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1. Introduction 

Power amplifiers (PAs) determine much of the efficiency and linearity of transmitters in 
wireless communication systems, both on the base station side and in the handset device. 
With the move to third-generation (3G) communication systems as well as other systems 
such as Ultra-Wideband (UWB), a higher linearity is required due to envelope variations of 
the radio frequency (RF) signal. The traditional way of guaranteeing sufficient linearity is 
backing off the PA; however, this results in a significant drop in efficiency, and thus in 
reduced battery lifetime for the handheld device and increased cooling requirements for the 
base station. With the current energy costs, and increased density of base stations, this is fast 
becoming an important issue. 
A second issue in current wireless communication systems is the requirement for a certain 
range of transmitter output power control, e.g. for 3G systems. Depending on the distance to 
the base station, a difference in handset output power in the range of tens of dB may occur. 
If the PA efficiency is peaking for maximum output power, and is reduced considerably for 
lower output power, the average efficiency of the transmitter calculated over its full output 
power range of operation will be low. Thus, efficiency improvement for lower output power 
is an important aspect in transmitter design. 
Moreover, current wireless communication handsets require a multi-band/multi-standard 
approach, so that several communication standards are incorporated in one device. Ideally 
this would all be achieved by one PA, but current standard is that multiple PAs are used for 
multiple standards, in worst case each with its bulky, costly output filter.  
In order to address efficiency and linearity issues, different transmitter architectures have 
been proposed and implemented throughout the years, such as for instance Envelope 
Elimination and Restoration (EER) or Envelope Tracking (ET), varieties of polar 
transmission where the envelope and phase of the signal are processed separately. Also, 
different PA architectures have been used, such as Doherty and switched mode amplifiers, 
often complemented with linearity-improving measures such as digital predistortion or 
feedback.  
With the coming of age of handset production, cost effectiveness has driven wireless 
communication transceiver design to higher levels of integration. As many building blocks 
as possible are integrated on the same chip, and the use of external bulky filters is avoided if 
possible. CMOS technology has been the main choice for this development, due to the 
possible integration of digital, mixed-signal and analog circuits. However, CMOS was not 
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suitable for PA design due to frequency, output power, efficiency and linearity 
requirements. Thus, the stand-alone PA has long been manufactured in III-V technologies or 
specialized technologies such as LDMOS. 
In recent years however, CMOS technology has evolved for radio frequencies in two ways: 
(1) Decreasing device dimensions have resulted in higher clocking frequencies, thus e.g. 
providing the opportunity for clocking speeds of several times the RF frequency; (2) The 
technology provides special RF properties such as thick top metal, allowing for e.g. 
integrated inductors or transformers with high quality factor. These two technology trends 
have enabled a higher level of transmitter integration. In combination with the use of 
switches, for which CMOS devices are extremely suitable, so-called digitally assisted RF 
transmitters have been designed, that is, transmitters where building blocks are switched on 
or off by means of digital control signals, or biasing settings are changed based on digital 
signals.  
Recently transmitter design research has taken the next step: increasingly using digital 
techniques for the full transmitter. A fully integrated GSM radio has been presented with 
all-digital phase and amplitude signal paths, including an all-digital phase-locked loop. 
Other examples are a class-E switched mode PA with pulse-width and pulse-position 
modulation (PWPM) implemented with all-digital blocks, an array of power mixers, 
controlled by digital logic, and an array of digitally controlled cascode transconductance 
stages not unlike current-steering digital-to-analog converters, referred to as digital-to-RF 
conversion. However, efficiency over a wide power range is still a major concern, as will be 
shown. 
In this chapter an overview of switched-mode power amplifiers will be presented. This will 
be followed by an overview of transmitter architectures suitable for switched-mode 
transmitters; direct modulation as well as polar and Cartesian modulation will be described 
by looking at traditional architectures and recent developments, with focus on switched-
mode implementations, resulting in a future outlook for integrated transmitter design for 
wireless communication. 

