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1. Introduction  

A robotic system is a mechanical structure built from rigid links connected by flexible joints. 
The arrangement of links and joints (robot architecture) depends on the task the robot was 
designed to perform. The robot links have then different shapes and the joints can be of 
revolute (rotational motion) or prismatic (translation motion) nature. These robots, as 
described, perform task on an open-loop control scheme, i.e. there is not feedback from the 
environment (robot workspace) thus it will not notice changes in the workspace. As an attempt 
to establish a closed-loop control scheme a computer-based vision systems is introduced to 
detect workspace changes and also to allow guiding the robot (Hutchinson et al., 1996). 
At the University of Brasilia to cope with the study and teaching of robotics an educational 
robotic workstation was built around the Rhino XR4 robot (Soares & Casanova Alcalde, 
2006). To implement a vision-guided robot a video camera was installed and integrated to 
the robot control system. As an alternative for dealing with the real system and for teaching 
purposes a simulation platform was devised within the Matlab environment (Soares & 
Casanova Alcalde, 2006). The platform was called RobSim and it is based on assembling 
elementary units (primitives) which represent the robot links, being the joints represented 
by the motion they perform. This simulation and developing platform then evolved and 
now it includes robot visual servo control being presented in this work. Within RobSim 
platform control algorithms can be developed for the vision-guided robot to perform tasks 
before implementing them on the real system. 
Simulation tools for either conventional robotic systems (Legnani, 2005; Corke, 1996) and for 

vision-based systems (Cervera, 2003) do exist, this work presents a unified environment for 

both systems. The developed simulation tools were assembled as a laboratory platform, 

where robotic and vision-based algorithms share similar data structures and block building 

methodologies. Moreover, this platform was developed mainly for educational purposes; 

later on it was found it can be used for research and design of robotic systems. The graphical 

presentation is as simple as possible, but allowing an insight and visualization of parts and 

motions. 

The chapter is organized as follows; initially the RobSim basic mounting blocks, the 
primitives, are defined and described. Then, the RobSim developed Matlab functions for 
initialization, motion, computer display and image acquisition are presented. Following, the 
modeling and simulation capabilities RobSim platform offers are presented together with 

Source: Visual Servoing, Book edited by: Rong-Fong Fung,  
 ISBN 978-953-307-095-7, pp. 234, April 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Visual Servoing 

 

2 

applications to fixed and mobile robots. Further on, vision-based control schemes are briefly 
discussed. Finally, implementation of visual-based control schemes applied to a robotic 
workstation consisting of a Rhino XR4 robot and a computer vision system is considered. 
Image- and position-based visual servoing schemes are implemented.  

2. RobSim – a modeling and simulation platform for robotic systems 

In order to model and simulate the kinematics of robotic systems a software platform named 
RobSim was developed. Three types of basic elements were defined to assembly a model for 
a vision-guided robotic system: block, wheel and camera. Being basic elements they will be 
called primitives. They will be sufficient to assembly a simulation model for robotic 
manipulators and robotic vehicles guided by a computer vision system. 

2.1 Block primitive 

The block primitive is defined as a regular polyhedron with rectangular faces. The faces 
meet along an edge and three of these intersect orthogonally at a vertex. A block primitive 
consists then of six faces, twelve edges and eight vertexes. Figure 1 shows a block primitive 
with its allocated coordinate frame {Xb,Yb,Zb}. The frame orientation is assigned as follows, 
the Xb-axis along the block length (L), the Yb-axis along the block width (W) and the Zb-axis 
along the block height (H). A general graphical reference coordinate frame {Xg,Yg,Zg} is also 
shown in Figure 1, it indicates the block viewing angle for displaying purposes. 
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Fig. 1. A Block Primitive 

A block primitive will be geometrically defined by nine components: a) eight vectors, each 
one corresponding to the 3D coordinates of its vertexes; and b) a character identifying the 
assigned color to the line edges. 

2.2 Wheel primitive 

For simulating wheeled mobile robots a wheel primitive is defined. The wheel primitive is 
defined as two circles of equal radius assembled parallel to each other at a certain distance. 
The wheel rotation axis passes through the centers of both circles. Figure 2 shows a wheel 
primitive with its allocated coordinate frame. The wheel primitive coordinate frame 
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{Xb,Yb,Zb} is attached to the wheel primitive, being its origin fixed at the middle of the 
internal line between the circle centers. The Zb-axis coordinate is fixed along the rotation 
axis, the Xb-axis along the initial rotation angle (0º). 
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Fig. 2. A Wheel Primitive 

A wheel primitive will be geometrically defined by four components: a) the circle radius (R); 
b) the distance between the circle centers (W); c) the number of points defining both 
circumferences; and d) the color identifying character. 

