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1. Introduction

Audio diarization Reynolds & Carrasquillo (2005) is the process of partitioning an input au-
dio stream into homogeneous regions according to their specific audio sources. These sources
can include audio type (speech, music, background noise, ect.), speaker identity and channel
characteristics. With the continually increasing number of larges volumes of spoken docu-
ments including broadcasts, voice mails, meetings and telephone conversations, diarization
has received a great deal of interest in recent years which significantly impacts performances
of automatic speech recognition and audio indexing systems. A subtype of audio diarization,
where the speech segments of the signal are broken into different speakers, is speaker di-
arization Tranter & Reynolds (2006). It generally answers to the question "Who spoke when?"
and it is divided in two modules: speaker segmentation and speaker clustering. The goal
of speaker segmentation is finding the times when there is a change of speaker in the au-
dio stream. Speaker clustering consists in merging speech segments, detected by the speaker
segmentation step, related to a same speaker.
Recently, three main domains of application for speaker segmentation have received special
attention Reynolds & Carrasquillo (2004):

- Broadcast news : Radio and TV programs with various kinds of programming, usually
containing commercial breaks and music, over a single channel.

- Recorded meetings: meetings or lectures where multiple people interact in the same
room or over the phone. Normally recordings are made with several microphones.

- Phone conversations: single channel recordings of phone conversations between two or
more people.

Segmenting this types of audio stream in terms of speakers is useful in many application. In
Automatic Speech Recognition (ASR) Moraru et al. (2003), for example, an initial segmenta-
tion is required in terms of homogeneous speech and non-speech regions. Having segmented
speech regions, it is also often necessary to segment these further in terms of homogeneous
speaker turns. In addition to improving ASR systems, speaker turn information can be help-
ful for speaker adaptation in rich transcription of videos and meetings Bonastre et al. (2000)
and for content based audio classification and retrieval Hansen et al. (2005) which have a wide
range of applications in the entertainment industry, audio archive management, surveillance,
etc. Audio segmentation would also be an important tool in summarizing meetings, which
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has recently gained a lot of interest in the research community. For example, segmentation of
the speech data in terms of speakers could help in efficient navigation through audio docu-
ments like meeting recordings Dielmann & Renals (2007); Jin & Schultz (2004). Using these
segmentation queues, an interested user can directly access a particular segment of the speech
made by a particular speaker.

1.1 Previous works

Recent research on audio segmentation mostly focused on four categories: energy based,
model-based Kemp et al. (2000), metric-based Delacourt & Wellekens (2000), and informa-
tion criterion-based approaches Cettolo & Vescovi (2003); Chen & Gopalakrishnan (1998);
M.Cettolo & M.Federico (2000). Energy audio segmentation only detects change-points at si-
lence segments, which generally are not directly connected with the acoustic changes of the
audio signals. Model-based segmentation approach requires predefined audio classes and
complete training data. The metric-based approach are not stable and need thresholds gener-
ally selected from experiments results. The information criterion-based scheme are proposed
for evaluating models constructed by various estimation procedures when the specified fam-
ily of probability distributions does not contain the distribution generating the data. The so-
called Delta Bayesian information criterion (BIC) segmentation algorithm is widely employed
in many studies Chen & Gopalakrishnan (1998). The BIC is intended to provide a measure
of the weight of evidence favoring one model over another. According to previous research,
the Delta-BIC is threshold-free and suitable for unknown acoustic conditions. However, this
method, extremely computationally expensive, can introduce an estimation error due to insuf-
ficient data when the speaker turns are close to each other Huang & Hansen (2004). In order
to minimize these effects, Delacourt Delacourt & Wellekens (2000)tested different metric cri-
teria to associate them to the BIC criterion such as the Kullbach-Leibler distance, the similarity
measure and the Generalized Likelihood Ratio measure (GLR). Still, this method encountered
problems in case of short segments and requires also a high computation cost. On another
issue, Zhou Zhou & Hansen (2000)recommends the use of the T2−Statistic for metric-based
segmentation in the aim to reduce this computation cost. However its technique, T2−BIC,
depends on many empiric parameters which affect the quality of the detection of speaker
turns. In our previous work Kadri et al. (2006), we developed a hybrid segmentation algo-
rithm called DIS_T2_BIC to improve the detection of speaker turns close to each others using
a fixed threshold independent of the type of the audio stream with a low computation cost.
Nevertheless all of these techniques suppose that the audio signal don’t contains different
acoustic changes and simultaneous speeches of two or more speakers and then find difficul-
ties in segmenting streams containing background noise and overlapped speeches.