2. Power amplifier technology issues 

Generally a switched-mode (SM) amplifier consists of one or more transistors that are 
behaving as a switch, that is, having an on- and an off-stage, ideally without on-resistance and 
near-zero raise- and fall time. These conditions can be approximated by heavily overdriving 
the transistor input, and by operating the device at significantly lower frequencies than the 
device’s ft. The SM transistor is thus used differently than normal amplifier transistors, 
which are generally used as either current, voltage or transconductance amplifying elements. 
Overdriving the transistor input, however, has certain consequences: the device will act 
non-linearly, and small-signal models are not always valid. Moreover, for wireless 
communication applications the difference between operating frequency and device unity 
gain frequency ft is rather small – this in contrast to e.g. audio applications, where switched-
mode techniques have been used extensively. In this section we will first discuss power 
amplifier technology issues, and then address losses in switched-mode power amplifiers. 

2.1 PA technology aspects 

It is only fairly recent that CMOS technology has come up as an alternative for integrated 
circuit power amplifier design, as CMOS previously was not suitable for PA design due to 
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frequency, output power, efficiency and linearity requirements. Thus, stand-alone PAs have 
long been manufactured in III-V technologies such as GaAs or GaN, or specialized 
technologies such as LDMOS or SiGe bipolar junction transistors. 
Largely driven by the drive for integrating more digital functionality on the same chip area, 
CMOS devices have continued to shrink in device dimensions, basically following Moore’s 
law. Accordingly, transistor ft and fmax are expected to rise to several hundreds of GHz, thus 
allowing for circuit operation in excess of 100GHz (Niknejad et al., 2007). 
However, the trend of shrinking device dimension comes with certain distinct 
disadvantages for analog circuit design, and more specifically for PA design. Due to 
shrinking oxide thickness, the breakdown voltage of the devices is reduced, implying that 
supply voltages must be reduced for safe operation. This has implications for CMOS PAs, as 
the maximum output power, assuming load-line matching, is then given by 

 Pout = VDD2/2Rl  (1) 

such that in a 50Ω system, and a supply voltage of 1V, the output power is limited to 10mW 
or 10dBm. Thus, impedance transformation must be used so that the amplifier sees a lower 
impedance. This is practically limited to 1-5Ω; Having such a low impedance makes the PA 
efficiency very sensitive to parasitic series resistance in the output network, because of 
conduction losses: A 0.1mΩ parasitic resistance in series with a load resistance of 1Ω gives a 
loss of 10%. 
Due to these increasing technology limitations, in modern CMOS deep-submicron 
technologies special transistors are provided having a thicker gate oxide and thus allowing 
for higher supply voltage. 

2.2 Losses in switched-mode amplifiers 
Looking at RF power amplifiers, we want to have an output signal at the frequency of 
interest – usually the fundamental frequency, sometimes a harmonic – but no disturbing 
output signals at other frequencies. In other words, some filtering must be performed in 
order to use a switch in a power amplifier.  
The ideal waveforms for a switched-mode (SM) transistor in a PA, assuming a broadband 
load, are shown in Fig. 1. From this figure it can be seen that the voltage and current are 
ideally never non-zero simultaneously, thus no power is consumed, and ideally a 100% 
efficiency can be achieved. However, considerable power is generated at harmonic 
frequencies. Thus the maximum theoretical efficiency for this broadband SM PA is slightly 
larger than 80%, achieved at a 50% duty cycle. 
In order to reduce the power present in harmonic frequencies, a tuned amplifier can be 
used. This can be implemented in several ways. One way is by introducing harmonic shorts 
in parallel to Rl in Fig. 1, so that harmonics other than the desired frequency are grounded. 
The maximum theoretical efficiency now reaches 100%, however, for relatively low duty 
cycles (and thus very short pulses and low output power) (Cripps, 1999, p. 153).  
Another strategy is to have a resonance circuit in series with Rl, to make sure that only the 
desired frequency signal is passed on. This issue will be explored more in the section on 
class-F amplifiers. 

Device and switching losses 

Aside from the harmonic losses discussed in the previous section, some other losses can be 
identified in a SM amplifier/transistor (El-Hamamsy, 1994). First of all, the transistor will 
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                                               (a)                                                                        (b) 

Fig. 1. An ideal switched-mode (SM) power amplifier, (a). Schematic, (b). Voltage and 
current waveforms. 

suffer from non-idealities, of which one is a non-zero on resistance. This will cause a non-
zero voltage drop and thus so-called conduction loss, resulting in reduced efficiency. 
Secondly, the transistor will have non-zero rise- and fall times, potentially causing the 
current and voltage to be non-zero simultaneously. Also CMOS subthreshold current will 
contribute to this. 
Thirdly, dynamic losses due to charging and discharging of parasitic capacitors must be 
taken into account – the switching losses. These are proportional to the switching frequency 
f, and will likely dominate for RF applications.  