2.3 Camera primitive 

For vision-guided robotic systems, manipulators or mobile robots, video cameras are 

required. Then, a camera primitive was developed from a modified block primitive. It is a 

small regular polyhedron with rectangular faces but having a larger opening on one extreme 

representing the light capturing entrance. Figure 3 shows a camera primitive with its 

coordinate frame {Xb,Yb,Zb}. The camera primitive coordinate frame is attached to the 

opposite face, where the image is formed. The coordinate frame center is fixed at the center 

of this rectangular face, the Zb-axis along the camera length (L), the Xb-axis along the camera 

height (H) and the Yb-axis along the camera width (W). This orientation follows the 

computer vision convention, so the Zb-axis coincides with the camera optical axis. 

Due to its particular function, a camera primitive will be defined by three groups of 
components: a) twelve vectors to characterize its vertexes spatial coordinates; b) a color 
identifying character; and c) the camera intrinsic parameters (subsection 3.4). 

3. RobSim processing functions 

Within the Matlab environment RobSim functions for processing the primitives were 
developed. These functions allow: defining the primitives (initialization functions); moving 
the primitives (moving functions); and displaying the primitives (displaying functions). An 
image acquisition function to simulate image capture was also developed. 
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Fig. 3. A Camera Primitive 

3.1 Primitives initialization functions 

The primitives have to be introduced to the Matlab environment. For that, Matlab structure-

type variables (struct) are used for initialization of the primitives being the dimensions 

expressed in centimeters. 

Initializing a block primitive – The function to initialize the block primitive struct variable 

has the following syntax: 

• blk=init_block(L,W,H,color) 
where L, W, H and color are respectively the  length, width, height and line color of the 
block primitive. 

Initializing a wheel primitive – The function to initialize the wheel primitive struct variable is 

• circ=init_circ(R,W,n,color) 
where R, W, n and color are respectively the radius, width, number of circumference 
points and line color of the wheel primitive. 

Initializing a camera primitive – The function to initialize the camera primitive struct 

variable is 

• cam= init_cam(L,W,H, f,px,py,alpha,u0,v0,color) 
where L,W,H, and color are respectively the length, width, height and line color of the 
camera primitive. The parameters f, px, py, alpha, u0 and v0 are the camera intrinsic 
parameters (Chaumette & Hutchinson, 2006). These camera intrinsic parameters will be 
further discussed in subsection 3.4.  

3.2 Primitives moving functions 

Once defined the primitives within Matlab, other functions are necessary for moving the 

primitives as they simulate the different moving robotic links. For moving the primitives all 
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of its characteristic points have to be moved. A homogeneous transformation (Schilling, 

1990) is then applied upon the vectors which define those characteristic points. 

Moving a block primitive - Given a struct variable blk_i representing an initial block 

primitive pose (position and orientation), a new variable blk_o will represent the final 

primitive pose as a result of a moving function. For a block primitive the developed moving 

function is 

• blk_o=move_block(blk_i,R,t) 

where R and t are respectively the rotation matrix (3×3) and the translation vector (3×1) 
of the homogeneous transformation representing the executed motion. 

Moving a wheel primitive - Given circ_i representing an initial wheel pose, after applying a 

moving function the wheel primitive will assume a final pose circ_o. For this action the 

developed moving function is 

• circ_o=move_circ(circ_i,R,t) 
where R and t have the same meaning as the block primitive. 

Moving a camera primitive – Similarly, for an initial pose of the camera primitive cam_i, a 

final pose cam_o is achieved after a moving function. A developed camera primitive moving 

function is 

• cam_o=move_cam(cam_i,R,t) 
where R and t have the same meaning as for the block and wheel primitives motion. 

