
F
FFF

FFF

tt

tt

tt

'

1
'

1

 (2)

Following this method, the new force is converted back into the global coordinate system,
where a few force effects are added (e.g. a slight vibration in the tool tip to simulate the
rotating nature of the burr) and finally, this force value is sent to the Falcon as an output
force command.

4.3.4 Voxel Cutting
Any voxel whose distance to the center of the burr head is less than or equal to ¾ of the burr
radius is considered “cut”. To cut a voxel, first, its coordinates will be pushed to the back of
the OSG removal queue. Second, its unique identifier (based on its position in the voxel
model) is placed in a hash-map so that the haptic thread will no longer process that voxel for
collisions while waiting for the OSG thread to send it an updated cache of the nearby and
uncut voxels.

Fig. 11. Distinction between simply colliding (orange) and colliding & cut (red) voxels

5. Results

The results thus far have been promising. The surface features of our apple, femur and
pelvis models can easily be felt using either collision detection method. Surface contact is
definitely smoother using the mesh collision detection scheme. However, carving and, even
more so, drilling operations tend to perform more reliably using the anchor based, voxel-
only method at the moment. Using a material’s ultimate strength has also shown to be
useful in providing the user with haptic feedback on how difficult it is to cut different
materials.

www.intechopen.com

Advances in Haptics312

Fig. 12. A burr-tool receiving force-feedback from a polygonized pelvis model where the
force (direction and strength) is displayed with a blue line

At present, users are unable to distinguish between most different types of material textures
while using the voxel-only approach to collision detection. This is largely due to the discrete
nature of voxels promoting a “blocky” surface contact with the spherical burr. This issue
could be partially addressed by increasing the voxel density used to represent and object
volume. However, this solution becomes resource demanding past a certain point. The
collision detection method that exploits the mesh feels much smoother when passing over
flat and rounded surfaces with the burr; however different material haptic surface textures
have not yet been convincingly implemented.

6. Discussion

Both the Dynamic Ball Pivoting Algorithm and Haptic system need to mature into more
robust versions of their current selves before their inherent potential can truly shine through.
Also, while basing the haptic class’ force equation on Hooke’s law is convenient, it is also
inaccurate. A more involved and realistic model would be to use a material’s full stress-
strain curve0 to dictate the amount of force required to remove volume from the model.
However, such a change would require a means to measure to amount of force the user is
exerting on the haptic device.
A question that has come up before is: why we bother with the anchor-based method for
finding the force direction when we could use the nearest colliding voxel or use the
summation of the direction vectors of all voxels colliding with the burr-head instead? The
reason for this is that the nearest-voxel or voxel-summation methods have shown to
perform erratically whenever the burr-head is placed in a tight corner or inside a pit. On the
other hand, the anchor-based method has shown to perform as expected in both these
situations as well as on normal surface curvatures.

7. Conclusion and Future Work

This new system adds a sense of touch to the process of removing volume from voxelized
objects and is built on top of William et al.’s graphical carving simulator. Two components
operate in unison in order to make this work: an OpenSceneGraph thread and a haptic
thread. The former is responsible for clearing voxels queued for removal, redrawing the
scene and providing the haptic thread with a subset of the object data; the voxels and
triangles most likely to be relevant during collision detection are cached here. The latter
deals with issuances of both the direction and magnitude of force as well as evaluating
which sections of volume should be removed from the object.
There are certainly a great many directions where the haptic portion of the system can be
improved and extended in the future. One area that would improve the program’s use
would be to have a more modular approach to the cutting tools. Tools other than a burr
with a spherical head are likely to be useful to surgeons. The head may instead be an
ellipsoid, conical or cylindrical. The cutting tool could also be something non-motorized
such a scalpel which would require the distinction between cutting surfaces and non-cutting
surfaces to be made.
At the moment, models have a global ultimate strength value meaning that all the voxel will
have the same stiffness. In many cases, such as our target example; operating on human
bone, this is unrealistic as their exteriors are made of dense cortical bone while their interior
is composed of much softer bone marrow. Assigning each voxel its own density value is our
next step. This will also allow us to examine a voxel removal strategy whereby the act of
“cutting” an object will incrementally reduce the voxels density and voxels finding
themselves with a density of zero are considered wholly “cut”. The same idea can be
extended to the mesh-based collision detection. The hope is that this will allow a user to feel
a more progressive entry into an object while it is being cut.