Other losses 

External elements such as output networks may cause losses as well, for example a tuning 

or impedance transformation network consisting of on-chip or discrete passive elements. 

These inductors and capacitors will include parasitics such as capacitances or series 

resistances. These may cause power dissipation and thus reduce the amplifier efficiency. 

A MOSFET is very suitable as a switch, toggling between the off mode for low gate-source 

voltage VGS, and the triode region for high VGS. The on resistance of the device is then given 

by 

 Ron = (L/W)· (k’(VGS – Vt - VDS))-1  (2) 

where L is the transistor length, W the transistor width, k’ the transistor gain factor, Vt the 

threshold voltage, and VGS and VDS the gate-to-source and drain-to-source voltage, 

respectively. 

The on resistance can thus be minimized by choosing a large ratio W/L. Having a low 
resistance decreases the conduction losses caused by the switch. Other considerations of 
interest for PA design are the current density capacity and parasitic capacitances. The 
former is important if high output power is desired and the supply voltage is low. A larger 
width increases the current capacity. The parasitic capacitance may, however, cause 
increased dynamic losses, thus potentially decreasing the efficiency especially at high 
frequencies.   
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3. CMOS switched-mode power amplifiers 

Now that general technology issues have been discussed, SM amplifiers for radio 
frequencies will be addressed in this section, and an overview will be given of specific 
CMOS implementations. 

3.1 Switched-mode amplifier classes 

In amplifier theory, several different switched-mode types are established: the classes D, E 
and F (Cripps, 1999; Raab, 2001). They will briefly be addressed below, before looking into 
CMOS implementations in the next section. 

Class-D 

Class-D amplifiers use a double-switch structure, with a series resonance circuit (see Fig. 2). 

The output current is alternatingly supplied by each switch, similar to a push-pull 

configuration. The simplest implementation for the two switches is an inverter. The 

maximum theoretical efficiency is 100%, with a square-wave voltage and a half-wave 

rectified sine wave current in each device. In that case the voltage contains only odd 

harmonics, and the current even harmonics. 
 

 
                                               (a)                                                                        (b) 

Fig. 2. Simplified schematic of a class-D amplifier, (a). A voltage-mode amplifier, (b). A 
current-mode amplifier. 

This amplifier may also be implemented as current-mode (see Fig. 2b). Instead of having a 

series resonance circuit in series with the load, a parallel resonance circuit is then used at the 

output of the amplifier. In that case the current approximates a square-wave, containing odd 

harmonics, while the drain voltage for each device approximates a half-wave rectified sine 

wave. It has been shown that a high efficiency can be achieved, assuming the amplifier can 

be designed for Zero Voltage Switching (Long et al., 2002; Kobayashi et al., 2001).  

Class-E 

A class-E amplifier consists of a single switching device with a carefully tuned output 
network. The voltage derivative, close to the timing point when the device is switched off, is 
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designed to be very small (so-called Zero Voltage Switching, ZVS) so that potential static 
losses are kept very low. Also for this amplifier the theoretical maximum efficiency is 100%. 
One of the characteristics of class-E is that large voltage peaks occur; thus, care must be 
taken to avoid high voltages across the CMOS device, as the breakdown voltage of CMOS 
devices is relatively low. 

Class-F 

A class-F amplifier is basically an amplifier with a current that approaches a half-wave 
rectified sine wave, and a voltage that approaches a maximally flat shape. Tuning a limited 
number of odd-order harmonics of the fundamental signal is used to achieve this. Two 
different structures are in use for class-F design, depending on which harmonics are seen at 
the drain: Regular class-F for odd-order harmonics, that is, the voltage is approximately 
maximally flat, and inverse class-F for even harmonics, i.e. a half-wave rectified sine wave-
shaped drain voltage and a maximally flat shaped drain current (Raab, 2001). It must be 
noted that the inherent pulse shaping makes this amplifier less suitable for e.g. Pulse Width 
Modulated (PWM) input signals (Sjöland et al., 2009). 
All three amplifier classes depend to some extent on a frequency-selective output network. 
Thus, their operation cannot be considered broadband. Either they can only be used in a 
narrow, specific frequency range, or each amplifier’s behavior may show significant 
differences depending on the frequency of operation.  
Research is progressing into variable output networks, where digital control signals are 
used to e.g. change the frequency of operation, or reconfigurable PAs, as well as output 
networks allowing for concurrent multi-band operation (Colantonio et al., 2008). In such 
digitally assisted systems the use of CMOS technology, also for the PA, may lead to a higher 
level of integration. This will be addressed more extensively in the section on transmitter 
architectures. 