3.3 Primitives displaying functions 

For displaying primitives specific functions were developed around the Matlab built-in plot3 

function. As the vertexes define the geometry of primitives, for displaying purposes straight 

lines were drawn to join the vertexes. Thus the displayed primitives look like a wire-frame 

model for solid objects. The graphic displaying functions developed for primitives are 

• plot_block(block) 

• plot_circ(circ) 

• plot_cam(cam) 
for the block, wheel and camera primitives respectively. The function argument in the three 
cases is precisely the struct variable that represents the primitive. 

3.4 Image acquisition function 

A computer-based vision system for robotic systems demands video cameras. A camera 

coordinate frame is attached to the camera, being 0Tc the homogeneous transformation 

matrix relating the camera position (t) and orientation (R) referred to the base coordinate 

frame. R and t constitute the camera extrinsic parameters which together with the intrinsic 

parameters {f, px, py, α, u0, v0} are used to setting up the camera primitive. These intrinsic 

parameters arise from the perspective projection model (Hutchinson et al., 1996) adopted for 

the camera and are shown graphically in Figure 4. 

An image acquisition function point_view was developed to simulate an image point capture 

and its syntax is 

• pimag=point_view(p3D,Ki,0Tc) 
where p3D is a vector representing the 3D position of a point in the camera field-of-view 
(FOV), relative to base frame; Ki is the matrix of the camera intrinsic parameters; and 
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pimag will return the pimag, the 2D position of the image point measured in pixels. Ki is 
arranged as follows 
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Fig. 4. Perspective Projection Model for the Camera 

4. Modeling and simulation of robotic systems kinematics using RobSim 

A robotic manipulator or vehicle can be considered as a chain of rigid links interconnected 
by either revolute or prismatic joints. The proposed modeling and simulation tool RobSim 
associates a primitive to a robotic link. By programming the primitive initialization, moving 
and displaying functions together with Matlab built-in functions it is possible to simulate 
the kinematical model of any robotic structure. Thus, from these basic structures, the 
primitives, the kinematics of complex robotic systems can be simulated for analysis and 
design purposes. 
Within RobSim the robot joints are not graphically represented or displayed, being their 
nature (prismatic- or revolution-type) revealed as the motion progresses. For this reason, 
different colors must be assigned for primitives representing consecutive links. 
As primitives are represented by a structure-type variable, the whole set of assembled 
primitives representing the robot system will be a higher-level structure-type variable. 
The kinematical model of a robotic system is determined by applying the Denavit-
Hartenberg (DH) algorithm (Schilling, 1990). Transformations between successive links (k-1) 
and (k) are characterized by homogenous transformation matrixes like 
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In which R3×3 is the rotation matrix representing the relative orientation between frames and 

t3×1 is the translation vector representing the relative position between the frames origins. 

By using DH kinematical parameters {θ, d, a,α}, Equation (2) can be written as 

 ( 1)

0
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⎢ ⎥
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T  (3) 

In which for rotational joints, θ is the joint variable and C and S represent the cosine and sine 
functions respectively. To illustrate DH modeling and link-primitive assignment 
correspondences, Figure 5 shows the coordinate frame assignment for two robotic links. For 
these links, Figure 6 shows the assembling of primitives 
The kinematical model of a particular robot of n joints will be the homogeneous 
transformation relating the tool-tip coordinate frame (frame n) to the base coordinate frame 
(frame 0) obtained as 

 0 0 1 1 1
1 2. k n

n k n
− −=T T T T TA A  (4) 

An additional transformation will be necessary for displaying purposes relating the base 
coordinate frame to the displaying frame gT0 (Fig. 6). 
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Fig. 5. DH Link Coordinates for two robotic links 
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Fig. 6. Assembling Primitives for two robotic links 

4.1 RobSim modeling and simulation procedure 

The different stages to assembly a RobSim simulation model for a given vision-guided 
robotic system are: 
1. Allocating link coordinates and determining the kinematical parameters for the robotic 

system according to the Denavit-Hartenberg (DH) algorithm; 
2. Representing the different robot links by the block, wheel or camera primitives as 

applied; 
3. Assembling the chosen primitives through their coordinates as referred to the link 

coordinates determined by the DH algorithm; 
4. Determining the primitives configuration referred to the robot base coordinates; 
5. Developing the robotic system initialization as a Matlab struct variable, whose variable 

fields are the individual primitives struct representations; 
6. Developing the moving and displaying functions for the robotic system from the 

individual primitives moving and displaying functions; 
7. Generating trajectories and executing tasks by controlling the joint variables of the 

simulation model. 

