
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 27

A New Hybrid Particle Swarm Optimization Algorithm to the Cyclic
Multiple-Part Type Three-Machine Robotic Cell Problem

Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami

X

A New Hybrid Particle Swarm Optimization
Algorithm to the Cyclic Multiple-Part Type

Three-Machine Robotic Cell Problem

Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami
Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares

University
Tehran, Iran

1. Introduction

Nowadays the level of automation in manufacturing industries has been increased
dramatically. Some examples of these automation progresses are in cellular manufacturing
and robotic cells. A growing body of evidence suggests that, in a wide variety of industrial
settings, material handling within a cell can be accomplished very efficiently by employing
robots (see (Asfahl, 1992)). Among the interrelated issues to be considered in using robotic
cells are their designs, the scheduling of robot moves, and the sequencing of parts to be
produced.
Robotic cell problem in which robot is used as material handling system received
considerable attentions. Sethi et al. (1992) proved that in buffer-less single-gripper two-
machine robotic cells producing single part-type and having identical robot travel times
between adjacent machines and identical load/unload times, a 1-unit cycle provides the
minimum per unit cycle time in the class of all solutions, cyclic or otherwise. For three
machine case, Crama and van de Klundert (1999), and Brauner and Finke (1999) shown that
the best 1-unit cycle is optimal solution for the class of all cyclic solutions. Hall et al. (1997;
1998) considered the computational complexity of the multiple-type parts three-machine
robotic cell problem under various robot movement policies. This problem is studied for no-
wait robotic cells too. For example Agnetis (2000) found an optimal part schedule for no-
wait robotic cells with three and two machines. Agnetis and pacciarelli (2000) have studied
partscheduling problem for no-wait robotic cells, and found the complexity of the problem.
Crama et al. (2000) studied flow-shop scheduling problems, models for such problems, and
complexity of theses problems. Dawande et al. (2005) reviewed the recent developments in
robotic cells and, provided a classification scheme for robotic cells scheduling problem.
Some other special cases have been studied such as: Drobouchevitch et al. (2006) provided a
model for cyclic production in a dual-gripper robotic cell. Gultekin et al. (2006) studied
robotic cell scheduling problem with tooling constraints for a two-machine robotic cell
where some operations can only be processed on the first machine and some others can only
be processed on the second machine and the remaining can be processed on both machines.

2

www.intechopen.com

Swarm Robotics, From Biology to Robotics28

Gultekin et al. (2007) considered a flexible manufacturing robotic cell with identical parts in
which machines are able to do different operations and the operation time is not system
parameter and is variable. They proposed a lower bound for 1-unit cycles and 2-unit cycles.
Sriskandarajah et al. (1998) classified the part sequence problems associated with different
robot movement policies, in this chapter a robot movement policy is considered, which its
part scheduling problem is NP-Hard, and Baghchi et al. (2006) proposed to solve this
problem, by a heuristic or meta-heuristic. In this chapter a meta-heuristic method based on
particle swarm optimization is applied to solve the problem.
In this chapter an m-machine flexible cyclic cell is considered. All parts in an MPS (A
minimal part set) visit each machine in the same order, the production environment is
cyclic, and parts are produced at the same order repeatedly.
In this chapter, we consider multiple-type parts three-machine robotic cells which have
operational flexibility in which the operations can be performed in any order; moreover
each machine can be configured to perform any operation. To explain the problem, consider
a machining centre where three machine tools are located and a robot is used to feed the
machines namely 1 2 3, ,M M M (see figure 1). All parts are brought to and removed from the
robotic cell by Automated Storage & Retrieval System (AS/RS). The pallets and feeders of
the AS/RS system allow hundreds of parts to be loaded into the cell without human
intervention. The machines can be configured to perform any operation.

Fig. 1. Robotic work cell layout with three machines

The aim of this chapter is to find a schedule for the robot movement and the sequence of
parts to maximize throughput (i.e., to minimize cycle time), as it is showed that this problem
is NP-Complete in general (see Hall et al. (1997)). Hence, this chapter proposes a novel
hybrid particle swarm optimization (HPSO) algorithm to tackle the problem. To validate the
developed model and solution algorithm, various test problems with different sizes is

Robot

AS/RS

M3

M1

M2

randomly generated and the performance of the HPSO is compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The rest of this chapter is
organized as follows: The problem definition and required notations are presented in
Section 2, Section 3 presents the developed mathematical model, and in Section 4, the
proposed hybrid particle swarm optimization algorithm is described. The computational
results are reported in Section 5, and the conclusions are presented in Section 6.

2. Problem definition

The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs
might block either the machine or the robot. In a cyclic schedule the same sequences repeat
over and over and the state of the cell at the beginning of each cycle is the similar to the next
cycle. It is assumed that the discipline for the movements of parts is an ordinary flow-shop
discipline. That is a part meets machines 1 2 3, ,M M M consequently.

2.1 Notations
The following notation is used to describe the robotic cell problem:
m : The number of machines
/I O : The automated input-output system for the cell

iPT : The part-type i to be produced

ir : The minimal ratio of part i to be produced

MPS : The number of part set consisting ir parts of type iPT

n : the total number of parts to be produced in the MPS (1 2 ... kn r r r   )

ia : The processing time of part i on 1M

ib : The processing time of part i on 2M

ic : The processing time of part i on 3M


: Robot travelling time between two successive machines (I/O is assumed as
machine 0M)

 : The load/unload time of part i
j
iw : The robot waiting time on jM to unload part i
kS : The robot movement policy S under category k
kT : The cycle time under kS

In this study the standard classification scheme for scheduling problems: 1 2 3| |   is

used where 1 indicates the scheduling environment, 2 describes the job characteristics

and 3 defines the objective function (Dawande et al., 2005). For example

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 29

Gultekin et al. (2007) considered a flexible manufacturing robotic cell with identical parts in
which machines are able to do different operations and the operation time is not system
parameter and is variable. They proposed a lower bound for 1-unit cycles and 2-unit cycles.
Sriskandarajah et al. (1998) classified the part sequence problems associated with different
robot movement policies, in this chapter a robot movement policy is considered, which its
part scheduling problem is NP-Hard, and Baghchi et al. (2006) proposed to solve this
problem, by a heuristic or meta-heuristic. In this chapter a meta-heuristic method based on
particle swarm optimization is applied to solve the problem.
In this chapter an m-machine flexible cyclic cell is considered. All parts in an MPS (A
minimal part set) visit each machine in the same order, the production environment is
cyclic, and parts are produced at the same order repeatedly.
In this chapter, we consider multiple-type parts three-machine robotic cells which have
operational flexibility in which the operations can be performed in any order; moreover
each machine can be configured to perform any operation. To explain the problem, consider
a machining centre where three machine tools are located and a robot is used to feed the
machines namely 1 2 3, ,M M M (see figure 1). All parts are brought to and removed from the
robotic cell by Automated Storage & Retrieval System (AS/RS). The pallets and feeders of
the AS/RS system allow hundreds of parts to be loaded into the cell without human
intervention. The machines can be configured to perform any operation.

Fig. 1. Robotic work cell layout with three machines

The aim of this chapter is to find a schedule for the robot movement and the sequence of
parts to maximize throughput (i.e., to minimize cycle time), as it is showed that this problem
is NP-Complete in general (see Hall et al. (1997)). Hence, this chapter proposes a novel
hybrid particle swarm optimization (HPSO) algorithm to tackle the problem. To validate the
developed model and solution algorithm, various test problems with different sizes is

Robot

AS/RS

M3

M1

M2

randomly generated and the performance of the HPSO is compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The rest of this chapter is
organized as follows: The problem definition and required notations are presented in
Section 2, Section 3 presents the developed mathematical model, and in Section 4, the
proposed hybrid particle swarm optimization algorithm is described. The computational
results are reported in Section 5, and the conclusions are presented in Section 6.

2. Problem definition

The robotic cell problem is a special case of the cyclic blocking flow-shop, where the jobs
might block either the machine or the robot. In a cyclic schedule the same sequences repeat
over and over and the state of the cell at the beginning of each cycle is the similar to the next
cycle. It is assumed that the discipline for the movements of parts is an ordinary flow-shop
discipline. That is a part meets machines 1 2 3, ,M M M consequently.

2.1 Notations
The following notation is used to describe the robotic cell problem:
m : The number of machines
/I O : The automated input-output system for the cell

iPT : The part-type i to be produced

ir : The minimal ratio of part i to be produced

MPS : The number of part set consisting ir parts of type iPT

n : the total number of parts to be produced in the MPS (1 2 ... kn r r r   )

ia : The processing time of part i on 1M

ib : The processing time of part i on 2M

ic : The processing time of part i on 3M


: Robot travelling time between two successive machines (I/O is assumed as
machine 0M)

 : The load/unload time of part i
j
iw : The robot waiting time on jM to unload part i
kS : The robot movement policy S under category k
kT : The cycle time under kS

In this study the standard classification scheme for scheduling problems: 1 2 3| |   is

used where 1 indicates the scheduling environment, 2 describes the job characteristics

and 3 defines the objective function (Dawande et al., 2005). For example

www.intechopen.com

Swarm Robotics, From Biology to Robotics30

1
3 | 2, | tFRC k S C denotes the minimization of cycle time for multi-type part problem

in a three flow-shop robotic cell, restricted to robot move cycle 1S .