3.2 CMOS PA implementations 

By the mid-1990s, the first publications on integrated CMOS PAs for RF appeared. These 
works initially focused on more or less linear amplifier structures such as class A, AB, B or 
C, but research has since then focused more on the switched-mode class-D, E and F, as 
higher clocking or switching speeds became available with improvements in CMOS 
technology.  
Su and McFarland (1997) presented a 0.8µm CMOS SM amplifier consisting of four stages 
with the final stage in switched-mode. A Power-Added Efficiency (PAE) of 42% was 
achieved at 850MHz with a 2.5V supply, and largely off-chip input and output matching 
networks were used. Yoo and Huang (2001) presented a 0.25µm CMOS class-E PA, using a 
finite DC feed inductor to reduce the peak voltage over the device, as well as Common Gate 
(CG) switching instead of the more usual Common Source (CS) structure. These strategies 
allow for a higher supply voltage to be used, thus reducing the necessity for a low load 
impedance. 
Reynaert and Steyaert (2005) have presented a fully integrated 0.18µm CMOS class-E PA, 
consisting of three stages and including supply modulation to provide amplitude variation. 
A PAE of 34% was achieved for an output power of 23.8 dBm, using a supply voltage of 3.3 
V and extra thick gate oxide for the final stage. 
As limited supply voltage is one of the major challenges in CMOS PA design, other 
strategies have been used to effectively add the output voltages, such as using a transformer 
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to combine output power (Aoki et al., 2008; Haldi et al., 2008) or stacking devices, making 
sure that the voltage over each device stays below the maximum (Stauth & Sanders, 2008; 
Jeong et al., 2006). However, generally this slightly impairs the efficiency, counteracting the 
intended advantage of a higher supply voltage. Apart from voltage stacking, current 
combining has been implemented (Kavousian et al., 2008; Kousai & Hajimiri, 2009), as well 
as the switching in of several parallel stages (Walling et al., 2008). The latter two will be 
covered more in the section on transmitter architectures. 
 

Reference Class Technology 
Supply 
voltage 

Output 
power 

Efficiency 
(PAE) 

Frequency 

Su et al., 1997 D? 0.8µm CMOS 2.5 V 30 dBm 42% 850 MHz 

Tsai et al., 1999 E 0.35µm CMOS 2.0 V 30 dBm 48%  1.9 GHz 

Yoo et al., 2000 E 0.25µm CMOS 1.9 V 30 dBm 41 %  900 MHz 

Kuo et al., 2001 F 0.2µm CMOS 3.0 V 32 dBm 43 %  900 MHz 

Sowlati et al., 2003 ? 0.18µm CMOS 2.4 V 24 dBm 42 %  2.4 GHz 

Reynaert et al., 2005 E 0.18µm CMOS 3.3 V 24 dBm 34 %  1.75 GHz 

Stauth et al., 2008 D 90nm CMOS 2.0 V 20 dBm 38.5%  2.4 GHz 

Table 1. An overview of CMOS integrated switched-mode power amplifiers. 

4. Transmitter architectures 

As we have seen before, one of the basic requirements for power amplifiers in modern 
wireless communication systems is to accommodate envelope variations and to provide 
variable output power. Wireless communication standards have moved from constant-
envelope, low- channel bandwidth to more complex signal shapes in order to increase data 
rates in limited bandwidth, resulting in variable envelope RF signals and larger channel 
bandwidths in the range of tens of MHz. 
In SM amplifiers output power variation can be achieved by varying the supply voltage, by 
varying the duty cycle of the signal, by varying the load, or by a combination of these. In 
this section some transmitter architectures will be discussed that adopt such strategies; only 
the strategy of varying the load impedance will not be addressed here. 