4.2 Simulation of robotic systems 

Initially a RobSim model for the Rhino XR4 robot will be developed and a simulation test 
executed. The Rhino XR4, shown in Fig. 7, is an educational desktop robot, classified as a 
five-axis electric-drive articulated coordinates robot. Around this robot an educational 
robotic workstation (Soares & Casanova Alcalde, 2006) was built. 
Applying the RobSim modeling and simulation procedure, link coordinates were allocated 
and the kinematical parameters for the Rhino XR4 robot obtained, as shown in Figure 8. 
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Fig. 7. The Rhino XR4 Educational Robot 
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Fig. 8. Kinematical Model for the Rhino XR4 Robot 

Only block-type primitives were used to simulate each one of the robot links. For the robot 
tool three small block primitives were considered to allow simulating the tool 
opening/closure mechanism. Figure 9 shows the RobSim model for the Rhino XR4 at the 
home position and orientation (initial configuration). 
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Fig. 9. RobSim Model for the Rhino XR4 Robot – Initial Configuration 

Figure 10 shows the robot after executing a moving function towards a final configuration. 
 

  
 

Fig. 10. RobSim Model for the Rhino XR4 Robot – Final Configuration 

As part of a research project, prototypes of an inspection mobile robot were devised. The 

RobSim platform was particularly suitable to analyze the robots kinematics. The envisaged 

mobile robot will travel along suspended cables and will execute vision-guided maneuvers 

in order to overcome obstacles. Figures 11 and 12 show RobSim models of two prototypes. 
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Fig. 11. RobSim Model of an inspection mobile robot (Soares & Casanova Alcalde, 2008) 

 

Fig. 12. RobSim model of another inspection mobile robot (Soares & Casanova Alcalde, 2008) 

5. Visual servo control of robotic systems 

Visual servo control of robotic systems uses visual data to implement a feedback control 
loop to guide the robot in performing a certain task. Therefore the chosen machine vision 
strategy has to be considered into the robotic system dynamics. The camera for image 
capture can be mounted on the robot end-effector, or fixed at a certain place to observe the 
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robot workspace. The  first approach is called an eye-in-hand configuration and the second, 
an eye-to-hand configuration. Other possibilities combining schemes are also possible 
(Chaumette & Hutchinson, 2007). A variant of the eye-to-hand configuration consists on 
mounting the camera on another robot or on a pan/tilt structure in order to improve the 
viewing angle. A single camera arrangement for gathering visual data lacks information 
about depth measurements. Algorithms for position and orientation (pose) estimation could 
then be introduced or two-cameras can be used to implement a stereo-vision scheme to 
calculate depth information. This section discusses briefly the main visual-based control 
schemes. First, a characterization of the control error for a visual servo control strategy is 
discussed. Then, the position- and the image-based visual servo control schemes are 
discussed. Some considerations about the system stability are finally pointed out. 

5.1 Characterization of the control error for visual servo control schemes 

In visual servo control schemes the image coordinates of points of interest are captured. 
These measurements constitute a set of image measurements represented by m(t).  From 
these measurements an actual visual features vector s is calculated to represent the actual 
value of k visual features. It is defined as s(m(t),a) (Chaumette & Hutchinson, 2006), where a 
is a set of parameters that represent additional knowledge about the system. Vector a can be 
an approximation of the camera intrinsic parameters or 3D models of objects being 
observed. The desired visual features vector is represented by s*, usually constant, being 
changes in s dependent only on camera motion. The objective of the visual servo control is 
therefore to minimize a visual features error vector e(t) defined by 

 *)),(()( samse −= tt  (5) 

The visual servo control schemes depend on how the visual features vector s is determined, 
as it will be seen in the following subsections.  To minimize the visual features error vector 
e(t) (Equation 5) a common approach is to implement a velocity controller. Defining the 

spatial velocity of the camera Vc = [vc Ωc]T, being vc the instantaneous linear velocity of the 

origin of the camera frame and Ωc the instantaneous angular velocity of the camera 
coordinate frame. A relation is then established between the time derivative of s and Vc 

 cs VLs .=$  (6) 

Where sL is a k×6 matrix related to s called the image interaction matrix or also a feature 

Jacobian. Assuming a constant s* as usual, and using Equations (5) and (6) results in 

 cs VLe .=$  (7) 

A simple strategy could be adopted, for example, an exponential decay of the error 