2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C
In the three machine robotic flow shop cell, there are six different potentially optimal
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al.
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine
robotic cell can be described by exactly m+1 following basic activities:

iM


: Load a part on iM 1,2,...,i m

iM


: Unload a finished part from iM 1,2,...,i m

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al.,
1992):

 1
3 1 2 3 3: , , , ,S M M M M M    

 2
3 1 3 2 3: , , , ,S M M M M M    

 3
3 3 1 2 3: , , , ,S M M M M M    

 4
3 2 3 1 3: , , , ,S M M M M M    

 5
3 2 1 3 3: , , , ,S M M M M M    

 6
3 3 2 1 3: , , , ,S M M M M M    

In this chapter we consider a three machine robotic cell problem under the 6S policy

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S is
NP-complete (Hall et al., 1998).

Fig. 2. The robot movement under 6S

M3 M1

I/O




M2













Lemma 1. The cycle times of one unit for the policy 6s are given by:
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Proof: According to figure 2 the robot movement under policy 6s is as follow:
Pickup part 2ip  from)(I/O  move it to)(M1  load 2ip  onto)(M1  go to)(2 M3  if

necessary wait at)(w M 3
i

3 , unload ip from)(M3  move it to)(I/O  drop ip at)(I/O 

go to)(2 M2  if necessary wait at)(w M 2
1i

2
 , unload 1ip  from)(M2  move it to)(M3  ,

load 1iP onto)(M3  go to)(2 M1  if necessary wait at)(w M 1
2i

1
 , unload 2iP from

)(M1  move it to)(M2  load 2iP onto)(M2  go to)(2 I/O  then start a new cycle by
picking up the part 3iP .
The cycle time by considering waiting times is as follow:

6 2 1
, () (1) (2) 1 2 312 8 i i i
I i i iT w w w      

      
2 1

1 (2) 2 3max{0, 8 4 }i i i
iw a w w   
    

1
2 (1) 3max{0, 8 4 }i i

iw b w  
   

2
3 () 1max{0, 8 4 }i i

iw c w     
6
, () (1) (2) (2) (1) ()12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

3. Developing mathematical model

In this section we develop a systematic method to produce necessary mathematical
programming formulation for robotic cells. Therefore first we model single-part type
problem through Petri nets, and then extend the model to multiple-part type problem.
A Petri-net is a four-tuple (, , ,)PN P T A W , where 1 2{ , ,..., }nP p p p is a finite set of

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, () ()A P T T P    is a finite

set of arcs, and : {1,2,3,...}W A is a weight function.

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the
transitions we call it as Timed Petri net.
The behaviour of many systems can be described by system states and their changes, to
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to
the following transition (firing) rule: 1) A transition is said to be enabled if each input place
p of t is marked at least with (,)w p t tokens, where (,)w p t is weight of the arc from p to
t. 2) An enabled transition may or may not be fired (depending on whether or not the event
takes place). A firing of an enabled transition t removes (,)w p t tokens from each input

place p of t and adds (,)w p t tokens to each output place p of t , where (,)w p t is the
weight of the arc from t to p.

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 31

1
3 | 2, | tFRC k S C denotes the minimization of cycle time for multi-type part problem

in a three flow-shop robotic cell, restricted to robot move cycle 1S .

2.2 Three machine robotic flow shop cell 3 | 2 | tFRC K C
In the three machine robotic flow shop cell, there are six different potentially optimal
policies for robot to move the parts between the machines (Bagchi et al., 2006). Sethi et al.
(1992) showed that any potentially optimal one-unit robot move cycle in a m machine
robotic cell can be described by exactly m+1 following basic activities:

iM


: Load a part on iM 1,2,...,i m

iM


: Unload a finished part from iM 1,2,...,i m

In other words, a cycle can be uniquely described by a permutation of the m+1 activity. The
following are the available robot move cycles for m=3 flow-shop robotic cell (Sethi et al.,
1992):

 1
3 1 2 3 3: , , , ,S M M M M M    

 2
3 1 3 2 3: , , , ,S M M M M M    

 3
3 3 1 2 3: , , , ,S M M M M M    

 4
3 2 3 1 3: , , , ,S M M M M M    

 5
3 2 1 3 3: , , , ,S M M M M M    

 6
3 3 2 1 3: , , , ,S M M M M M    

In this chapter we consider a three machine robotic cell problem under the 6S policy

(Figure 2). The problem of finding the best part sequence using the robot move cycle 6S is
NP-complete (Hall et al., 1998).

Fig. 2. The robot movement under 6S

M3 M1

I/O




M2













Lemma 1. The cycle times of one unit for the policy 6s are given by:
6

I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Proof: According to figure 2 the robot movement under policy 6s is as follow:
Pickup part 2ip  from)(I/O  move it to)(M1  load 2ip  onto)(M1  go to)(2 M3  if

necessary wait at)(w M 3
i

3 , unload ip from)(M3  move it to)(I/O  drop ip at)(I/O 

go to)(2 M2  if necessary wait at)(w M 2
1i

2
 , unload 1ip  from)(M2  move it to)(M3  ,

load 1iP onto)(M3  go to)(2 M1  if necessary wait at)(w M 1
2i

1
 , unload 2iP from

)(M1  move it to)(M2  load 2iP onto)(M2  go to)(2 I/O  then start a new cycle by
picking up the part 3iP .
The cycle time by considering waiting times is as follow:

6 2 1
, () (1) (2) 1 2 312 8 i i i
I i i iT w w w      

      
2 1

1 (2) 2 3max{0, 8 4 }i i i
iw a w w   
    

1
2 (1) 3max{0, 8 4 }i i

iw b w  
   

2
3 () 1max{0, 8 4 }i i

iw c w     
6
, () (1) (2) (2) (1) ()12 8 max{0, 8 4 , 8 4 , 8 4 }I i i i i i iT a b c                       

3. Developing mathematical model

In this section we develop a systematic method to produce necessary mathematical
programming formulation for robotic cells. Therefore first we model single-part type
problem through Petri nets, and then extend the model to multiple-part type problem.
A Petri-net is a four-tuple (, , ,)PN P T A W , where 1 2{ , ,..., }nP p p p is a finite set of

places, 1 2{ , ,..., }mT t t t is a finite set of transitions, () ()A P T T P    is a finite

set of arcs, and : {1,2,3,...}W A is a weight function.

Every place has an initial marking 0 : {0,1,2,...}M P . If we assign time to the
transitions we call it as Timed Petri net.
The behaviour of many systems can be described by system states and their changes, to
simulate the dynamic behaviour of system; marking in a Petri-net is changed according to
the following transition (firing) rule: 1) A transition is said to be enabled if each input place
p of t is marked at least with (,)w p t tokens, where (,)w p t is weight of the arc from p to
t. 2) An enabled transition may or may not be fired (depending on whether or not the event
takes place). A firing of an enabled transition t removes (,)w p t tokens from each input

place p of t and adds (,)w p t tokens to each output place p of t , where (,)w p t is the
weight of the arc from t to p.

www.intechopen.com

Swarm Robotics, From Biology to Robotics32

By considering a single-part type system, the robot arm at steady state is located at machine

2M , therefore by coming back to this node we have a complete cycle for the robot arm.
The related Petri net for robot movements is shown in Figure 3 and the descriptions of the
nodes for this graph with respective execution times would be as follows:

Fig. 3. Petri net for 6s policy

1R : go to)(3 M ; 2R : load)(3 M ; 3R : go to)2(1 M ;

4R : unload)(1 M ; 5R : go to)2(2 M ; 6R : load)(2 M ;

7R : go to input, pickup a new part, go to)3(1  M ; 8R : load)(1 M ;

9R : go to)2(3 M ; 10R : unload)(3 M ;

11R : go to output, drop the part, go to)3(3  M ; 12R : unload)(2 M ;

jRP : wait at)(i
jj wM is : starting time of iR ; jsp : starting time of jRP

 : 1M is ready to be unloaded;

 : 2M is ready to be unloaded;

 : 3M is ready to be unloaded;

By considering a multiple-part type system, at machine 1M , when we want to load a part
on the machine we have to decide which part should be chosen such that the cycle time is

P2

P12 

’

R1

R12

R14

P1 P3 R2 P4 R3

P11

R11

P10
P9 P8 P7

P5

P6



’

’









w1

w3

w2

a
b

c

minimized. The same thing also can be achieved for 2M and 3M . Based on the choosing

gate definition we simply have three choosing gates as  ,  , and  . Thus we can write

the following formulation using 0-1 integer variables 1ijx , 2ijx , and 3ijx as:

1 4,1 8,
1

: 1 ()
n

n t in i
i

s s C x a 


   

4, 1 8,
1

: 1 () 2,..., .
n

j j j ij i
i

s s x a j n 


   

12, 6,
1

: 2 () 1,..., .
n

j j j ij i
i

s s x b j n 


   

10, 2,
1

: 3 () 1,..., .
n

j j j ij i
i

s s x c j n 


   

Definition. A marked graph is a Petri-net such that every place has only one input and only
one output.
Theorem 1. For a marked graph which every place has i m tokens (see figure 4), the
following relation B A i ts s mC  , where As , Bs are starting times of transitions A and B

respectively, and tC is cycle time, is true.