4.1 Supply variation 

On the transmitter architecture level, one of the classical methods of varying the output 
power is based on polar modulation, where a baseband Cartesian signal vRF(t) is first 
converted into its polar form, separating envelope (amplitude) and phase information, 
which are then processed separately and combined before being transferred to the antenna: 

vRF(t) = I(t) cos(2πf0t)· + Q(t) sin(2πf0t)   (Cartesian) 
          = A(t) cos(2πf0t + φ(t))                            (polar) 

(3a) 

where 

A(t)   = √( I(t)2  +  Q(t)2)     (amplitude) 
φ(t) = tan-1 (I(t) / Q(t))               (phase) 

(3b) 
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Polar modulation is recently gaining more and more interest due to its potential to maintain 
linearity while having a relatively high efficiency even for lower output power, thus 
improving the average efficiency over a wide output power range.  
One of the most well-known polar schemes is Envelope Elimination and Restoration (EER), 

brought to attention by Khan (Khan, 1952; Wang et al., 2006; Su & McFarland, 1998). The 

envelope is used to control the PA supply level, while the phase signal is upconverted to RF 

and transformed to a constant envelope signal, driving the PA input. Thus, a non-linear PA 

can be used. Su and McFarland (1998) have demonstrated a CMOS implementation of an 

EER system, including a delta-modulated supply, a limiter, and envelope detectors, driving 

a switched-mode PA, resulting in significant linearity and efficiency improvements. 
 

 
(a) 

 
(b) 

Fig. 3. Simplified representation of the Envelope Elimination and Restoration (EER) and 
Envelope Tracking (ET) transmitter architectures. 

Envelope tracking (ET) describes a transmitter architecture where the Cartesian RF signal is 

amplified by means of a linear amplifier, with its supply controlled by the envelope of the 

signal (Hanington et al., 1999; Takahashi et al., 2008). One of the main advantages is that the 

bandwidth of the PA input signal is not expanded, but a linear amplifier generally has a 

lower efficiency than a SM amplifier. However, requirements on the envelope signal and 

timing are less stringent (Wang et al., 2006). So-called hybrid EER architectures have been 

demonstrated, where the ET linear amplifier is replaced by a SM amplifier, however, still 

driven by the full Cartesian RF signal (Wang et al., 2006).  
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Both the EER, ET and hybrid EER depend on utilizing an efficient power supply modulator, 

that must be able to handle the bandwidth of the envelope signal. For this, a boost dc-dc 

converter, a Buck dc-dc converter, or a switched-mode low-frequency amplifier can be used, 

controlled by a Pulse Width Modulator (PWM), a Sigma-Delta modulator (ΣΔM) or a Delta 

modulator (ΔM) (Kitchen et al., 2007). Generally, independent of supply modulator type, a 

bulky low-pass filter must be used to filter out undesired signals such as noise or harmonics. 

4.2 Changing the duty cycle 

If the duty cycle D of a square-wave signal is changed, the output power at the fundamental 
frequency will be changed according to 

 Pout(f0) = (4VDD2/π2Rl)  sin2(πD)  (4) 

assuming ideal frequency selection at the output. This can be used to accommodate the 
envelope and power variations in a polar transmitter, by changing the amplifier’s threshold 
voltage. Implementations exist with discrete steps as well as continuous change (Yang et al., 
1999; Cijvat et al., 2008; Smely et al., 1998). A major advantage of these strategies is that no 
DC-DC converter is necessary; A disadvantage is that linearity may be worse compared to 
an amplifier where the supply voltage is changed, possibly resulting in tougher 
requirements for digital predistortion. Moreover, the efficiency drops rapidly at small duty 
cycles (Cijvat et al., 2008). 
Smely et al. (1998) combined discrete supply voltage steps with changing the drain current 
of the output stage of a class-F stage by means of varying the GaAs MESFET gate voltage, 
depending on the amplitude of the input signal. Yang et al. (1999) focused on improving the 
efficiency of a class-A amplifier, by using variable bias to change the current in the output 
stage as well as changing the supply voltage. 
Variable gate bias was used (Cijvat et al., 2008) for CMOS class-D amplifiers, with the goal 
of creating a PWM signal at the output of the amplifier. The proposed architecture uses the 
envelope signal to control the gate bias, and the RF signal is assumed to be sinusoidal, 
containing only the phase information. 
For this amplifier structure, loss mechanisms as discussed in section 2 cause a drop in drain 
efficiency for lower output powers. It is likely that switching and harmonic losses are 
significant; the amplifier switches as often as for full output power, thus having roughly the 
same switching loss, and the harmonic content of a PWM signal increases for duty cycles 
other than 0.5, thus increasing harmonic losses. As can be seen in Fig. 4.b, the amplifier 
aimed for higher output power, having larger output devices and thus larger parasitic 
capacitances, reaches a lower maximum drain efficiency as a result. 
As was addressed by Sjöland et al. (2009), one of the challenges of polar modulation is the 
sharp notch in amplitude variation which causes fast amplitude variations that are difficult 
to track for a DC-DC converter with limited bandwidth. Thus, a combination of EER and 
Pulse Width Modulation is proposed. This is applied to the aforementioned 130 nm CMOS 
class-D inverters, and simulation results are presented in Fig. 5. 
It can be seen from this figure that efficiency gains of EER and PWM combined are minimal 
in this case, compared to EER-only. Moreover, combining the two strategies will lead to 
greater transmitter complexity; the additional power that is required is not taken into 
account in the simulations. However, as was mentioned earlier, this solution may address 
the bandwidth limitations of EER. 
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(a)                                                                            (b) 

