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1. Introduction 

High-electron-mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) 
have attracted many attentions in high speed and power applications due to the superior 
transport properties. As compared to AlGaAs pseudomorphic HEMTs (PHEMTs), InGaP-
related devices have advantages, such as higher band gaps, higher valence-band discontinuity 
[1], negligible deep-complex (DX) centers [2], excellent etching selectivity between InGaP and 
GaAs, good thermal stabilities [3-5], higher Schottky barrier heights [3], and so on. Particularly, 
the use of an undoped InGaP insulator takes the advantages of its low DX centers and low 
reactivity with oxygen [6-10], which may still suffer from the high gate leakage issue. In order 
to inhibit the gate leakage issue, increase the power handling capabilities, and improve the 
breakdown voltages, a metal-oxide-semiconductor (MOS) structure has been widely 
investigated. However, it is still lacks a reliable native oxide film growing on InGaP, and very 
few papers have reported on InGaP/InGaAs MOS-PHEMTs. In addition, the MOS-PHEMT 
not only has the advantages of the MOS structure (e.g., lower leakage current and higher 
breakdown voltage) but also has the high-density, high-mobility 2DEG channel. 
Over the past years, a study on the liquid phase oxidation (LPO) of InGaP near room 
temperature has been done [11-14]. The application of surface passivation to improve the 
InGaP/GaAs HBTs’ performance has also been first demonstrated [13]. The InGaP/GaAs 
HBTs with surface passivation by LPO exhibit significant improvement in current gain at 
low collector current regimes due to the reduction of surface recombination current, as 
compared to those without surface passivation. Moreover, a larger breakdown voltage and a 
lower base recombination current are also obtained. In this chapter, the oxide film 
composition and some issues are addressed. Then a thin InGaP native oxide film prepared 
by the LPO as the gate dielectric for InGaP/InGaAs MOS-PHEMTs application are 
discussed, and the comparisons between devices with and without LPO passivation on the 
InGaP/GaAs HBTs are also reviewed. 

2. Characterization of the oxide film 

The root mean square (rms) value of surface roughness for the In0.49Ga0.51P sample is 
estimated to be 1.1 nm before oxidation (i.e., as received) by AFM measurement, and can be 
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improved to 0.95 nm after oxidation (i.e., as grown), as shown in Fig. 1. Fig. 2 shows the 
SIMS depth profiles before and after liquid phase oxidation on In0.49Ga0.51P. Although LPO 
on InGaP material has a much slower oxidation rate which is less than 10 nm/h, as 
comparing to that of the GaAs material, however, it is still feasible to grow a thin oxide film 
without pH control [15, 16]. The oxidation rate becomes significantly saturated when the 
oxidation time is longer than an hour, which is measured using a Veeco Instrument 
DEKTAK and confirmed by SEM. 
The XPS depth profiles of the LPO-grown oxide for In0.49Ga0.51P are shown in Fig. 3(a). Fig. 
3(b)-(d) show the XPS surface spectra of the Ga-3d, In-3d, and P-2p core levels, respectively. 
The binding energies for all spectra are calibrated with the reference (as-received) signal. 
The as-received sample was dipped into a solution of HF:H2O = 1:200 for 30 s before 
measurement. From Fig. 3(c)-(d), in comparison with the previous paper [17], the spectrum 
is rather similar to that of InPO4. This is also confirmed by the values of the O-1s peak 
energy and energy separations between the main core levels (i.e., Ga-3d, In-3d, and P-2p) in 
the oxide phases [18]. This clearly suggests that the oxide film is mostly composed of InPO4-
like and Ga oxide. In addition, the oxide film may appear to be etched back in the growth 
solution after 2 h of oxidation. The thermal stability of the oxide layer is also important in  
 

2 h oxidation  rm s: 0.95 nm

LPO

rm s: 1.1 nm
as received

 

Fig. 1. AFM images of the In0.49Ga0.51P sample before (i.e., as received) and after (i.e., as 
grown) liquid phase oxidation. 
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Fig. 2. SIMS depth profiles of the In0.49Ga0.51P sample before (i.e., as received) and after (i.e., 
as grown) liquid phase oxidation. 

device fabrications because high-temperature processes are usually required. Again, XPS is 

utilized to also important in device fabrications because high-temperature processes are 

usually required. Again, XPS is utilized to analyze the surface chemistry of the oxide films, 

as shown in Fig. 3. After 2 h of oxidation, the RTA processes were performed in a furnace 
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with N2 flowing at 300-700 oC for 1 min [13]; however, a peak of InPO4-like is still observed. 