Fig. 4. The marked graph in theorem 1

Proof: see ref. (Maggot, 1984).

In addition the following feasibility constraints assign unique positioning for every job:

.,,111

,,111

1

1

nix

njx

n

j
ij

n

i
ij

















To keep the sequence of the parts between the machines in a right order, we have to add the
following constraints:

.1,...,132

1,...,121

1

1

njnixx
njnixx

jiji

jiji












Where, we assume that 1,1, 11 ini xx  because of the cyclic repetition of parts.
Thus the complete model for the three machine robotic cell with multiple-part would be as
follows:

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 33

By considering a single-part type system, the robot arm at steady state is located at machine

2M , therefore by coming back to this node we have a complete cycle for the robot arm.
The related Petri net for robot movements is shown in Figure 3 and the descriptions of the
nodes for this graph with respective execution times would be as follows:

Fig. 3. Petri net for 6s policy

1R : go to)(3 M ; 2R : load)(3 M ; 3R : go to)2(1 M ;

4R : unload)(1 M ; 5R : go to)2(2 M ; 6R : load)(2 M ;

7R : go to input, pickup a new part, go to)3(1  M ; 8R : load)(1 M ;

9R : go to)2(3 M ; 10R : unload)(3 M ;

11R : go to output, drop the part, go to)3(3  M ; 12R : unload)(2 M ;

jRP : wait at)(i
jj wM is : starting time of iR ; jsp : starting time of jRP

 : 1M is ready to be unloaded;

 : 2M is ready to be unloaded;

 : 3M is ready to be unloaded;

By considering a multiple-part type system, at machine 1M , when we want to load a part
on the machine we have to decide which part should be chosen such that the cycle time is

P2

P12 

’

R1

R12

R14

P1 P3 R2 P4 R3

P11

R11

P10
P9 P8 P7

P5

P6



’

’









w1

w3

w2

a
b

c

minimized. The same thing also can be achieved for 2M and 3M . Based on the choosing

gate definition we simply have three choosing gates as  ,  , and  . Thus we can write

the following formulation using 0-1 integer variables 1ijx , 2ijx , and 3ijx as:

1 4,1 8,
1

: 1 ()
n

n t in i
i

s s C x a 


   

4, 1 8,
1

: 1 () 2,..., .
n

j j j ij i
i

s s x a j n 


   

12, 6,
1

: 2 () 1,..., .
n

j j j ij i
i

s s x b j n 


   

10, 2,
1

: 3 () 1,..., .
n

j j j ij i
i

s s x c j n 


   

Definition. A marked graph is a Petri-net such that every place has only one input and only
one output.
Theorem 1. For a marked graph which every place has i m tokens (see figure 4), the
following relation B A i ts s mC  , where As , Bs are starting times of transitions A and B

respectively, and tC is cycle time, is true.

Fig. 4. The marked graph in theorem 1

Proof: see ref. (Maggot, 1984).

In addition the following feasibility constraints assign unique positioning for every job:

.,,111

,,111

1

1

nix

njx

n

j
ij

n

i
ij

















To keep the sequence of the parts between the machines in a right order, we have to add the
following constraints:

.1,...,132

1,...,121

1

1

njnixx
njnixx

jiji

jiji












Where, we assume that 1,1, 11 ini xx  because of the cyclic repetition of parts.
Thus the complete model for the three machine robotic cell with multiple-part would be as
follows:

www.intechopen.com

Swarm Robotics, From Biology to Robotics34

6min tC
Subject to:

  tn12,2,11,1 -: Cssp nj ,,2 (1)

   jjj ssp 2,1 nj ,,1 (2)

 2124,3  jjjj wssp nj ,,1 (3)

  jjj ssp 46,5 nj ,,1 (4)
 3268,7  jjj ssp nj ,,1 (5)

 23810,9  jjjj wssp nj ,,1 (6)
 32201,11   jjjj wssp nj ,,1 (7)

  


)(1:
1

71

n

i
aiint iaxCss (8)

  




n

i
aiijjj iaxss

1
7j)(1: nj ,,2 (9)

  


)(2:
1

612j

n

i
biijjj ibxss nj ,,1 (10)

  


)(3:
1

210j

n

i
ciijjj icxss nj ,,1 (11)

jiji xx   21 nji  1 (12)

jiji xx   32 nji  1 (13)

11
1




n

i
ijx nj ,,1 (14)

11
1




n

j
ijx ni ,,1 (15)

, , 0,i j kjs w   }1,0{3,2,1 xxx

4. The proposed hybrid particle swarm optimization (HPSO) algorithm

The particle swarm optimization (PSO) is a population based stochastic optimization
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the
fitness function to be optimized, and have velocities which direct the flying of the particles.

The particles fly through the problem space by following the particles with the best
solutions so far (Shi and Eberhart, 1998).
The general scheme of the proposed HPSO is presented in Figure 5.

Fig 5. The schematic structure of the proposed HPSO

In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell
problem. In the proposed HPSO the velocity of each particle is calculated according to
equation (16).

    
1 2() () () ()id id id id id idV wV c rand pBest x c Rand lBest x

t Number of Iterations a FrequencyMatrix b

         

  

(16)

Where 1c and 2c are the learning factors that control the influence of pBest and lBest. w is
the inertia weight which controls the exploration and exploitation abilities of algorithm.

()rand and ()Rand are two independently generated random numbers, t is the current

iteration and a and b are two parameters that adjust the influence of the Frequency
Matrix on velocity value. pBest is the best position which each particle has found since the
first step and it represents the experiential knowledge of a particle. After the cloning
procedure (the detailed of cloning procedure will be described in the next section), a
neighborhood for each particle is achieved. The best particle in this neighborhood is selected
as lBest.

 Creating
initial

particles
(solution)

 Fitness
evaluation for
each particle

 Forming Best Set
(selecting N best

Calculating

particles'
velocities and

positions

Stop?

No

 End

 Start

 Cloning (creating
a neighborhood
for each particle)

 Updating gBest (the best
sequence in the swarm)

 Forming Frequency
Matrix Yes

 Updating pBest
and lBest

 Inversion
mutation

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 35

6min tC
Subject to:

  tn12,2,11,1 -: Cssp nj ,,2 (1)

   jjj ssp 2,1 nj ,,1 (2)

 2124,3  jjjj wssp nj ,,1 (3)

  jjj ssp 46,5 nj ,,1 (4)
 3268,7  jjj ssp nj ,,1 (5)

 23810,9  jjjj wssp nj ,,1 (6)
 32201,11   jjjj wssp nj ,,1 (7)

  


)(1:
1

71

n

i
aiint iaxCss (8)

  




n

i
aiijjj iaxss

1
7j)(1: nj ,,2 (9)

  


)(2:
1

612j

n

i
biijjj ibxss nj ,,1 (10)

  


)(3:
1

210j

n

i
ciijjj icxss nj ,,1 (11)

jiji xx   21 nji  1 (12)

jiji xx   32 nji  1 (13)

11
1




n

i
ijx nj ,,1 (14)

11
1




n

j
ijx ni ,,1 (15)

, , 0,i j kjs w   }1,0{3,2,1 xxx

4. The proposed hybrid particle swarm optimization (HPSO) algorithm

The particle swarm optimization (PSO) is a population based stochastic optimization
technique that was developed by Kennedy and Eberhart in 1995 (Hu et al., 2004). The PSO
inspired by social behavior of bird flocking or fish schooling. In PSO, each solution is a bird
in the flock and is referred to as a particle. A particle is analogous to a chromosome in GAs
(Kennedy and Eberhart, 1995). All particles have fitness values which are evaluated by the
fitness function to be optimized, and have velocities which direct the flying of the particles.

The particles fly through the problem space by following the particles with the best
solutions so far (Shi and Eberhart, 1998).
The general scheme of the proposed HPSO is presented in Figure 5.