1.2 Contributions and Chapter organization

The main focus of this chapter is to introduce a new unsupervised speaker segmentation tech-
nique robust to different acoustic conditions. In most commonly used model selection seg-
mentation techniques like BIC segmentation, the basic problem may be viewed as a two-class
classification where the object is to determine whether N consecutive audio frames constitute
a single homogeneous of frames W or two such windows: W1 and W2 with the boundary
frame or change occurring at the ith frame. In order to detect if a speaker change occurred
within a window of N frames, two models are built. One which represents the entire window
by a Gaussian characterized by µ (mean) , Σ (variance) ; a second which represents the win-
dow up to the ith frame, W1 with µ1,Σ1 and the remaining part, W2, with a second Gaussian
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µ2,Σ2. This representation using a gaussian process is not totally exact when the audio stream
contains overlapped speeches and very short segments. To solve this problem, our proposed
segmentation technique use the one class SVM and exponential family model to maximize the
generalized likelihood ratio with any probability distribution of windows Kadri et al. (August
2008). Moreover, we use the discrete wavelet coefficient (DWC) to improve the detection of
speaker changes in the presence of background noise. The use of these coefficient is suitable
since our technique is insensitive to the dimension of acoustic features.
The remainder of this chapter is organized as follows. Section 2 details previous audio seg-
mentation techniques based on BIC. Section 3 reviews the support vector machines approach
and the exponential family model. The proposed speaker change detection method is illus-
trated in section 4. Experimental results are provided in Section 5. Section 6 concludes the
paper with a summary and discussion.

2. Previous techniques: BIC based segmentation techniques

Model selection based speaker segmentation is proposed by Chen and Gopalakrishnan Chen
& Gopalakrishnan (1998). Their method employs the bayesian information criterion as model
selection criterion, illustrating several desirable properties such as robustness, threshold inde-
pendence and optimality.

2.1 BIC Segmentation

BIC Chen & Gopalakrishnan (1998) is a model selection criterion penalized by the model com-
plexity (amount of free parameters in the model). For a given acoustic segment Xi, the BIC
value of a model Mi indicates how well the model fits the data, and is determined by:

BIC(X, M) = log L(Xi, Mi)−
λ

2
#(Mi) · log(Ni) (1)

log L(Xi, Mi) is the log-likelihood of the data given the considered model, Ni is the number of
frames in the considered segment, #(Mi) the number of free parameters to estimate in model
Mi and λ is a free design parameter dependent on the data being modelled. λ determines the
’weight’ applied to model parameters, theoretically 1, but tunable in practice. Given several
different candidate models to explain a single dataset, the model with the largest BIC gives
the best fit according to this criterion.
The BIC-based segmentation procedure is as follows: A sequence of d-dimensional audio fea-
ture vectors X = xi ∈ R

d : i = 1, . . . , N are modelled as independent draws from either one
or two multivariate Gaussian distributions. The null hypothesis is that the entire sequence is
drawn from a single distribution:

H0 = {x1, . . . , xN} ∼ N (µ0, Σ0)

where N(µ, Σ) denotes a multivariate Gaussian distribution with mean vector µ and full co-
variance matrix Σ. The null hypothesis is compared to the hypothesis of having a segment
boundary after sample t i.e. that the first t points are drawn from one distribution and that
the remaining points come from a different distribution:

H1 : {x1, . . . , xt} ∼ N (µ1, Σ1)

{xt+1, . . . , xN} ∼ N (µ2, Σ2)
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The difference in BIC scores between these two models is a function of the candidate boundary
position t:

∆BIC(t) = log(
L(X\H0)

L(X\H1)
)−

λ

2

d2 + 3d

2
log(N) (2)

where L(X\H0) is the likelihood of X under hypothesis H0 etc., and (d2 + 3d)/2 is the number
of extra parameters in the two-model hypothesis H1. When ∆BIC(t) > 0, we place a segment
boundary at time t, and then begin searching again to the right of this boundary and the search
window size N is reset. If no candidate boundary t meets this criteria, the search window size
is increased, and the search across all possible boundaries t is repeated. This continues until
the end of the signal is reached.