( ee .λ−=$ ) for a certain λ>0. Then using Equation (7) and the Moore-Penrose pseudo-inverse 

matrix +
sL , Vc the input of the robot velocity controller will be given by 

 eLV .. +−= sc λ  (8) 

For a full rank Ls, the pseudo-inverse will be T
ss

T
ss LLLL )..(=+  and cV and eLLe ss ... Tλ−$ will 

turn to be minimal. For a square matrix Ls, Equation (8) would be eLV .. 1−−= sc λ . As in 
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practice it is impossible to know sL and +
sL , an approximation or estimative, for the 

pseudo-inverse must be determined, this approximation will be denoted as +
sL̂ .  

As mentioned, depending upon the way the visual features vector s is established, different 

visual servoing schemes are possible. Two schemes are considered: a) the image-based 

visual servo control (IBVS); and b) the position-based visual servo control (PBVS). 

5.2 Image-Based Visual Servo control scheme (IBVS) 

In this scheme the image features to be determined can be: image-plane coordinates of 

points of interest, regions of interest of the image, parameters that define straight lines over 

the image, etc. From these features a visual features vector s(m(t),a) is established. 

Considering the simplest situation, the image measurements vector m(t) consists of the pixel 

coordinates of the set of image points of interest. Finally, vector a consists of the installed 

camera intrinsic parameters. In this situation the interaction matrix Ls can be easily 

determined. As shown in Figure 4, for a 3D point TS
ZYXc ][=P referred to Sc, the camera 

coordinate frame, its projection onto the image plane will be a 2D point with coordinates 
TS

fyxc ][=p , where  f is the camera focal length. From geometrical relation (Figure 4) x and 

y are given by 

 

fX
x

Z
fY

y
Z

=

=

 (9) 

By using the camera intrinsic parameters (f, px, py, u0, v0, α), u and v, p coordinates referred 

to the image plane, are given by 

αcos.
0

xp

f

Z

X
uu −=  

yy p

f

Z

X

p

f

Z

Y
vv

αtan.
0 ++=  

(10)

From Equation (10), given X, Y and Z it is possible to calculate u and v. But in the other way 

round it is not possible to calculate Z, the depth of P relative to the camera frame. 

Time derivatives of x and y (velocities) in Equation (9) results in 

 

Z

ZyY
y

Z
ZxXx

$$
$

$$$

−
=

−=
 (11) 

The 3D velocity of point P (Sc coordinates) is related (Hutchinson et al., 1996) to the camera 

linear and angular velocities, Vc and Ωc respectively, as  

 PΩVP ×−−= cc
$  (12) 

or 
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Substituting Equation (13) into Equation (11) and with p = [x y]T results in 

 cp VLp .=$  (14) 

where Lp is given by 
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L  (15) 

Matrix Lp then depends on P coordinates, on p coordinates and on the camera intrinsic 
parameters. Any control scheme using this Lp must estimate Z, the depth of P relative to the 
camera frame. Due to Lp dimension, to control a six axis robot, a minimum of three points 
will be necessary, so 6≥k . For a visual features vector s = (p1, p2, p3) three interaction 
matrixes Lp1, Lp2 and Lp3 must be stacked. To avoid local minimal solutions more than three 
points are usually considered. For N points, Lp will be a 2N×6 matrix. 
The main advantage of the IBVS schemes results form the fact that the visual features error 
is defined only in the image domain, not being necessary any parameter or variables 
estimation in the 3D space. A disadvantage is lack of information about the scene depth. 

5.3 Position-Based Visual Servo control scheme (PBVS) 

In position-based visual servo control schemes the visual features vector s is defined using 
the camera pose (position and orientation) relative to a reference coordinate frame. 
Determining the camera pose from a set of measurements in one image requires the camera 
intrinsic parameters and the 3D model of the object being observed, this is the classical 3D 
localization problem. As the PBVS approach needs 3D reconstruction it is prone to fail due 
to calibration errors. The general PBVS will not be treated here, only a particular case 
implemented with a robotic manipulator and a stereo-vision device whose simulation in the 
RobSim platform is reported in Section 6. 
From 2D image data captured by each of a two cameras arrangement (stereo vision) it is 
possible to reconstruct the 3D pose of an object in the cartesian manipulator workspace.  
Once the specification of a desired pose of an object handled by the robot end-effector is 
given, it is possible to define an error between the actual object pose and the desired one. 
Since this error is specified in the 3D workspace and the robot joints are actuated in order to 
cancel it, this kind of procedure can be considered a position-based control scheme.  