Fig 5. The schematic structure of the proposed HPSO

In this chapter, we extend the discrete PSO of Liao et al. (2007) to solve the robotic cell
problem. In the proposed HPSO the velocity of each particle is calculated according to
equation (16).

    
1 2() () () ()id id id id id idV wV c rand pBest x c Rand lBest x

t Number of Iterations a FrequencyMatrix b

         

  

(16)

Where 1c and 2c are the learning factors that control the influence of pBest and lBest. w is
the inertia weight which controls the exploration and exploitation abilities of algorithm.

()rand and ()Rand are two independently generated random numbers, t is the current

iteration and a and b are two parameters that adjust the influence of the Frequency
Matrix on velocity value. pBest is the best position which each particle has found since the
first step and it represents the experiential knowledge of a particle. After the cloning
procedure (the detailed of cloning procedure will be described in the next section), a
neighborhood for each particle is achieved. The best particle in this neighborhood is selected
as lBest.

 Creating
initial

particles
(solution)

 Fitness
evaluation for
each particle

 Forming Best Set
(selecting N best

Calculating

particles'
velocities and

positions

Stop?

No

 End

 Start

 Cloning (creating
a neighborhood
for each particle)

 Updating gBest (the best
sequence in the swarm)

 Forming Frequency
Matrix Yes

 Updating pBest
and lBest

 Inversion
mutation

www.intechopen.com

Swarm Robotics, From Biology to Robotics36

As Liao et al. (2007), the velocity values transfers from real numbers to the probability of
changes by using the equation (17):
  () 1 1 exp()id ids V V   (17)

where ()ids V stands for the probability of idx taking the value 1. In the proposed
algorithm, the new position (sequence) of each particle is constructed based on its
probability of changes that calculated by equation (17). Precisely, for calculating the new
position of each particle, the algorithm starts with a null sequence and places an
unscheduled job j in position k (k = 1, 2, . . . , n) according to the probability that determined
by equation (18):
 (,) () ()i id idj F

q j k s V s V


  (18)

where F is the set of the first f unscheduled jobs as present in the best particle (solution)
obtained till current iteration. To achieve a complete sequence, the jobs are added one after
another to the partial sequence.
The proposed HPSO terminates after a given number of iterations and the best sequence is
reported as the final solution for the problem.

4.1 Cloning
For avoiding local optimal solutions we implement cloning procedure which in summary
can be described as follows:

1. M copies of the solution are generated so that there are (M+1) identical solutions
available.

2. Each of the M copies are subjected to the swapping mutation.
3. In each clone only the original solution participates in HPSO evolution procedure

whereas the other copies of the solution would be discarded.
4. The above procedure is repeated for all of the solutions in the swarm.

4.2 Fitness evaluation
As any metaheuristic algorithm, the HPSO uses a fitness function to quantify the optimality

of a particle (sequence). The cycle times of one unit for the policy 6s are given by:

6
I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Hence, the following equeation is applied to calculate the fitness function.

4.3 Best Set formation
In the proposed HPSO, to improve efficiency of the algorithm, the best solutions which are
obtained so far are selected and kept in the Best Set. Then, the Best Set is applied to forming
the Frequency Matrix in next phase of the algorithm.
To form the Best Set, in the first iteration of algorithm and after the cloning phase of the
algorithm, the B first best particles among all particles in the swarm are selected and placed

in the Best Set. In the other iterations, only the particles that better than the existed particles
in the Best Set are replaced with them.

4.4 Frequency Matrix formation
The Frequency Matrix is a matrix which represents the average times that a specific job goes
to a specific position according to sequence of particles in the Best Set. To illustrate the
Frequency Matrix formation procedure, assume that the following particles are in the Best
Set.

First particle (sequence): (1,2,3,4,5)
Second particle (sequence): (1,2,4,3,5)
Third particle (sequence): (1,2,3,5,4)

Therefore, the Best Set will be as follows (Figure 6):

5 4 3 2 1 Position
Job

0 0 0 0 1 1

0 0 0 1 0 2

0 .33 .66 0 0 3

.33 .33 .33 0 0 4

.66 .33 0 0 0 5

Fig. 6. The example Frequency Matrix

4.5 Inversion mutation
The mutation operator causes a random movement in the search space that result in solution
diversity. Inversion mutation is adopted in the proposed algorithm. The inversion mutation,
as illustrated in Figure 7, selects two positions within a chromosome at random and then
inverts the subsequence between these two positions.

Fig. 7. General scheme inversion mutation

1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 37

As Liao et al. (2007), the velocity values transfers from real numbers to the probability of
changes by using the equation (17):
  () 1 1 exp()id ids V V   (17)

where ()ids V stands for the probability of idx taking the value 1. In the proposed
algorithm, the new position (sequence) of each particle is constructed based on its
probability of changes that calculated by equation (17). Precisely, for calculating the new
position of each particle, the algorithm starts with a null sequence and places an
unscheduled job j in position k (k = 1, 2, . . . , n) according to the probability that determined
by equation (18):
 (,) () ()i id idj F

q j k s V s V


  (18)

where F is the set of the first f unscheduled jobs as present in the best particle (solution)
obtained till current iteration. To achieve a complete sequence, the jobs are added one after
another to the partial sequence.
The proposed HPSO terminates after a given number of iterations and the best sequence is
reported as the final solution for the problem.

4.1 Cloning
For avoiding local optimal solutions we implement cloning procedure which in summary
can be described as follows:

1. M copies of the solution are generated so that there are (M+1) identical solutions
available.

2. Each of the M copies are subjected to the swapping mutation.
3. In each clone only the original solution participates in HPSO evolution procedure

whereas the other copies of the solution would be discarded.
4. The above procedure is repeated for all of the solutions in the swarm.

4.2 Fitness evaluation
As any metaheuristic algorithm, the HPSO uses a fitness function to quantify the optimality

of a particle (sequence). The cycle times of one unit for the policy 6s are given by:

6
I, (i) (i+1) (i+2) (i+2) (i+1) (i)T 12 8 max{0,a -8 -4 ,b -8 -4 ,c -8 -4 }              

Hence, the following equeation is applied to calculate the fitness function.

4.3 Best Set formation
In the proposed HPSO, to improve efficiency of the algorithm, the best solutions which are
obtained so far are selected and kept in the Best Set. Then, the Best Set is applied to forming
the Frequency Matrix in next phase of the algorithm.
To form the Best Set, in the first iteration of algorithm and after the cloning phase of the
algorithm, the B first best particles among all particles in the swarm are selected and placed

in the Best Set. In the other iterations, only the particles that better than the existed particles
in the Best Set are replaced with them.

4.4 Frequency Matrix formation
The Frequency Matrix is a matrix which represents the average times that a specific job goes
to a specific position according to sequence of particles in the Best Set. To illustrate the
Frequency Matrix formation procedure, assume that the following particles are in the Best
Set.

First particle (sequence): (1,2,3,4,5)
Second particle (sequence): (1,2,4,3,5)
Third particle (sequence): (1,2,3,5,4)

Therefore, the Best Set will be as follows (Figure 6):

5 4 3 2 1 Position
Job

0 0 0 0 1 1

0 0 0 1 0 2

0 .33 .66 0 0 3

.33 .33 .33 0 0 4

.66 .33 0 0 0 5

Fig. 6. The example Frequency Matrix

4.5 Inversion mutation
The mutation operator causes a random movement in the search space that result in solution
diversity. Inversion mutation is adopted in the proposed algorithm. The inversion mutation,
as illustrated in Figure 7, selects two positions within a chromosome at random and then
inverts the subsequence between these two positions.

Fig. 7. General scheme inversion mutation

1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

www.intechopen.com

Swarm Robotics, From Biology to Robotics38

5. Experimental Results

The performance of the proposed hybrid particle swarm optimization is compared with
three well-known metaheuristic algorithms: GA, PSO-I, and PSO-II. These algorithms have
been coded in the Visual Basic 6 and executed on a Pentium 4, 1.7 GHz, and Windows XP
using 256 MB of RAM. Note that the performance of the proposed algorithm is also
compared with Lingo 8 for small-sized problems.

5.1. Benchmark algorithms
At first, we present a brief discussion about the implementation of benchmark algorithms:
GA, PSO-I, and PSO-II.

5.1.1 Genetic algorithm (GA)
Genetic Algorithm (GA) was developed by Holland in 1975 as a tool for solving complex
optimization problems of large solution search spaces (Holland, 1992). GAs have been
applied successfully to a wide variety of optimization problems to find optimal or near-
optimal solutions (Gen and Cheng, 1997). Thus, for evaluating the performance and
reliability of the proposed PSO algorithm, we use GA as one of three benchmark algorithms.
A pseudocode for the applied GA is provided in Figure 8.