2.2 T2-BIC

T2-BIC Zhou & Hansen (2000) is a variant of BIC segmentation technique which validates each
speaker change point detected by Hotelling’s T2-statistic using the BIC criterion. Hotelling’s
T2-statistic is a multivariate analogue of the square of the t-distribution Anderson (1985). The
T2-statistic is used when we wish to test if the mean of one normal population is equal to the
mean of the other where the covariance matrices are assumed equal but unknown. In terms
of segmentation Wegmann et al. (1999), the problem can be viewed as testing the hypothesis
H0 : µ1 = µ2 against the alternative H0 : µ1 �= µ2 where µ1, µ2 are, respectively, the means
of two samples of the audio stream, one containing the frame [1, b] and the second contains
[b, N]. The likelihood ratio test is given by the following T2-statistic:

T
2 =

b(N − b)

N
(µ1 − µ2)

′
Σ
−1(µ1 − µ2) (3)

where Σ represent the common covariance matrix. The T2 value defined in 3 can be considered
as a distance measure of two samples. Obviously, the smaller the value of T2, the more similar
the two samples distributions. The T2-BIC algorithm operates by fixing an analysis frame
with L second length from the beginning of the parameterized audio stream and calculating
the T2 value in different points situated on this frame; the point that represents the highest
value of T2 is more probable to be a real speaker turns; then it can be validated by the BIC
criterion. The T2-BIC segmentation presents certainly some advantages. The selection, from
the statistical criteria T2, of a candidate speaker change permits to reduce computational costs.
Thus, T2-BIC offers a reduced calculation time compared to the BIC segmentation. Besides,
this technique works with an automatic threshold and presents a low false alarm. However,
T2-BIC is not reliable for the segmentation of audio documents that contain speaker changes
close to each other. In fact, it requires the use of a time delay τ Zhou & Hansen (2000) between
two consecutive speaker turns which can lead missing some break points.

2.3 DIS_T2_BIC

Like T2-BIC, DIS_T2_BIC Kadri et al. (2006) is a speaker segmentation algorithm which pro-
cess with a fixed threshold and low computation cost. It is proposed to improve speaker turns
detection even they are close to each other. DIS_T2_BIC is based in a hybrid concept which
is organized in two steps: the detection of most probable speaker turns and the validation of
changes already detected. Speaker turns are detected by computing the value of T2 between
a pair of adjacent windows of the same size shifted by a fixed step along the whole param-
eterized speech signal. In the end of this procedure we obtain the curve of the variation of
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T2 in time. A speaker change point is characterized by the presence of a high value peak. To
differentiate high peaks from low peaks, a fixed threshold is defined as below:

T
2
>

(N − 2)p

N − p − 1
Fp,N−p−1(α) = T2

0

where Fp,N−p−1 is the F-point for p and N − p− 1 degrees of freedom with significance level α.

A T2 value lower than T2
0 shows that the two samples are homogenous and consequently don’t

present a speaker change. So, break points can be detected by searching the local maxima of
the T2 curve that verify the criterion 2.3. The validation of already detected break points is
made using the BIC criterion. Denote {T1, ..., TN} as the set of speaker turns found in the
first step, a ∆BIC value is computed for each pair of windows [Ti−1, Ti] [Ti, Ti+1]. When this
value is positive, a speaker turn is identified at time i. Otherwise, the point i is discarded
from the candidate set, then the ∆BIC value is applied again for a larger pair of windows
[Ti−1, Ti+1] [Ti+1, Ti+2]. At this stage, when segments are large enough, BIC criterion gives
better validation results since model estimation becomes more accurate. Detecting speaker
changes from the curve of T2 gives to DIS_T2_BIC the advantage to detect speaker turns
close to each others and the use of the T2-statistic criteria permits to reduce the computation
cost and to have an automatic threshold decision independent of the type of the audio stream.
However, like others BIC based segmentation technique, suppose that the audio signal don’t
contains different acoustic changes and simultaneous speeches of two or more speakers and
then find difficulties to segment audio streams containing background noise and overlapped
speeches.

3. Background information

This section provides a brief review of reproducing kernel Hilbert spaces, One-class Support
Vector Machines and exponential families.

3.1 reproducing kernel Hilbert spaces Aronszajn (1950)

Let X be a set, and H be a Hilbert space included in the set of all functions on X . The Hilbert
space H is called reproducing kernel Hilbert space (RKHS) if the evaluation functional ex :
H ∋ f �−→ f (x) ∈ R is continuous on H for any x ∈ X .
A function k : X ×X −→ R is a positive kernel if it is symmetric and for any points x1, ...xn in
X the matrix (k(xi, xj))i,j is positive semidefinite, i.e., for any sequence of scalar α1, ...αn the
inequality ∑

n
i,j=1 αiαjk(xi, xj) ≥ 0 is verified.