5.4 Some considerations about stability 
Vision-based control systems have non-linear and highly coupled dynamics. For stability 
analysis Lyapunov direct method can be applied. A particular Lyapunov function would be  

 
2

)(
2

1
teV =  (16) 
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In case of IBVS, by using Equations (7) and (8) the time derivative of V(t) is 

 eLLeee .ˆ.... +−== ss
TTV λ$  (17) 

A global asymptotic stability is assured if V$ is positive definite or 

 0LL >+
ss

ˆ.  (18) 

If the number of image features k is equal to the camera DOF and a proper control scheme is 

implemented, then full rank sL and +
sL̂  matrixes will result and the stability condition 

(Equation 18) will be assured if a well approximated +
sL̂ is determined (Chaumette & 

Hutchinson, 2006). But considering a robot with 6 DOF under a IBVS control, where k is 

usually greater than 6, then the stability condition could never be assured. The resultant k×k 

matrix in Equation (18) would have at most a rank of 6, then a nontrivial null space will exist 

and local minima will result. 

6. Visual servo control of a robotic manipulator using RobSim 

The RobSim platform can help designers to analyze a robotic manipulator under a control 
scheme. To illustrate this approach a visual servo control scheme is applied to a robotic 
workstation consisting of the Rhino XR4 robot and a computer vision device. Visual servo 
control uses visual information to control the pose (position and orientation) of the robot 
end-effector in order to perform a specified task. 

6.1 An image-based visual servoing scheme within RobSim 

For camera simulation within the RobSim platform it is necessary to set up the camera 

primitive (Section 3), i.e. introduce the camera intrinsic and extrinsic parameters into its 

initialization, moving and displaying functions. Using the perspective projection model 

(Hutchinson et al., 1996) two reference frames are of concern: the camera reference frame, Sc, 

and the sensor reference frame, Ss. The camera reference frame is the one attached to the 

primitive camera as shown in Figure 3. Given a point P, represented in the Sc frame as 

[ ]TS
ZYXc =P , its 2D projection point p onto the image sensor plane referred to the Ss frame 

will be, in homogeneous coordinates, [ ]Th
S

vuc 1=p , being its pixel coordinates calculated 

from Figure 4. Executing the RobSim image acquisition function pimag=point_view(p3D,Ki,oTc) 

(Subsection 3.4) is possible to simulate a (Chaumette & Hutchinson, 2006)point capture as 

the camera moves. The p3D vector, a workspace point relative to the base coordinates, is 

measured in centimeters. The pimag vector, the 2D corresponding point onto the image plane, 

is measured in pixels. 
The RobSim features for visual servo control will be shown in a vision-guided operation with 

the Rhino XR4 robot. Figure 13 shows the robot RobSim model at its home pose (initial 

configuration) with a camera attached to its end-effector (gripper), so with the 5 DOF motion 

capability the robot allows. Resting over the base plane there is a cube (a block primitive) with 

color marks (asterisks) at its four top vertexes. Figure 13 also shows a window displaying the 

cube image as captured by the camera, in which the cube is represented by the four top color 

marks. An additional mark represents the image plane center. 
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Fig. 13. RobSim vision-guided operation – initial configuration 
 

-50

0

50 -50

0

50
0

20

40

60

80

100

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40
-6

-5

-4

-3

-2

-1

0

1

2

3

Iteration

V
e
lo

c
it
ie

s

 

Fig. 14. RobSim vision-guided operation – new configuration 
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In this image-based servoing scheme the visual features error vector is defined as the 
difference between current and desired cube vertex positions. An exponential decoupled 
decay for this error was imposed by a velocity control policy. Camera reference velocities 
were then obtained using the image interaction matrix. In turn, the joint reference velocities 
for the robot joints controllers were obtained from the robot Jacobian. 
Figure 14 shows the robot after executing a moving command towards a new configuration 
while the cube remains fixed. The window image shows the cube image, represented by the 
correspondent color marks (now circle marks). Another window shows the time variations 
of the camera velocity components. Visual information can be then used to guide the robot 
to describe a trajectory from an initial configuration to a new configuration through 
individual joint control. 