Fig. 8. Pseudocode for the Genetic Algorithm

Begin;
 Generate random population of N solutions;
 For each solution: calculate fitness;
 For i=1 to number of generations (G);
 For j=1 to N × Crossovr_Rate;
 Select two parents randomly;
 Generate an offspring = crossover (Parent1 and Parent2);
 Calculate the fitness of the offspring;
 If the offspring is better than the worst solution then
 Replace the worst solution by offspring;
 Else generate a new random solution;
 Next;
 Do
 Copy the ith best solution from previous generation to current generation;
 Until population size (N) is not reached;
 For k=1 to N × Mutation_Rate;
 Select one solution randomly;
 Generate a New_Solution = mutate (Solution);
 Next;
 Next;
End.

5.1.2 PSO-I (Basic algorithm)
In this section, the structure of PSO-I (basic algorithm) is briefly described. The pseudocode
of the applied PSO-I is provided in Figure 9.

Fig. 9. Pseudocode for the PSO-I Algorithm (Shi and Eberhart, 1998)

PSO is initialized with a group of random particles and then search for optima by updating
each generation. In each iteration, particles are updated by following two best values. The
first one is the location of the best solution a particle has achieved so far which referred it as
pBest. Another best value is the location of the best solution in all the population has
achieved so far. This value is called gBest (Shi and Eberhart, 1998). Equation (19) calculates a
new velocity for each particle as follows.

1 2() () () ()id id id id nd idV w V c Rand pBest x c rand nBest x         
(19)

Where ()Rand and ()rand are two random numbers independently generated. 1c and

2c are two learning factors, which control the influence of pBest and nBest on the search
process. The global exploration and local exploitation abilities of particle swarm are
balanced by using the inertia weight, w . Particles' velocities are bounded to a maximum
velocity maxV for managing the global exploration ability of PSO (Shi and Eberhart, 1998).

Equation (20) updates each particle's position (idx) in the solution hyperspace.

id id idx x V 
(20)

5.1.3 PSO-II (Constriction algorithm)
In this section, the structure of PSO-II (constriction algorithm) is expressed in a few words.
Also the structure of PSO-II is similar to PSO-I (as illustrated in Figure 4), but in PSO-II the
velocity for each particle is calculated according to equation (21) (Engelbrecht, 2005).
    1 2id id id id nd idV V pBest x nBest x         (21)

Where

Initialize the particle population randomly
Do

Calculate fitness values of each particle
Update pBest if the current fitness value is better than pBest
Determine nBest for each particle: choose the particle with the best
fitness value of all the neighbors as the nBest
For each particle

Calculate particle velocity according to (19)
Update particle position according to (20)

While maximum iterations or minimum criteria is not attained

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 39

5. Experimental Results

The performance of the proposed hybrid particle swarm optimization is compared with
three well-known metaheuristic algorithms: GA, PSO-I, and PSO-II. These algorithms have
been coded in the Visual Basic 6 and executed on a Pentium 4, 1.7 GHz, and Windows XP
using 256 MB of RAM. Note that the performance of the proposed algorithm is also
compared with Lingo 8 for small-sized problems.

5.1. Benchmark algorithms
At first, we present a brief discussion about the implementation of benchmark algorithms:
GA, PSO-I, and PSO-II.

5.1.1 Genetic algorithm (GA)
Genetic Algorithm (GA) was developed by Holland in 1975 as a tool for solving complex
optimization problems of large solution search spaces (Holland, 1992). GAs have been
applied successfully to a wide variety of optimization problems to find optimal or near-
optimal solutions (Gen and Cheng, 1997). Thus, for evaluating the performance and
reliability of the proposed PSO algorithm, we use GA as one of three benchmark algorithms.
A pseudocode for the applied GA is provided in Figure 8.

Fig. 8. Pseudocode for the Genetic Algorithm

Begin;
 Generate random population of N solutions;
 For each solution: calculate fitness;
 For i=1 to number of generations (G);
 For j=1 to N × Crossovr_Rate;
 Select two parents randomly;
 Generate an offspring = crossover (Parent1 and Parent2);
 Calculate the fitness of the offspring;
 If the offspring is better than the worst solution then
 Replace the worst solution by offspring;
 Else generate a new random solution;
 Next;
 Do
 Copy the ith best solution from previous generation to current generation;
 Until population size (N) is not reached;
 For k=1 to N × Mutation_Rate;
 Select one solution randomly;
 Generate a New_Solution = mutate (Solution);
 Next;
 Next;
End.

5.1.2 PSO-I (Basic algorithm)
In this section, the structure of PSO-I (basic algorithm) is briefly described. The pseudocode
of the applied PSO-I is provided in Figure 9.

Fig. 9. Pseudocode for the PSO-I Algorithm (Shi and Eberhart, 1998)

PSO is initialized with a group of random particles and then search for optima by updating
each generation. In each iteration, particles are updated by following two best values. The
first one is the location of the best solution a particle has achieved so far which referred it as
pBest. Another best value is the location of the best solution in all the population has
achieved so far. This value is called gBest (Shi and Eberhart, 1998). Equation (19) calculates a
new velocity for each particle as follows.

1 2() () () ()id id id id nd idV w V c Rand pBest x c rand nBest x         
(19)

Where ()Rand and ()rand are two random numbers independently generated. 1c and

2c are two learning factors, which control the influence of pBest and nBest on the search
process. The global exploration and local exploitation abilities of particle swarm are
balanced by using the inertia weight, w . Particles' velocities are bounded to a maximum
velocity maxV for managing the global exploration ability of PSO (Shi and Eberhart, 1998).

Equation (20) updates each particle's position (idx) in the solution hyperspace.

id id idx x V 
(20)

5.1.3 PSO-II (Constriction algorithm)
In this section, the structure of PSO-II (constriction algorithm) is expressed in a few words.
Also the structure of PSO-II is similar to PSO-I (as illustrated in Figure 4), but in PSO-II the
velocity for each particle is calculated according to equation (21) (Engelbrecht, 2005).
    1 2id id id id nd idV V pBest x nBest x         (21)

Where

Initialize the particle population randomly
Do

Calculate fitness values of each particle
Update pBest if the current fitness value is better than pBest
Determine nBest for each particle: choose the particle with the best
fitness value of all the neighbors as the nBest
For each particle

Calculate particle velocity according to (19)
Update particle position according to (20)

While maximum iterations or minimum criteria is not attained

www.intechopen.com

Swarm Robotics, From Biology to Robotics40

 
2

2 4

k
  


  

(22)

With

1 2    (23)

1 1 ()c Rand   (24)

2 2 ()c rand   (25)

Equation (22) is employed by considering the constraints that 4  and  0,1k . By

employing the constriction approach under above mentioned constraints, convergence of
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005).

Small-sized problem Large-sized problem

No. Of
Parts

Problem
Number

Problem
Condition No. Of Parts Problem

Number
Problem

Condition
5

1 iii cba 
50

22 iii cba 

2 iii bca  23 iii bca 

3 iii cab  24 iii cab 

4 iii acb  25 iii acb 

5 iii bac  26 iii bac 

6 iii abc  27 iii abc 

7 Unconditional
case 28 Uncondition

al case
10

8 iii cba 
75

29 iii cba 

9 iii bca  30 iii bca 

10 iii cab  31 iii cab 

11 iii acb  32 iii acb 

12 iii bac  33 iii bac 

13 iii abc  34 iii abc 

14 Unconditional
case 35 Uncondition

al case
15

15 iii cba 
100

36 iii cba 

16 iii bca  37 iii bca 

17 iii cab  38 iii cab 

18 iii acb  39 iii acb 

19 iii bac  40 iii bac 

20 iii abc  41 iii abc 

21 Unconditional
case 42 Uncondition

al case
Table 1. Problem inctances

5.2 Test Problems
To validate the proposed model and the proposed algorithm, various test problems are
examined. The experiments are implemented in two folds: first, for small-sized problems,
the other for large-sized ones. For both of these experiments, the values of  and  are
equal to 1; the processing time for all parts on the all machine are uniformly generated in
range [10, 100]. The problem instances are randomly generated as Table 1.

5.3 Parameters selection
For tuning the algorithms, extensive experiments were accomplished with different sets of
parameters. In this section, we only summarize the most significant findings:
Genetic algorithm
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2,
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively.
PSO-I algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that
linearly decreases to 0.9 in each iteration.
PSO-II algorithm

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 41

 
2

2 4

k
  


  

(22)

With

1 2    (23)

1 1 ()c Rand   (24)

2 2 ()c rand   (25)

Equation (22) is employed by considering the constraints that 4  and  0,1k . By

employing the constriction approach under above mentioned constraints, convergence of
the swarm to a stable point is guaranteed. The exploration and exploitation abilities of the
algorithm are controlled by the parameter of equation (22): k (Engelbrecht, 2005).