Fig. 4. (a). Measured output power and efficiency of a 6 dBm 130nm CMOS class-D inverter 
chain, using gate bias variation to create a pulse width modulated inverter output voltage 
(Cijvat et al., 2008). (b). Efficiency versus output power of two amplifiers, one with 6dBm 
and one with 12 dBm output power. The supply voltage was 1.2 V. The 6 dBm amplifier 
operated at 1.5 GHz, the 12 dBm amplifier at 1 GHz. 
 

 

Fig. 5. Simulated PA drain efficiency versus output power, combining EER modulation for 
high amplitudes and PWM for lower amplitudes. The voltage where EER takes over is 
varied; one curve shows results for a border value of 0.6V and the second curve for a border 
value of 0.9V. 

4.3 Burst-mode transmitters 

A third method for varying the output power is so-called burst mode transmission. 
Effectively the RF signal is turned on and off by means of a bit stream. The envelope signal 

may be digitized e.g. by means of a ΣΔ or a Pulse Width Modulator (Jeon et al., 2005; 
Berland et al., 2006; Stauth & Sanders, 2008). 
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A burst-mode pulsed power oscillator to be used as a final stage in a transmitter was 
presented by Jeon et al. (2005). The oscillator is turned on and off by a PWM representation 
of the low-frequency envelope signal, thus resulting in the high-frequency RF signal 
multiplied by the PWM signal, appearing as bursts at the oscillator output. An isolator and 
bandpass filter are used to prevent reflected power to return into the oscillator and filter out 
undesired frequency components. 
Berland et al. (2006) analyzed two varieties of using a one-bit signal to be multiplied with the 
slightly modified Cartesian signal. The one-bit signal was derived from the envelope signal by 
utilizing a Pulse Width Modulator and a Sigma-Delta Modulator, respectively. A high 
operating frequency of several GHz is, however, necessary to reach sufficient performance.  
A polar modulator using a baseband ΣΔM and an RF Pulse Density Modulator (PDM) were 
used to drive a class-D amplifier with a 1-bit signal (Stauth & Sanders, 2008). This solution, 
basically all-digital, was implemented in 90nm CMOS and the cascade PA operated from a 
2V supply. The PA performance can be seen in Table 1. The Bluetooth 2.1+EDR spectral 
mask was met for an output signal in the range of 10dBm, including a bandpass filter at the 
output.  

4.4 Digitally controlled TX 

In analogy to current-steering Digital-to-Analog converters (Zhou & Yuan, 2003), a fourth 
strategy to control output power has recently gained attention, which is switching in 
parallel stages. One example is the work by Kavousian et al. (2008), where the low-
frequency envelope of the polar signal was transformed into a thermometer code used to 
switch on and off unit stages, while the constant-envelope RF phase signal drives the input 
of each stage. The authors refer to this as digital-to-RF conversion. 
Shameli et al. (2008) used 6 control bits to both switch in a number of parallel output stages 
and at the same time change the supply voltage with a ΣΔ modulator. A 62 dB power 
control range was achieved, as well as a 27.8dBm maximum output power and an average 
WCDMA efficiency of 26.5%. 
Current summing was also used by Kousai and Hajimiri (2009), utilizing 16 parallel power 

mixers and a transformer at the output. The phase information modulates the high-

frequency digital LO signal. Linearization could be chosen to be analog, by sensing and 

feeding back the signal level for each mixer core, or digital, by using a thermometer code for 

the envelope signal, switching on and off mixer cores.  Both the baseband and the LO signal 

where controlled digitally with a number of bits. A 16-QAM (Quadrature Amplitude 

Modulation) signal at 1.8 GHz and a symbol rate of 4 MSym/s was reproduced with an 

output power of 26 dBm, a PAE of 19% and an EVM (Error Vector Magnitude) of 4.9%. 