InPO4 (bandgap energy = 4.5 eV) is chemically stable and has rather good dielectric 

properties [19]. As a result, the InPO4 probably acts as a capping layer for the entire oxide 

film to enhance the thermal stability. However, the experimental results show that high-

temperature treatments (700 oC) will change the properties of Ga2O3, since the XPS energy 

peak of Ga2O3 shifts to a lower binding energy, and the binding energy is inferred to form 

the GaOx or Ga2Ox. 

 
 

 
 

(a) 
 
 

 
 

(b) 
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(c) 
 

 

(d) 

Fig. 3. (a) The XPS depth profiles of the as-grown oxide film on In0.49Ga0.51P.  
The (b)-(d) show the XPS surface spectra for the Ga-3d, In-3d, and P-2p core levels, 
respectively. 

3. InGaP/InGaAs MOS-PHEMT 

3.1 Experimental 

Figure 4 schematically shows the PHEMT structure grown by the metallorganic chemical 
vapor deposition (MOCVD) on a semi-insulating GaAs substrate. Hall measurement 
indicates that the electron mobility is 4000 cm2/V·s, and the electron sheet density is 
2.2×1012 cm-2 at room temperature [11]. The device isolation was accomplished by mesa wet 
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etching down to the buffer layer. The ohmic contacts of the Au/Ge/Ni metal were 
deposited by evaporation and then were patterned by lift-off processes, followed by RTA. 
The depth of gate recess is 110 nm for reference PHEMT and 100 nm for MOS-PHEMT. 
After etching the capping layer and the partial Schottky layer, an LPO growth solution was 
used to generate the gate oxide for the MOS-PHEMT at 50 oC for 30 min. Finally, the gate 
electrode was formed with Au. Moreover, the oxide layer, as illustrated in the figure, also 
selectively and simultaneously passivated the isolated surface sidewall. The gate dimension 
is 2×100 μm2 with a drain-to-source spacing of 5 μm. 
 

Source Drain
Gate
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i-In
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0.85
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0.510.49 cm101nm70PGaInn −×−

 

Fig. 4. The schematic drawing of the InGaP/InGaAs MOS-PHEMT. 

3.2 Results and discussion 

Figure 5(a) compares the measured I-V characteristics of the MOS-PHEMT with those of the 
reference PHEMT fabricated under identical conditions. Clearly, good pinch-off and 
saturation current characteristics are obtained. Due to the higher energy barriers between 
the metal gate and the Schottky layer, the MOS-PHEMT can be operated at higher gate-to-
source voltage (VGS) and drain-to-source voltage (VDS) than those of the conventional 
Schottky gate PHEMT, which can enhance the current driving capability. Fig. 5(b) compares 
the transconductance gm and the drain current density ID as a function of VGS at VDS = 4 V of 
the MOS-PHEMTs with those of the reference PHEMT. For MOS-PHEMT, the 1.8 V-wide 
gate voltage swing (defined by 10% reduction from the maximum gm) is higher than that of 
the PHEMT. The threshold voltage Vth of MOS-PHEMT shifts to the left, which is similar to 
the result of the one with oxide deposited on the Schottky layer [20, 21]. However, the 
separation region between the oxide-InGaP interface and the InGaAs channel for MOS-
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PHEMT is still larger than that of the reference PHEMT in this study, so the drain current 
density of the PHEMT is smaller than that of the MOS-PHEMT at the same bias VGS due to 
the decrease of the carrier concentration within the InGaAs 2DEG channel. 

 
(a) 

 
(b) 