Small-sized problem Large-sized problem

No. Of
Parts

Problem
Number

Problem
Condition No. Of Parts Problem

Number
Problem

Condition
5

1 iii cba 
50

22 iii cba 

2 iii bca  23 iii bca 

3 iii cab  24 iii cab 

4 iii acb  25 iii acb 

5 iii bac  26 iii bac 

6 iii abc  27 iii abc 

7 Unconditional
case 28 Uncondition

al case
10

8 iii cba 
75

29 iii cba 

9 iii bca  30 iii bca 

10 iii cab  31 iii cab 

11 iii acb  32 iii acb 

12 iii bac  33 iii bac 

13 iii abc  34 iii abc 

14 Unconditional
case 35 Uncondition

al case
15

15 iii cba 
100

36 iii cba 

16 iii bca  37 iii bca 

17 iii cab  38 iii cab 

18 iii acb  39 iii acb 

19 iii bac  40 iii bac 

20 iii abc  41 iii abc 

21 Unconditional
case 42 Uncondition

al case
Table 1. Problem inctances

5.2 Test Problems
To validate the proposed model and the proposed algorithm, various test problems are
examined. The experiments are implemented in two folds: first, for small-sized problems,
the other for large-sized ones. For both of these experiments, the values of  and  are
equal to 1; the processing time for all parts on the all machine are uniformly generated in
range [10, 100]. The problem instances are randomly generated as Table 1.

5.3 Parameters selection
For tuning the algorithms, extensive experiments were accomplished with different sets of
parameters. In this section, we only summarize the most significant findings:
Genetic algorithm
No of Generation, Population Size, Crossover Rate (Linear order Crossover) and Mutation
Rate (Inversion Mutation) for the small-sized problems were set to 50, 50, 1.0, and 0.2,
respectively; and for the large-sized problems were set to 100, 100, 1.0 and 0.2, respectively.
PSO-I algorithm
No of Generation, Swarm Size, Learning factors (1c and 2c), and maxV for the small-sized
problems were set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problems were
set to 100, 100, 2, 2, and 3. The inertia weight for all problem inctances was set to 1.4 that
linearly decreases to 0.9 in each iteration.
PSO-II algorithm

www.intechopen.com

S
w

arm
 R

obotics, From
 B

iology to R
obotics

42 N
o of G

eneration, Sw
arm

 Size, Learning factors (
1 c and

2
c

), and
m

ax
V

for the sm
all-sized

problem
s w

ere set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problem
s w

ere
set to 100, 100, 2, 2, and 3. For all problem

 inctances, k
 w

as set to 0.5.
H

PSO
 algorithm

N

o of G
eneration, Sw

arm
 Size, Learning factors (

1 c and
2
c

), and
m

ax
V

for the sm
all-sized

problem
s w

ere set to 50, 50, 2, 2, and 5, respectively; and for the large-sized problem
s w

ere
set to 100, 100, 2, 2, and 5, respectively. M

utation Rate, Best Set size, C
lone size, and F for all

problem
 inctances w

ere set to 0.1, 7, 5, and 3, respectively. The inertia w
eight for all

problem
 inctances w

as set to 1.4 that linearly decreases to 0.9 in each iteration.

 5.4 N
um

erical results
In this section, the proposed H

PSO
 is applied to the test problem

s, and its perform
ance is

com
pared w

ith above m
entioned benchm

ark algorithm
s. Each algorithm

 w
as executed for

15 tim
es and the m

ean results w
ere calculated. The num

erical results for various test
problem

s are presented in Tables 2 and 3.

Problem
no.

Longo 8.0 GA PSO-I PSO-II HPSO

OFVa Time OFV Time OFV Time OFV Time OFV Time Ave. STD Ave. STD Ave. STD Ave. STD

1 483 <1 483 0 <1 483 0 <1 483 0 <1 483 0 <1
2 435 <1 435 0 <1 435 0 <1 435 0 <1 435 0 <1
3 363 <1 363 0 <1 363 0 <1 363 0 <1 363 0 <1
4 459 <1 459 0 <1 459 0 <1 459 0 <1 459 0 <1
5 454 <1 458 0 <1 458 0 <1 458 0 <1 458 0 <1
6 404 <1 404 0 <1 404 0 <1 404 0 <1 404 0 <1
7 321 <1 323 0 <1 323 0 <1 323 0 <1 323 0 <1
8 754 1 754 0 <1 754.1 0.3 1 754 0 <1 754 0 1.4
9 763 1 763 0 <1 763 0 1 763 0 <1 763 0 1.4
10 910 <1 910 0 <1 910 0 1 910 0 <1 910 0 1.6
11 825 1 825 0 <1 825 0 1 825 0 <1 825 0 1.4
12 907 <1 907 0 <1 907 0 1 907 0 <1 907 0 1.4
13 753 <1 753 0 <1 753 0 1 753 0 <1 753 0 1.6
14 739 132 741.9 1.9 <1 746.5 6 1 744.4 6.1 <1 741.4 2.4 1.4
15 1312 <1 1312 0 1 1312 0 1 1312 0 <1 1312 0 2.8
16 1272 <1 1272.1 0.3 1 1273.4 1.5 1 1274.2 1.9 <1 1272 0 2.8
17 1212 1 1212 0 1 1212.7 0.6 1 1213.6 1.5 <1 1212 0 2.8
18 1352 <1 1352 0 1 1352 0 1 1352 0 <1 1352 0 2.8
19 1331 <1 1331 0 1 1331 0 1 1331 0 1 1331 0 2.8
20 1222 1 1222 0 1 1226.7 4.4 1 1224 2.5 <1 1222 0 2.8
21 1260 7200c 1145.9 18.9 1 1181.5 13.1 1 1178 13.9 <1 1123.6 14.1 2.8

a Objective Function Value
b Standard Deviation
c denotes that the Lingo interrupted after this time and the best achieved value was reported
Table 2. Computational results for small-sized test problems

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

A
 N

ew
 H

ybrid P
article S

w
arm

 O
ptim

ization A
lgorithm

 to
the C

yclic M
ultiple-P

art Type Three-M
achine R

obotic C
ell P

roblem
43

 N
o of G

eneration, Sw
arm

 Size, Learning factors (
1 c and

2
c

), and
m

ax
V

for the sm
all-sized

problem
s w

ere set to 50, 50, 2, 2, and 3, respectively; and for the large-sized problem
s w

ere
set to 100, 100, 2, 2, and 3. For all problem

 inctances, k
 w

as set to 0.5.
H

PSO
 algorithm

N

o of G
eneration, Sw

arm
 Size, Learning factors (

1 c and
2
c

), and
m

ax
V

for the sm
all-sized

problem
s w

ere set to 50, 50, 2, 2, and 5, respectively; and for the large-sized problem
s w

ere
set to 100, 100, 2, 2, and 5, respectively. M

utation Rate, Best Set size, C
lone size, and F for all

problem
 inctances w

ere set to 0.1, 7, 5, and 3, respectively. The inertia w
eight for all

problem
 inctances w

as set to 1.4 that linearly decreases to 0.9 in each iteration.

 5.4 N
um

erical results
In this section, the proposed H

PSO
 is applied to the test problem

s, and its perform
ance is

com
pared w

ith above m
entioned benchm

ark algorithm
s. Each algorithm

 w
as executed for

15 tim
es and the m

ean results w
ere calculated. The num

erical results for various test
problem

s are presented in Tables 2 and 3.

Problem
no.

Longo 8.0 GA PSO-I PSO-II HPSO

OFVa Time OFV Time OFV Time OFV Time OFV Time Ave. STD Ave. STD Ave. STD Ave. STD

1 483 <1 483 0 <1 483 0 <1 483 0 <1 483 0 <1
2 435 <1 435 0 <1 435 0 <1 435 0 <1 435 0 <1
3 363 <1 363 0 <1 363 0 <1 363 0 <1 363 0 <1
4 459 <1 459 0 <1 459 0 <1 459 0 <1 459 0 <1
5 454 <1 458 0 <1 458 0 <1 458 0 <1 458 0 <1
6 404 <1 404 0 <1 404 0 <1 404 0 <1 404 0 <1
7 321 <1 323 0 <1 323 0 <1 323 0 <1 323 0 <1
8 754 1 754 0 <1 754.1 0.3 1 754 0 <1 754 0 1.4
9 763 1 763 0 <1 763 0 1 763 0 <1 763 0 1.4
10 910 <1 910 0 <1 910 0 1 910 0 <1 910 0 1.6
11 825 1 825 0 <1 825 0 1 825 0 <1 825 0 1.4
12 907 <1 907 0 <1 907 0 1 907 0 <1 907 0 1.4
13 753 <1 753 0 <1 753 0 1 753 0 <1 753 0 1.6
14 739 132 741.9 1.9 <1 746.5 6 1 744.4 6.1 <1 741.4 2.4 1.4
15 1312 <1 1312 0 1 1312 0 1 1312 0 <1 1312 0 2.8
16 1272 <1 1272.1 0.3 1 1273.4 1.5 1 1274.2 1.9 <1 1272 0 2.8
17 1212 1 1212 0 1 1212.7 0.6 1 1213.6 1.5 <1 1212 0 2.8
18 1352 <1 1352 0 1 1352 0 1 1352 0 <1 1352 0 2.8
19 1331 <1 1331 0 1 1331 0 1 1331 0 1 1331 0 2.8
20 1222 1 1222 0 1 1226.7 4.4 1 1224 2.5 <1 1222 0 2.8
21 1260 7200c 1145.9 18.9 1 1181.5 13.1 1 1178 13.9 <1 1123.6 14.1 2.8

a Objective Function Value
b Standard Deviation
c denotes that the Lingo interrupted after this time and the best achieved value was reported
Table 2. Computational results for small-sized test problems

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

Swarm Robotics, From Biology to Robotics44

Pr
ob

le
m

no

.