Using Riesz’s theorem, If H is a RKHS on X then there exists a function k(., x) ∈ H, called
reproducing kernel, such that ex( f ) = f (x) = 〈 f (.), k(., x)〉H, where 〈 , 〉H is the inner product
of H. The function k(x, y) is a positive definite kernel, because it is symmetric from k(y, x) =
〈k(., x), k(., y)〉H = 〈k(., y), k(., x)〉H = k(x, y), and positive definite from ∑i,j αiαjk(xi, xj) =

‖∑i αik(., xi)‖
2
H ≥ 0.

In the other hand, it is known that for a positive definite kernel k on X there uniquely exists
a Hilbert space Hk such that 〈 f (.), k(., x)〉Hk

= f (x) holds for any f ∈ Hk and x ∈ X . This
propriety means that Hk is a RKHS with a reproduicing kernel k. given a RKHS H and its
reproducing kernel k(., x), because of the uniqueness of the reproducing kernel, we can con-
clude that the Hilbert space Hk constructed by k is identic to H. So there is a bijection between
the set of all possible RKHS and the set of all positive kernels.
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3.2 One-Class SVM

The One-class approach was proposed by Schölkopf Smola & Shawe-Taylor (2000) and has
been successfully aused for novetly detection. Davy & Godsill (2002) Davy et al. (2006) Des-
obry et al. (2005). 1-SVM distinguishes one class of data from the rest of the feature space
given only a positive data set. Based on a strong mathematical foundation, 1-SVM draws a
nonlinear boundary of the positive data set in the feature space using a parameter to control
the noise in the training data and another one to control the smoothness of the boundary.
The 1-class SVM is a method that aims at learning a single class, by determining its contours.
To explain 1-class SVM, we can begin by giving a kernel. A kernel k(x, y) is a positive and
symmetric function of two variables (for more details see [12]) lying in a Reproducing Kernel
Hilbert Space with the scalar product:

〈 f , g〉H =
k

∑
i=1

l

∑
j=1

figik(xi, yj) (4)

In this framework, the 1-class SVM problem with the sample (xi), i = 1, . . . , m is the solution
of the following optimisation problem under constraints for f ∈ H :







min f ,ρ,ξ
1
2‖ f ‖2

H + C ∑
m
i=1 ξi − ρ

s.t. f (xi) > ρ − ξi i = 1, . . . , m
and ξi ≥ 0, i = 1, . . . , m

(5)

where C is a scalar that adjusts the smoothness of the decision function, ρ is a scalar called
bias and ξ are slack variables. The dual formulation is:







maxα∈Rm
−1
2 αTKα

s.t. αTe = 1
and 0 < αi < C, i = 1, . . . , m

(6)

where K is the kernel matrix Kij = k(xi, xj) and e = [1, . . . , 1]T . The 1-class SVM solution
is then given by solving a quadratic optimization problem of dimension m under box con-
straints. The decision function is D(x) = sign( f (x)− ρ). The input points are considered as
part of the current class as long as the decision function is positive.

3.3 Exponential family

The exponential family covers a large number (and well-known classes) of distributions such
as Gaussian, Multinomial and poisson. A general representation of a exponential family is
given by the following probability density function:

p(x|η) = h(x) exp{ηTT(x)− A(η)} (7)

where h(x) is called the base density which is always ≥ 0,
η is the natural parameter,
T(x) is the sufficient statistic vector
A(η) is the cumulant generating function or the log normalizer.
The choice of T(x) and h(x) determines the member of the exponential family. Also we know
that since this is a density function,

∫

h(x) exp{ηTT(x)− A(η)}dx = 1 (8)
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then,

A(η) = log
∫

exp[ηTT(x)]h(x)dx (9)

For a Gaussian distribution, p(x|µ, σ2) = 1√
2π

exp(
µ

σ2 x − 1
2σ2 x2 − µ2

2σ2 − logσ). In this case,

h(x) = 1√
2π

, η = [
µ

σ2 , −1
2σ2 ] and T(x) = [x, x2]. Thus, Gaussian distribution is included in the

exponential family.
The density function of a exponential family can be written in the case of presence of an re-
producing kernel Hilbert space H with a reproducing kernel k as :

p(x|η) = h(x) exp{〈η(.), k(x, .)〉H − A(η)} (10)

with

A(η) = log
∫

exp{〈η(.), k(x, .)〉Hh(x)dx (11)