Fig. 5. (a) Measured I-V characteristics of MOS-PHEMT and PHEMT. (b) The 
transconductance and the drain current density versus VGS at VDS = 4 V for the MOS-
PHEMT and the reference PHEMT. 
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In addition, if the depth of gate recess is etched to be 120 nm, the Vth becomes more positive, 
-0.5 V, for MOS-PHEMT with the identical processing conditions including initial pH value 
(5.0), temperature (50 oC), and oxidation time (30 min). For Vth shifts to the right, the 
separation between the oxide-InGaP layer interface and the InGaAs channel layer is 
decreased due to the consumption of the InGaP during the processes of gate recess and the 
unique properties of the LPO with the reaction of InGaP, leading to the increase of the total 
effect of the gate bias on the control of Vth. However, a decrease in the maximum gm, 63 
mS/mm, accompanies the degradation in the saturation current, 84 mA/mm at VGS = 1 V. 
The result is also confirmed by a longer oxidation time, i.e., a thicker oxide layer. This 
drawback can be overcome by suitable device structures, such as inserting a Si-planar 
doping layer under the InGaAs channel to increase the carrier density. 
The oxide film provides an improvement in the breakdown voltage in terms of the gate 
leakage current of the MOS structure, supported by the typical gate-to-drain I-V 
characteristics, as shown in Fig. 6(a). For InGaP MOS-PHEMT, the turn-on voltage, 2.2 V, is 
obviously higher than that of InGaP PHEMT, 0.8 V, and the corresponding reverse gate-to-
drain breakdown voltages, BVGD, are -14.1 V and -6.5 V, respectively. The turn-on voltage 
and the BVGD are defined as the voltage at which the gate current reaches 1 mA/mm. The 
gate leakage current can be suppressed at least by more than two orders of magnitude with 
an oxide film at VGD = -4 V. The smaller gate leakage current of MOS-PHEMT is due to the 
MOS structure and the elimination of sidewall leakage paths that are directly passivated 
during the oxidation, which is consistent with the result of Fig. 5. In addition, the gate 
leakage current observed in MOS-PHEMT comes from a gate leakage path at the edge of the 
mesa [22] that is not present in the MOS capacitor, which may contribute to the Schottky-
like I-V characteristics for forward biases. Fig. 6(b) shows the gate current density as a 
function of reverse VGS at different VDS. Due to the high electric field existing in the gate-to-
drain region, hot electron phenomena occur in the narrow band-gap InGaAs channel. 
Electrons can obtain higher energy to generate electron-hole pairs through the enhanced 
impact ionization, resulting in easy injection of the holes into the gate terminal [23]. 
However, in InGaP-related devices, it is more difficult for the holes generated by the impact 
ionization to overcome the valence band discontinuity and to reach the gate [4], so the bell 
shaped behavior of the impact ionization does not appear in Fig. 6. Moreover, the gate 
current density of MOS-PHEMT is significantly improved, which is less than 0.5 μA/mm, as 
compared to that of PHEMT. In other words, the electrons and holes generated by the 
impact ionization are decreased to further reduce the drain and gate currents owing to the 
oxide layer with a high barrier height. 
In order to have a better insight into the transient behavior of the studied devices, the gate 
pulse measurements were performed using a Tektronix 370A curve tracer [24]. VGS was 
pulsed from the Vth to 0 V with a pulsewidth of 80 μs, while VDS was swept from 0 to 4 V. 
The comparisons between the static and pulsed I-V characteristics for PHEMT and MOS-
PHEMT are shown in Fig. 7. The drain current of PHEMT decreased by 9.8%, while the 
MOS-PHEMT decreased by only 0.63%. To the best of our knowledge, if the pulsewidth is 
too short, electrons captured by the traps do not have enough time to be fully emitted. 
However, if the pulsewidth is long enough, all the trapped electrons are de-trapped and will 
contribute to the drain current. We believe that the differences between dc and pulsed I-V 
become evident by applying shorter voltage pulses to the gate such as less than 10-μs pulses 
for PHEMT and MOS-PHEMT. Therefore, it is clear that the oxide passivation on the 
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Schottky layer can minimize the effect of surface traps, which is consistent with the lower 
gate leakage current in Fig. 6. 
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Fig. 6. (a) The typical IG-VGD characteristics of PHEMT with and without an oxide film. (b) 
The gate current density versus reverse VGS at different VDS. 
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(a) 

 
(b) 

Fig. 7. Gate pulse measurements for (a) reference PHEMT and (b) MOS-PHEMT with VGS 
pulsed from Vth to 0 V with a pulsewidth of 80 μs, while VDS was swept from 0 to 4 V. 

4. InGaP/GaAs HBT with LPO passivation 

4.1 Experimental 

The structure used for HBT is given in Table 1. The epilayers were grown by a low-pressure 
MOCVD system on an (100)-oriented semi-insulating (S.I.) GaAs substrate. For InGaP/GaAs 
HBTs, device fabrication began with emitter definition. The emitter cap layer was removed 
and stopped at the InGaP active layer. After removing the InGaP layer, a growth solution 
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was used to form the base oxide (passivation) on the exposed extrinsic surface of base and 
the base contact was then deposited. Finally, the mesa of base was defined and etched to 
sub-collector before the collector contact deposition. H3PO4-based etchant was used for 
GaAs and InGaP. The Au/Ge and Au/Be metals were deposited by evaporation and 
patterned by lift-off processing to form emitter, base and collector regions, respectively. 
 