Presti et al. (2009) used 7-bit thermometer + 3 bit binary weighted current summing 

combined with analog input power control for low-power levels. Relative broadband 

operation, 800-2000 MHz, and a 70dB power control range is achieved. With Digital Pre-

Distortion (DPD) both WCDMA, EDGE and WiMAX specifications are met. 

In these architectures no supply voltage modulator is used. Sufficient resolution to achieve a 

high linearity or amplitude accuracy is achieved by increasing the number of parallel stages. 

However, the efficiency of these current-summing amplifiers follows a class-B curve (Presti 

et al., 2009): 

 η ∝ √Pout  (5) 
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Walling et al. (2008) used control bits to generate a suitable Pulse Width/Pulse Position 
(PWPM) signal, which was then provided to four class-E quasi-differential stages. In a 65nm 
technology, a maximum output power of 28.6 dBm and PAE of 28.5% is achieved at 2.2 GHz 
with the output stage using a supply voltage of 2.5 V. For a 192kHz symbol rate, non-
constant envelope π/4-DQPSK (Differential Quadrature Phase Shift Keying) modulated 
signal, an output power of 27 dBm is achieved with an EVM of 4.6%. 

4.5 Direct RF modulation 

A third strategy to process the signal is to directly modulate the RF signal into the SM 

amplifier. For instance, a Pulse Width/Pulse Position modulator (PWPM) or a Sigma-Delta 

(ΣΔ) modulator can be used (Nielsen & Larsen, 2008; Wagh & Midya, 1999). This is depicted 

in Fig. 6. A major disadvantage however is that generally a high sampling or operating 

frequency is necessary, typically at least 4fRF, in order to achieve the desired resolution. This 

implies a large power consumption in the modulator, as this is directly proportional to the 

frequency. Moreover, since the PA switches more often, more switching loss will occur, 

reducing the efficiency. 
 

 

Fig. 6. Direct modulation of the RF signal by means of Sigma-Delta (ΣΔ) or Pulse Width 
Modulation (PWM).  

Wagh and Midya (1999) presented the concept of Pulse Width Modulation for RF. Nielsen 
and Larsen (2008), utilizing GaAs technology, used a feedback circuit and a comparator to 
generate an RF PWM signal. The signal’s adjacent channel power ratio stayed well below 
the UMTS spectrum mask, allowing for some non-linearity from a subsequent PA. 
Direct modulation was also proposed by Jayaraman et al. (1998), utilizing a bandpass ΣΔ 
modulator, simulated with GaAs HBT technology. Discussions on efficiency were presented, 
and it was indicated that the linearity demands were moved from the PA to the ΣΔM. 

4.6 Cartesian modulation 

Even though polar modulation has some distinct efficiency advantages, as an alternative 

Cartesian modulation may be used, that is, the I and Q baseband signal that differ 90° in 
phase are each processed in the transmitter and then summed either directly before the PA, 
or alternatively, each signal is amplified and the two signals are combined after the 
amplifiers. An advantage is that the signal is not transformed into its amplitude- and phase 
component, a non-linear transformation putting tough requirements on the delay and 
recombination of the two signals.  
Bassoo et al. (2009) have proposed a combination of Cartesian and polar modulation, where 
the SMPA input signal is a SD modulated Cartesian signal divided by the amplitude signal, 
which may be more or less bandlimited (see Fig. 7). Analysis showed that the envelope 
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signal can be limited to 75% of the channel bandwidth without impairing the efficiency, still 
keeping OFDM clipping limited and EVM very low. Thus, a combination of EER and 
PWPM can be used to have a high efficiency over a wide range of output power while 
avoiding the bandwidth expansion of polar modulation. 
 

 

Fig. 7. Simplified architecture presented in Bassoo et al. (2009) for a combined polar and 
Cartesian modulator.  