6.2 A position-based visual servoing scheme within RobSim 

Here, the PBVS architecture was implemented to simulate a vision-guided placing operation 
with the Rhino XR4 robot and a stereo-vision system with two cameras in the robot 
workspace. The object to be handled is a cube represented by a block-type primitive. Three 
marking points are located at three vertexes of the cube in order to visually represent the 
cube for translation and rotation displacements. Figure 16 shows the initial configuration of 
the robotic manipulator with the cube being grasped by the end effector, the cube initial 
pose (green) and the cube final pose (cyan). 
 

 

Fig. 15. Vision-guided placing operation – initial configuration 

A computer vision algorithm is not required in this case because the object is synthetic and a 
simple one. Determination of the coordinates of the three vertexes that identifies the cube is 
performed by the stereo-vision system (Hutchinson, 1996). The coordinates of the three 
identifying vertexes representing the cube at its initial pose are, pa1 (middle vertex), pb1 and 

www.intechopen.com



 Visual Servoing 

 

18 

pc1. The corresponding three coordinates at the final pose are pa2, pb2 and pc2. From these 
points four 3D vectors are generated: Pab1 pointing from pa1 to pb1; Pac1 pointing from pa1 to 
pc1; Pab2 from pa2 to pb2; and finally Pac2 from pa2 to pc2. All these vectors are normalized 
before use. 
To describe the robot joint dynamics a first-order model without dissipation is considered. 

Once the end-effector velocity vector )(tr$ (translational and rotational motion) referred to 

the base frame coordinates is known, the robot inverse kinematics model can be used to 

determine the joint velocities vector )(tq$ (Schilling, 1990). These velocities vectors are related 

by the pseudo-inverse of the robot Jacobian matrix, J(q) as 

 )().()( tt rqJq $$ +=  (19) 

The end effector velocity )(tr$ is known as the screw velocity, consisting of a linear velocity 

along a line and an angular velocity around that line. Its first three elements are the linear 
velocities Tr = [vx vy vz]T and its last three elements Ωr = [ωx ωy ωz]T the angular velocities, 
being all components referred to the base coordinate frame. Thus, the end effector velocity is 

 T
rrt ][)( ΩTr =$  (20) 

A task function characterizing position and orientation errors of the cube handling task was 
implemented. By vector analysis, it can be shown that if Pr = (Pab1×Pac1)×(Pab2×Pac2) = 0 
(where × denotes vector cross product), the handled cube attains the reference or desired 
orientation, in the particular cases where Pab1 and Pab2 or Pac1 and Pac2 have the same 
direction. The angular control velocity is adjusted as Ω = k1Pr, where k1 is a positive 
proportional gain. 
It is also verified that, being ta a vector from point pa1 to point pa2 and pa1v, a vector from the 
frame origin to point pa1, the vector Pt = k2ta + Ω×pa1v, with k2 a positive proportional gain, is 
equal to the null vector when the handled cube assumes the reference pose. In this case the 
translation control velocity is given by Tr =Pt. By adequately adjusting k1 and k2 it is possible 
to improve the regulation velocity of position and orientation errors. 
Figure 16 shows the final configuration of the vision-guided placing operation, a window 
shows the initial image as seen by the left camera. Another window shows the time 
evolution of the end-effector velocity components (Equation 20), in which case, due to the 

initial and desired cube pose, the angular components ωx and ωy are zero. 

7. Conclusion 

A software platform RobSim for analysis and design of robotic systems that includes image 
capturing devices was presented. It was developed within the Matlab environment to 
simulate kinematics of robotic structures and it allows implementing control strategies in 
order to follow trajectories, perform tasks, etc. Thus it is very suitable to implement robotic 
experiments before dealing with the real system. The platform is based on basic units called 
primitives that assembled together can simulate any robotic structure. Being modular it is 
expandable, another advantage is the inclusion of a video capturing device that allows 
implementing vision-guided robotic experiments. The platform was used here to model and 
simulate fixed and mobile robots. Image- and position-based servoing schemes were 
implemented for a robotic manipulator with a single and a two-camera arrangement and 
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Fig. 16. Vision-guided placing operation – final configuration 

simulations carried out within the RobSim platform. Further work is being addressed to 
introduce dynamical parameters into the primitives and simulation of more complex image 
features acquisition rather than image points. 
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