4. SVM based speaker segmentation

4.1 Speaker change detection using 1-class SVM and exponential family

Novetly change detection using SVM and exponential family is proposed by Canu and
Smola Canu & Smola (2005) Smola (2004). Let X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}
two adjacent windows of acoustic feature vectors extracted from the audio signal ,where N is
the number of data points in one window. Let Z denote the union of the contents of the two
windows having 2N data points. The sequences of random variables X and Y are distributed
according respectively to Px and Py distribution. We want to test if there exist a speaker turn
after the sample xN between the two windows. The problem can be viewed as testing the
hypothesis H0 : Px = Py against the alternative H1 : Px �= Py. H0 is the null hypothesis and
represents that the entire sequence is drawn from a single distribution, thus there not exist
a speaker turn. While H1 represents the hypothesis that there is a segment boundary after
sample Xn. The likelihood ratio test of this hypotheses test is the following :

L(z1, . . . , z2N) =
∏

N
i=1 Px(zi)∏

2N
i=t+1 Py(zi)

∏
2N
i=1 Px(zi)

=
2N

∏
i=N+1

Py(zi)

Px(zi)
(12)

since both densities are unknown the generalized likelihood ratio (GLR) has to be used :

L(z1, . . . , z2N) =
2N

∏
i=N+1

P̂y(zi)

P̂x(zi)
(13)

where P̂x and P̂y are the maximum likelihood estimates of the densities.
Assuming that both densities Px and Py are included in the generalized exponential family,
thus it exists a reproducing kernel Hilbert space H embedded with the dot product < ·, · >H
with a reproducing kernel k such that:

Px(z) = h(z) exp{〈ηx(.), k(z, .)〉H − A(ηx)} (14)

and
Py(z) = h(z) exp{〈ηy(.), k(z, .)〉H − A(ηy)} (15)

Using One class SVM and the exponential family, a robust approximation of the maximum
likelihood estimates of the densities Px and Py can be written as:
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P̂x(z) = h(z) exp

(
N

∑
i=1

α
(x)
i k(z, zi)− A(ηx)

)
(16)

P̂y(z) = h(z) exp

(
2N

∑
i=N+1

α
(y)
i k(z, zi)− A(ηy)

)
(17)

where α
(x)
i is computed by solving the one class SVM problem on the first half of the data

(z1 to zN), while α
(y)
i is given by solving the one class SVM problem on the second half of

the data (zN+1 to z2N). Using these three hypotheses, the generalized likelihood ratio test is
approximated as follows:

L(z1, . . . , z2N) =
2N

∏
j=N+1

exp (∑2N
i=N+1 α

(y)
i k(zj, zi)− A(ηy))

exp (∑N
i=1 α

(x)
i k(zj, zi)− A(ηx))

(18)

A speaker change in the frame zn exist if :

L(z1, . . . , z2N) > sx ⇔

2N

∑
j=N+1

(
2N

∑
i=N+1

α
(y)
i k(zj, zi)−

N

∑
i=1

α
(x)
i k(zj, zi) ) > s′x (19)

where sx is a fixed threshold. Moreover, ∑
2N
i=N+1 α

(y)
i k(zj, zi) is very small and can be neglect

in comparison with ∑
N
i=1 α

(x)
i k(zj, zi). Then a speaker turn is detected when :

2N

∑
j=N+1

(−
N

∑
i=1

α
(x)
i k(zj, zi)) > s′x (20)

4.2 Proposed speaker segmentation technique

In section 4.1, we show that a speaker changes exist if the condition defined by the equa-
tion (20) is verified. This speaker change detection approach can be interpreted like this: to
decide if a speaker change exit between the two windows X and Y, we built an SVM using the
data X as learning data, then Y data is used for testing if the two windows are homogenous
or not.
On the other hand, since H0 represent the hypothesis of Px = Py the likelihood ratio test of
the hypotheses test described in section 4.1 can be written like this:

L(z1, . . . , z2N) =
∏

N
i=1 Px(zi)∏

2N
i=t+1 Py(zi)

∏
2N
i=1 Py(zi)

=
N

∏
i=1

Px(zi)

Py(zi)
(21)

Using the same gait, a speaker change has occurred if :

N

∑
j=1

(−
2N

∑
i=N+1

α
(y)
i k(zj, zi)) > s′y (22)

Experimental tests show that in some case is more appropriate when we use Y data for learn-
ing and X data for testing. Figure 1 presents the segmentation of an audio stream which
presents four speaker changes. This audio stream is a sample of broadcast news extracted
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Fig. 1. Segmentation results of an audio stream extracted from NIST RT-02 broadcast news
data using criteria defined by eq (20)(subplot b), eq (22)(subplot c) and eq (23)(subplot d).