Layer Material Thickness (nm) Dopant (cm-3) 

Cap 
Graded 

Sub-emitter 
Emitter 

Base 
Collector 

Etching-stop 
Sub-collector 

InGaAs 
InGaAs 
GaAs 
InGaP 
GaAs 
GaAs 
InGaP 
GaAs 

45 
45 

130 
40 

100 
750 
20 

600 

1×1019 

1×1019 

5×1018 
3×1017 

4×1019 

1×1016 

5×1018 
5×1018 

S.I. GaAs substrate 

Table 1. The epitaxial structure of InGaP/GaAs HBT. 

4.2 Results and discussion 

Figure 8 shows the common-emitter I-V characteristics of the HBT with and without surface 
passivation by LPO. Clearly, the dc current gain (β) of HBTs with passivation is improved 
(increased) 15% when comparing to HBTs without passivation. The higher β with surface 
passivation is due to the reduction of the surface recombination current in the exposed 
extrinsic base regions by LPO method. The common-emitter I-V characteristics of the 
devices with and without surface passivation at low collector current regimes are shown 
 

 

Fig. 8. Common-emitter I-V characteristics of the HBTs with and without LPO passivation. 
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in Fig. 9. The devices with surface passivation have higher common-emitter β than those 
devices without passivation, due to the reduction of the surface combination velocity by 
using an oxide layer on the base surface. In addition, the β values with and without 
passivation are 13.3 and 2 at IB = 900 pA, respectively. The maximum increase of 7 fold in 
the current gain at collector current down to nA level. 
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Fig. 9. Common-emitter I-V characteristics of the HBTs (a) without and (b) with LPO 
passivation at low collector current regimes. 

Figure 10 illustrates the measured Gummel plots of the devices with and without LPO 
passivation. The collector currents are almost identical without being affected by the 
passivation treatment. However, a decrease of the base leakage current at low collector 
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current levels is obviously observed after oxidation. Moreover, it is found that the 
recombination current at the extrinsic base region and the base-emitter perimeter are 
competed against one another, resulting in current reduction at lower base-emitter bias VBE 
= 0.4 V. The increasing β is owing to the reduction of the surface recombination current. It 
can also be indicated that the device with pasivation exhibits higher β than that without 
passivation at lower VBE bias. The comparison of β versus the collector current is shown in 
Fig. 11. The collector-base bias is maintained at 0 V. Clearly, the device with LPO 
passivation shows wider collector regimes from 10-10 A to 0.1 A. And the maximum shift of  
 

 

Fig. 10. Typical Gummel plots of InGaP/GaAs HBTs with and without LPO passivation. 

 

 

Fig. 11. Comparison of the β against the collector current IC. The inset shows the base-
collector junction breakdown characteristics with and without LPO passivation. 
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5 fold in the current gain from collector current of 8.1×10-10 A to 1.6×10-10 A can be achieved. 
This is attributed to the surface state density are suppressed, i.e., the surface recombination 
current is effectively reduced. The inset shows the base-collector junction current against 
bias voltage for the devices with and without passivation. For the device with passivation, 
the breakdown voltage (23.5 V) is higher than that (21.9 V) without passivation at I = 50 μA. 
The smaller leakage current is owing to the reduction of the surface recombination by the 
native oxide passivation in the base region. Above results clearly indicate that the β at low 
(medium) collector current regimes and the breakdown voltage will be increased. 
Additionally, the base current is decreased for the devices with passivation when comparing 
to those without passivation, which will be beneficial to low-power electronics and 
communication applications. 

5. Conclusion 

The InGaP/InGaAs/GaAs MOS-PHEMT with the In0.49Ga0.51P oxide as the gate insulator 
prepared by LPO has been demonstrated. As compared to the counterpart of the 
conventional InGaP PHEMT, the proposed InGaP MOS-PHEMT can further reduce the gate 
leakage current at least by two orders of magnitude, increase the breakdown voltage by 
200%, and enhance the gate voltage swing. Also, the pulse transient measurement shows 
much less impact of the surface trap effects for the InGaP MOS-PHEMT. In addition, as 
compared to the conventional InGaP/GaAs HBTs without surface passivation, the HBTs 
with LPO passivation possess the characteristics of lower surface recombination currents, 
higher breakdown voltage and improved higher dc current gain. The HBTs with LPO 
passivation exhibit 700% improvement in current gain at low collector current regimes by 
the reduction of surface recombination current, as compared to those without passivation. 
Therefore, the proposed low-temperature and low-cost LPO can easily be implemented and 
can provide new opportunities in device applications. 
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