8. References

[1] Williams J, Telles O’Neill G, Lee WS. Interactive 3d haptic carving using combined
voxels and mesh. Haptic Audio visual Environments and Games, 2008. HAVE
2008; pp 108-113, DOI: 10.1109/HAVE.2008.4685308

[2] Kim L, Park SH. Haptic interaction and volume modeling techniques for realistic dental
simulation. The visual Computer: International Journal of Computer Graphics.
Volume 22, Issue 2, 2006; pp 90-98, DOI: 10.1007/s00371-006-0369-8

[3] Yau HT, Tsou LS, Tsai MJ. Octree-based Virtual Dental Training System with a Haptic
Device. Computer-Aided Design & Applications. Volume 3, 2006; pp 415-424

[4] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Real-time haptic and visual
simulation of bone dissection. Presence: Teleoperators and Virtual Environments;
special issue: IEEE virtual reality 2002 conference; Volume 12, Issue 1, 2003; pp 110-
122

[5] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Adaptive techniques for real-time
haptic and visual simulation of bone dissection. Virtual Reality, 2003. Proceedings.
IEEE; pp 102-109, DOI: 10.1109/VR.2003.1191127

[6] Bernardini F, Mittleman J, Rushmeir H, Silva C, Taubin. The ball-pivoting algorithm for
surface reconstruction. Visualization and Computer Graphics, Volume 5, Issue 4,
1999; pp 349-359, DOI: 10.1109/2945.817351

www.intechopen.com

Haptic-Based 3D Carving Simulator 313

Fig. 12. A burr-tool receiving force-feedback from a polygonized pelvis model where the
force (direction and strength) is displayed with a blue line

At present, users are unable to distinguish between most different types of material textures
while using the voxel-only approach to collision detection. This is largely due to the discrete
nature of voxels promoting a “blocky” surface contact with the spherical burr. This issue
could be partially addressed by increasing the voxel density used to represent and object
volume. However, this solution becomes resource demanding past a certain point. The
collision detection method that exploits the mesh feels much smoother when passing over
flat and rounded surfaces with the burr; however different material haptic surface textures
have not yet been convincingly implemented.

6. Discussion

Both the Dynamic Ball Pivoting Algorithm and Haptic system need to mature into more
robust versions of their current selves before their inherent potential can truly shine through.
Also, while basing the haptic class’ force equation on Hooke’s law is convenient, it is also
inaccurate. A more involved and realistic model would be to use a material’s full stress-
strain curve0 to dictate the amount of force required to remove volume from the model.
However, such a change would require a means to measure to amount of force the user is
exerting on the haptic device.
A question that has come up before is: why we bother with the anchor-based method for
finding the force direction when we could use the nearest colliding voxel or use the
summation of the direction vectors of all voxels colliding with the burr-head instead? The
reason for this is that the nearest-voxel or voxel-summation methods have shown to
perform erratically whenever the burr-head is placed in a tight corner or inside a pit. On the
other hand, the anchor-based method has shown to perform as expected in both these
situations as well as on normal surface curvatures.