G
A

PS

O
-I

PS

O
-II

H

PS
O

O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

22

44
14

0

12
.6

44

27
.2

4.

5
14

.5

44
24

.6

6.
0

14
.2

44

04
.6

1.

3
98

23

42

27
.1

0.

3
12

.2

42
39

.1

7.
8

14
.5

42

38
.4

7.

4
14

.1

42
07

0

98
.2

24

39

97

0.
2

12
.5

40

26
.9

11

.3

14
.5

40

26
.8

10

.7

14
.2

39

70
.4

4.

7
98

.6

25

43
14

0

13
.1

43

34
.3

6.

8
14

.5

43
32

.6

5.
2

14
.2

43

14

0
99

.2

26

42
83

.6

2.
3

12
.1

42

95
.1

8.

5
14

.5

42
89

.8

3.
6

14
.2

42

57
.2

4.

8
99

.2

27

43
60

0

13

43
64

.3

2.
4

14
.5

43

64
.4

2.

4
14

.1

43
60

0

99

28

34
05

.4

37
.1

11

.2

35
83

.1

23
.1

14

.5

36
15

.4

26
.2

14

.2

33
85

.8

86
.1

99

29

62

87
.8

1.

2
19

.5

63
47

14

.6

24
.9

63

45
.4

13

.7

24
.8

62

39
.8

20

.1

21
5.

4
30

63

60
.3

0.

7
19

.3

64
37

.8

8.
7

24
.9

64

46
.2

13

.8

24
.5

63

60
.6

1.

3
21

5.
2

31

63
69

.1

0.
5

19
.9

64

69
.7

9.

6
25

.1

64
71

.4

13
.5

24

.5

63
74

.6

12
.0

21

5.
2

32

63
75

.5

0.
7

19
.5

64

31
.6

15

.1

25
.3

64

46
.4

10

.0

24
.5

62

94
.4

37

.3

21
5.

2
33

67

16
.1

1.

9
19

.3

67
64

.1

8.
6

25

67
61

.4

7.
3

24
.8

67

01
.8

13

.4

21
5.

2
34

63

57
.1

3.

9
19

.9

64
19

.4

7.
5

25
.1

64

23
.6

10

.8

24
.8

63

29
.4

8.

2
21

5.
6

35

58
43

.6

45
.1

18

.7

61
73

.3

25

25
.1

61

81
.8

35

.4

24
.5

57

51
.6

16

7.
4

21
5.

6
36

88

32

0.
7

29
.5

88

89
.4

7.

6
37

.9

88
87

.8

16
.3

37

88

12
.4

0.

9
39

8.
8

37

86
93

.5

7.
3

28
.1

87

28
.5

17

37

.8

87
47

.8

11
.8

35

.9

86
22

.6

19
.1

39

8.
4

38

87
35

.9

3.
5

27
.8

88

36
.9

20

.6

37
.8

88

42
.2

17

.0

35
.8

86

73
.2

50

.8

40
0

39

86
63

.3

2.
8

28
.7

88

61
.9

11

.5

37
.9

86

74
.6

17

.6

36

85
85

.2

40
.1

39

9.
6

40

81
25

.8

3.
9

27
.8

82

58
.3

15

.3

37
.9

82

96
.4

11

.9

34
.3

81

11
.6

7.

8
40

0.
6

41

85
88

.1

0.
3

29
.6

86

45
.7

11

.3

38
.1

86

54

14
.6

35

.3

85
05

.0

37
.5

39

8.
2

42

78
37

.9

75
.7

27

.8

81
13

.7

30
.3

38

.1

81
63

36

.9

36
.1

75

45
.8

97

.4

39
9.

2
Ta

bl
e

3.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r l
ar

ge
-s

iz
ed

 te
st

 p
ro

bl
em

s

As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in
the most test problems.
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can
search smartly more regions of the search space that results in better solutions. Thus, this
higher value of computational time is reasonable.

6. Conclusions

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S robot movement policy that minimizes the cycle
time. The developed model is based on Petri nets and provides a new method to calculate
cycle times by considering waiting times. It was proved that calculating cycle time under

6S policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed
model and solution algorithm, various test problems with different sizes were randomly
generated and the performance of the HPSO was compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results
showed that the proposed HPSO outperforms the benchmark algorithms in the most
problems, especially for large-sized problems.

7. References

Agnetis, A. (2000). "Scheduling No-Wait Robotic Cells with Two and Three Machines."
European Journal of Operational Research 123: 303-314.

Agnetis, A. and D. Pacciarelli (2000). "Part Sequencing in Three-Machine No-Wait Robotic
Cells." Operations Research Letters 27: 185-192.

Asfahl, C. R. (1992). Robots and Manufacturing Automation. New York, Wiley.
Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based

Approaches for Flow Shop Scheduling." European Journal of Operational Research
169: 816- 854.

Brauner, N. and G. Finke (1999). "On a Conjecture About Robotic Cells: New Simplified
Proof for the Threemachine Case." INFOR 37(1): 20-36.

Crama, Y., V. Kats, J. v. d. Klundert and E. Levner (2000). "Cyclic Scheduling in Robotic
Flow Shops." Annals of Operations Research: Mathematics of Industrial Systems 96:
97-124.

Crama, y. and v. d. Klundert (1999). "Cyclic Scheduling in 3-Machine Robotic Flow Shops."
Journal of Scheduling 2: 35-54.

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and
Scheduling in Robotic Cells:Recent Developments." Journal of Scheduling 8: 387-
426.

Drobouchevitch, I. G., S. P. Sethi and C. Sriskandarajah (2006). "Scheduling Dual Gripper
Robotic Cell Oneunit Cycles." European Journal of Operational Research 171: 598-
631.

www.intechopen.com

A New Hybrid Particle Swarm Optimization Algorithm to
the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem 45

Pr
ob

le
m

no

.

G
A

PS

O
-I

PS

O
-II

H

PS
O

O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
O

FV

Ti
m

e
A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

A

ve
.

ST
D

22

44
14

0

12
.6

44

27
.2

4.

5
14

.5

44
24

.6

6.
0

14
.2

44

04
.6

1.

3
98

23

42

27
.1

0.

3
12

.2

42
39

.1

7.
8

14
.5

42

38
.4

7.

4
14

.1

42
07

0

98
.2

24

39

97

0.
2

12
.5

40

26
.9

11

.3

14
.5

40

26
.8

10

.7

14
.2

39

70
.4

4.

7
98

.6

25

43
14

0

13
.1

43

34
.3

6.

8
14

.5

43
32

.6

5.
2

14
.2

43

14

0
99

.2

26

42
83

.6

2.
3

12
.1

42

95
.1

8.

5
14

.5

42
89

.8

3.
6

14
.2

42

57
.2

4.

8
99

.2

27

43
60

0

13

43
64

.3

2.
4

14
.5

43

64
.4

2.

4
14

.1

43
60

0

99

28

34
05

.4

37
.1

11

.2

35
83

.1

23
.1

14

.5

36
15

.4

26
.2

14

.2

33
85

.8

86
.1

99

29

62

87
.8

1.

2
19

.5

63
47

14

.6

24
.9

63

45
.4

13

.7

24
.8

62

39
.8

20

.1

21
5.

4
30

63

60
.3

0.

7
19

.3

64
37

.8

8.
7

24
.9

64

46
.2

13

.8

24
.5

63

60
.6

1.

3
21

5.
2

31

63
69

.1

0.
5

19
.9

64

69
.7

9.

6
25

.1

64
71

.4

13
.5

24

.5

63
74

.6

12
.0

21

5.
2

32

63
75

.5

0.
7

19
.5

64

31
.6

15

.1

25
.3

64

46
.4

10

.0

24
.5

62

94
.4

37

.3

21
5.

2
33

67

16
.1

1.