4.7 Efficiency comparison 

Simulations have been performed on a 130nm CMOS class-D switched-mode amplifier, in 
order to compare the drain efficiency versus output power of the different architectures that 
have been discussed in the previous sections, such as Envelope Elimination and Restoration 
(EER), Envelope Tracking (ET), and Pulse Width Modulation by Variable Gate Bias 
(PWMVGB). Moreover, hypothetical curves for class-A and class-B operation have been 
drawn (see Fig. 8), with the peak efficiency as starting point. Class-A represents linear 
amplifier operation while class-B can be said to represent current-summing architectures. 
Not unexpectedly the EER and ET architectures perform best, showing the highest efficiency 
for lower output power ranges. It may thus be concluded that the use of supply modulation 
is desirable for high average efficiencies. However, it can also be seen that efficiency remains 
a challenging aspect, especially taking into account numerous other requirements such as 
linearity, channel bandwidth, multi-mode/multi-standard operation and output power 
control range.  

5. Summary 

It is only fairly recent that CMOS technology has become a competitive alternative for 
integrated circuit power amplifier design for wireless communication handsets, as CMOS 
previously was not suitable for PA design due to frequency, output power, efficiency and 
linearity requirements. Thus, stand-alone PAs have long been manufactured in specialized 
technologies. Nowadays however CMOS has evolved to operating frequencies far into the 
GHz range, and many of the limitations, such as efficiency when used as linear 
amplification element, can be compensated by more digital control. Thus, a higher level of 
integration and more complex transmitter design result. However, the trend in CMOS 
technology development is to reduce device dimensions and as a consequence breakdown 
voltage. This complicates CMOS power amplifier design. 
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(a) 

 
(b) 

 

Fig. 8. Simulated drain efficiency for a CMOS class-D amplifier in different architectures, 
such as Envelope Elimination and Restoration (EER), Envelope Tracking (ET), and Pulse 
Width Modulation by Variable Gate Bias (PWMVGB). Class-A and class-B curves serve only 
as an illustration. The amplifier operated on a 1.2V supply and the input signal had a 
frequency of 2 GHz. (a). The output power (x-axis) represented in dBm, (b). The output 
power in mW.  

Transmitter architectures using polar signals have gained in popularity, as splitting the 
Cartesian signal into a low-frequency envelope signal and a high-frequency phase signal 
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provides excellent opportunity for efficiency improvements because a non-linear power 
amplifier can be used. A number of different polar architecture implementations exist, both 
digital and analog. However, signal bandwidth and supply requirements are challenging 
aspects of such designs. Other strategies have thus been used to avoid supply voltage 
modulation, such as switched control of the supply voltage or variable gate bias. Moreover, 
direct RF modulation can be used, implemented as a sigma-delta or pulse width modulator 
at high operating frequency. Recently, design strategies such as current steering have gained 
interest for use in PA and transmitter design. Digital control bits are used to generate a 
scaled output current, providing a high output power without straining the devices.  
However, efficiency over a wide range of output power is still a challenging aspect of 
transmitter design, especially if other requirements such as linearity, power control, multi-
mode/multi-band operation and channel bandwidth must be fulfilled simultaneously. 

5.1 Future outlook 

As CMOS technologies continue to develop to dimensions well below 65nm, special devices 
suitable for high supply voltage will likely continue to be provided, for example using high-
K metal gate material. Such devices can be used on the same chip as digital circuits with 
clocking speeds of several GHz. Moreover, other substrate types may be used more 
extensively, such as Silicon-on-Isolator substrates. As they are less lossy, this may provide 
efficiency improvements.  
On the other hand, performance requirements will continue to rise with the development 
and maturing of wireless communication systems, especially because of the desire to cover 
more and more standards in one handset (multi-mode/multi-standard operation). Digital 
control may be used to accommodate greater flexibility, reconfigurability and on-chip 
calibration in transmitter design. Moreover, techniques may be used to increase the 
adaptivity of components such as antennas, duplexers, filters and matching networks. 
CMOS will continue to expand into the millimeter-wave range, with operating frequencies 
beyond 60 GHz. However, other technology developments may play an important role in 
future integrated circuit design for wireless communication, such as integrated RF MEMS 
(microelectromechanical systems). Also devices such as carbon nanotubes may be used for 
wireless applications. But such technologies have some way to go until they reach the level 
of integration that current CMOS technology has. 
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