7. Conclusion and Future Work

This new system adds a sense of touch to the process of removing volume from voxelized
objects and is built on top of William et al.’s graphical carving simulator. Two components
operate in unison in order to make this work: an OpenSceneGraph thread and a haptic
thread. The former is responsible for clearing voxels queued for removal, redrawing the
scene and providing the haptic thread with a subset of the object data; the voxels and
triangles most likely to be relevant during collision detection are cached here. The latter
deals with issuances of both the direction and magnitude of force as well as evaluating
which sections of volume should be removed from the object.
There are certainly a great many directions where the haptic portion of the system can be
improved and extended in the future. One area that would improve the program’s use
would be to have a more modular approach to the cutting tools. Tools other than a burr
with a spherical head are likely to be useful to surgeons. The head may instead be an
ellipsoid, conical or cylindrical. The cutting tool could also be something non-motorized
such a scalpel which would require the distinction between cutting surfaces and non-cutting
surfaces to be made.
At the moment, models have a global ultimate strength value meaning that all the voxel will
have the same stiffness. In many cases, such as our target example; operating on human
bone, this is unrealistic as their exteriors are made of dense cortical bone while their interior
is composed of much softer bone marrow. Assigning each voxel its own density value is our
next step. This will also allow us to examine a voxel removal strategy whereby the act of
“cutting” an object will incrementally reduce the voxels density and voxels finding
themselves with a density of zero are considered wholly “cut”. The same idea can be
extended to the mesh-based collision detection. The hope is that this will allow a user to feel
a more progressive entry into an object while it is being cut.

8. References

[1] Williams J, Telles O’Neill G, Lee WS. Interactive 3d haptic carving using combined
voxels and mesh. Haptic Audio visual Environments and Games, 2008. HAVE
2008; pp 108-113, DOI: 10.1109/HAVE.2008.4685308

[2] Kim L, Park SH. Haptic interaction and volume modeling techniques for realistic dental
simulation. The visual Computer: International Journal of Computer Graphics.
Volume 22, Issue 2, 2006; pp 90-98, DOI: 10.1007/s00371-006-0369-8

[3] Yau HT, Tsou LS, Tsai MJ. Octree-based Virtual Dental Training System with a Haptic
Device. Computer-Aided Design & Applications. Volume 3, 2006; pp 415-424

[4] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Real-time haptic and visual
simulation of bone dissection. Presence: Teleoperators and Virtual Environments;
special issue: IEEE virtual reality 2002 conference; Volume 12, Issue 1, 2003; pp 110-
122

[5] Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A. Adaptive techniques for real-time
haptic and visual simulation of bone dissection. Virtual Reality, 2003. Proceedings.
IEEE; pp 102-109, DOI: 10.1109/VR.2003.1191127

[6] Bernardini F, Mittleman J, Rushmeir H, Silva C, Taubin. The ball-pivoting algorithm for
surface reconstruction. Visualization and Computer Graphics, Volume 5, Issue 4,
1999; pp 349-359, DOI: 10.1109/2945.817351

www.intechopen.com

Advances in Haptics314

[7] Akenine-Möller T. Fast 3D triangle-box overlap testing. International Conference on
Computer Graphics and Interactive Techniques. ACM SIGGRAPH 2005

[8] Halliday, Resnick, Walker. Data from Table 13-1. Fundamentals of Physics, 5E, Extended,
Wiley, 1997

[9] Tensile Properties. NDT Resource Center; 2005. Available: http://www.ndt-ed.org/
EducationResources/CommunityCollege/Materials/Mechanical/Tensile.htm
(Accessed: Tuesday, April-15-08)

www.intechopen.com

Advances in Haptics

Edited by Mehrdad Hosseini Zadeh

ISBN 978-953-307-093-3

Hard cover, 722 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces

are used to explore and modify remote/virtual objects in three physical dimensions in applications including

computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with

surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-

disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor

control. By extending the scope of research in haptics, advances can be achieved in existing applications such

as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery,

authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of

recent contributions to the field of haptics. Authors from around the world present the results of their research

on various issues in the field of haptics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gabriel Telles O'Neill, Won-Sook Lee and Jeff William (2010). Haptic-Based 3D Carving Simulator, Advances

in Haptics, Mehrdad Hosseini Zadeh (Ed.), ISBN: 978-953-307-093-3, InTech, Available from:

http://www.intechopen.com/books/advances-in-haptics/haptic-based-3d-carving-simulator

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