9
19

.3

67
64

.1

8.
6

25

67
61

.4

7.
3

24
.8

67

01
.8

13

.4

21
5.

2
34

63

57
.1

3.

9
19

.9

64
19

.4

7.
5

25
.1

64

23
.6

10

.8

24
.8

63

29
.4

8.

2
21

5.
6

35

58
43

.6

45
.1

18

.7

61
73

.3

25

25
.1

61

81
.8

35

.4

24
.5

57

51
.6

16

7.
4

21
5.

6
36

88

32

0.
7

29
.5

88

89
.4

7.

6
37

.9

88
87

.8

16
.3

37

88

12
.4

0.

9
39

8.
8

37

86
93

.5

7.
3

28
.1

87

28
.5

17

37

.8

87
47

.8

11
.8

35

.9

86
22

.6

19
.1

39

8.
4

38

87
35

.9

3.
5

27
.8

88

36
.9

20

.6

37
.8

88

42
.2

17

.0

35
.8

86

73
.2

50

.8

40
0

39

86
63

.3

2.
8

28
.7

88

61
.9

11

.5

37
.9

86

74
.6

17

.6

36

85
85

.2

40
.1

39

9.
6

40

81
25

.8

3.
9

27
.8

82

58
.3

15

.3

37
.9

82

96
.4

11

.9

34
.3

81

11
.6

7.

8
40

0.
6

41

85
88

.1

0.
3

29
.6

86

45
.7

11

.3

38
.1

86

54

14
.6

35

.3

85
05

.0

37
.5

39

8.
2

42

78
37

.9

75
.7

27

.8

81
13

.7

30
.3

38

.1

81
63

36

.9

36
.1

75

45
.8

97

.4

39
9.

2
Ta

bl
e

3.
 C

om
pu

ta
tio

na
l r

es
ul

ts
 fo

r l
ar

ge
-s

iz
ed

 te
st

 p
ro

bl
em

s

As shown in Tables 2 and 3, the proposed HPSO is superior to the benchmark algorithms in
the most test problems.
As illustrated in Tables 2 and 3, the proposed HPSO consumes more computational time
than the benchmark algorithms. Because of the structure of the proposed HPSO, it can
search smartly more regions of the search space that results in better solutions. Thus, this
higher value of computational time is reasonable.

6. Conclusions

This chapter developed a new mathematical model for a cyclic multiple-part type three-

machine robotic cell problem under 6S robot movement policy that minimizes the cycle
time. The developed model is based on Petri nets and provides a new method to calculate
cycle times by considering waiting times. It was proved that calculating cycle time under

6S policy is unary NP-complete. Hence, this chapter proposed a new hybrid particle
swarm optimization (HPSO) algorithm to tackle the problem. To validate the developed
model and solution algorithm, various test problems with different sizes were randomly
generated and the performance of the HPSO was compared with three benchmark
metaheuristics: Genetic Algorithm, PSO-I (basic Particle Swarm Optimization algorithm),
and PSO-II (constriction Particle Swarm Optimization algorithm). The numerical results
showed that the proposed HPSO outperforms the benchmark algorithms in the most
problems, especially for large-sized problems.

7. References

Agnetis, A. (2000). "Scheduling No-Wait Robotic Cells with Two and Three Machines."
European Journal of Operational Research 123: 303-314.

Agnetis, A. and D. Pacciarelli (2000). "Part Sequencing in Three-Machine No-Wait Robotic
Cells." Operations Research Letters 27: 185-192.

Asfahl, C. R. (1992). Robots and Manufacturing Automation. New York, Wiley.
Bagchi, T. P., J. N. D. Gupta and C. Sriskandarajah (2006). "A Review of Tsp Based

Approaches for Flow Shop Scheduling." European Journal of Operational Research
169: 816- 854.

Brauner, N. and G. Finke (1999). "On a Conjecture About Robotic Cells: New Simplified
Proof for the Threemachine Case." INFOR 37(1): 20-36.

Crama, Y., V. Kats, J. v. d. Klundert and E. Levner (2000). "Cyclic Scheduling in Robotic
Flow Shops." Annals of Operations Research: Mathematics of Industrial Systems 96:
97-124.

Crama, y. and v. d. Klundert (1999). "Cyclic Scheduling in 3-Machine Robotic Flow Shops."
Journal of Scheduling 2: 35-54.

Dawande, M., H. N. Geismar, S. P. Sethi and C. Sriskandarajah (2005). "Sequencing and
Scheduling in Robotic Cells:Recent Developments." Journal of Scheduling 8: 387-
426.

Drobouchevitch, I. G., S. P. Sethi and C. Sriskandarajah (2006). "Scheduling Dual Gripper
Robotic Cell Oneunit Cycles." European Journal of Operational Research 171: 598-
631.

www.intechopen.com

Swarm Robotics, From Biology to Robotics46

Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence. South Africa,
John Wiley & Sons, Ltd.

Gen, M. and R. Cheng (1997). Genetic Algorithms and Engineering Design. New York,
Wiley.

Gultekin, H., M. S. Akturk and O. E. Karasan (2006). "Cyclic Scheduling of a 2-Machine
Robotic Cell with Tooling Constraints." European Journal of Operational Research
174: 777–796.

Gultekin, H., M. S. Akturk and O. E. Karasan (2007). "Scheduling in a Three-Machine
Robotic Flexible Manufacturing Cell." Computers & Operations Research 34: 2463 –
2477.

Hall, N. G., H. Kamoun and C. Sriskandarajah (1997). "Scheduling in Robotic Cells:
Classification, Two and Three Machine Cells." Operations Research 45: 421-439.

Hall, N. G., H. Kamoun and C. Sriskandarajah (1998). "Scheduling in Robotic Cells:
Complexity and Steady State Anhlysis." European Journal of Operational Research
109: 43-65.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MA,
MIT Press.

Hu, X., Y. Shi and R. Eberhart (2004). Recent Advances in Particle Swarm. Congress on
Evolutionary Computation, CEC2004 IEEE.

Kennedy, J. and R. Eberhart (1995). Particle Swarm Optimization. Proceedings of the IEEE
international conference on neural networks (Perth, Australia), NJ: IEEE Service
Center.

Liao, C.-J., C.-T. Tseng and P. Luarn (2007). "A Discrete Version of Particle Swarm
Optimization for Flowshop Scheduling Problems." Computers & Operations
Research 34(10): 3099-3111.

Maggot, J. (1984). "Performance Evaluation of Concurrent Systems Using Petri Nets."
INFORM PROCESSING LETT 18(1): 7-13.

Sethi, S. P., C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak (1992). "Sequencing of
Parts and Robot Moves in a Robotic Cell." International Journal of Flexible
Manufacturing Systems 4: 331-358.

Shi, Y. and R. Eberhart (1998). A Modified Particle Swarm Optimizer. Proceedings of the
IEEE international conference on evolutionary computation, Piscataway, NJ: IEEE
Press.

Sriskandarajah, C., N. G. Hall, H. Kamoun and H. Wan (1998). "Scheduling Large Robotic
Cells without Buffers." Annals of Operations Research: Mathematics of Industrial
Systems 76: 287–321.

www.intechopen.com

Swarm Robotics from Biology to Robotics

Edited by Ester Martinez Martin

ISBN 978-953-307-075-9

Hard cover, 102 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In nature, it is possible to observe a cooperative behaviour in all animals, since, according to Charles Darwin’s

theory, every being, from ants to human beings, form groups in which most individuals work for the common

good. However, although study of dozens of social species has been done for a century, details of how and

why cooperation evolved remain to be worked out. Actually, cooperative behaviour has been studied from

different points of view. Swarm robotics is a new approach that emerged on the field of artificial swarm

intelligence, as well as the biological studies of insects (i.e. ants and other fields in nature) which coordinate

their actions to accomplish tasks that are beyond the capabilities of a single individual. In particular, swarm

robotics is focused on the coordination of decentralised, self-organised multi-robot systems in order to

describe such a collective behaviour as a consequence of local interactions with one another and with their

environment. This book has only provided a partial picture of the field of swarm robotics by focusing on

practical applications. The global assessment of the contributions contained in this book is reasonably positive

since they highlighted that it is necessary to adapt and remodel biological strategies to cope with the added

complexity and problems that arise when robot individuals are considered.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Isa Nakhai Kamalabadi, Ali Hossein Mirzaei and Saeede Gholami (2010). A New Hybrid Particle Swarm

Optimization Algorithm to the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem, Swarm Robotics

from Biology to Robotics, Ester Martinez Martin (Ed.), ISBN: 978-953-307-075-9, InTech, Available from:

http://www.intechopen.com/books/swarm-robotics-from-biology-to-robotics/a-new-hybrid-particle-swarm-

optimization-algorithm-to-the-cyclic-multiple-part-type-three-machine-ro

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