from NIST RT-02 data. Figures (b) and (c) represent the result of segmentation using respec-
tively (20) and (22). Using the criteria (20), we can detect only changes number 1 and 3 and
using the criteria (22), we can detect only changes number 2 and 4. For these reason it is more
appropriate to use the criterion described as follow:

2N

∑
j=N+1

(−
N

∑
i=1

α
(x)
i k(zj, zi)) +

N

∑
j=1

(−
2N

∑
i=N+1

α
(y)
i k(zj, zi)) > S (23)

In this case and as illustrated in figure 1, we can detect easily all speaker changes.

4.3 Our segmentation method

Our technique detects speaker turns by computing the distance detailed in equation (27) be-
tween a pair of adjacent windows of the same size shifted by a fixed step along the whole
parameterized speech signal. In the end of this procedure we obtain the curve of the variation
of the distance in time. The analysis of this curve shows that a speaker change point is char-
acterized by the presence of a "significant" peak. A peak is regarded as "significant" when it
presents a high value. So, break points can be detected easily by searching the local maxima
of the distance curve that presents a value higher than a fixed threshold.

Algorithm 1: Speaker change detection algorithm

Step 0: Initialization

• initialize the interval [a, b], a = 0, b = SIZE_WINDOW

Step 1: Computing detection criterion

• Compute the distance measure d1 according to equation (20) with [a, b/2] testing data and [b/2 + 1, b]
training data.

• Compute the distance measure d2 according to equation (22) with [b/2 + 1, b] testing data and [a, b/2]
training data

• Compute the decision criterion d = d1 + d2

• a=a + pas and b = b + pas; go to step 1

Step 2: speaker turns detection
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• detecting peaks of d-curve, p = pi

• decision:

– if d(pi) > s a speaker change is detected,

– if d(pi) < s no speaker change is detected,

5. Experiments

5.1 Data set

In order to evaluate 1-SVM-based segmentation method, experiments are based essentially on
the segmentation of IDIAP meetings Corpus. This database contains two separate test sets
sampled at 16 kHz. The first test set contains only single speaker segments without overlap-
ping. However the second one contains a short overlap segment included at each speaker
change. Further, to generalize our experiments, we used also other types of audio streams
like broadcast news and telephone conversations. These audio streams are extracted from the
Rich Transcription-04 MDE Training Data Speech corpus created by Linguistic Data Consor-
tium (LDC). Description of the used datasets is presented below:

1. IDIAP meetings Moore (2002):

• Test set 1: contains only single speaker segments without overlap segments. This
test set groups nine files, each of them contains 10 speaker turns constructed in a
random manner with segments duration varying from 5 to 20 seconds. The total
test set duration was 20 minutes.

• Test set 2: contains a short overlap segment included at each speaker change.
The test set is formed by six files, each containing 10 single speaker segments
(of between 5-17 seconds duration), interleaved with 9 segments of dual-speaker
overlap (of between 1.5-5 seconds duration).

2. Broadcast news data: is composed of three approximately 10-minute excerpts from
three different broadcasts. The broadcasts were selected from programs from NBC,
CNN and ABC, all collected in 1998.

3. Telephone conversation: is composed of a 10-minute excerpt from a conversation be-
tween two switchboard operators.

5.2 Evaluation criteria

For evaluating the performance of the segmentation task, we use Type-I errors: precision
(PRC) and Type-II errors: recall (RCL) was widely used in previous research Ajmera et al.
(2004). Type-I errors occur if a true change is not spotted (missed alarm) within a certain
window. Type-II errors occur when a detected change does not correspond to a true change
in the reference (false alarm). Precision (PRC) and recall (RCL) are defined as below:

PRC =
number of correctly found changes

Total number of changes found
(24)

RCL =
number of correctly found changes

Total number of correct changes
(25)

(26)

www.intechopen.com



Robust Unsupervised Speaker Segmentation for Audio Diarization 317

In order to compare the performance of different systems, the F-measure is often used and is
defined as

F =
2.0 × PRC × RCL

PRC + RCL
(27)

The F-measure varies from 0 to 1, with a higher F-measure indicating better performance.

5.3 Audio features components

In the experiments, two kinds of feature vectors are proposed: MFCCs and DWCs. Mel
frequency cepstral coefficients (MFCCs) are a short-time spectral decomposition of audio
that convey the general frequency characteristics important to human hearing. We calcu-
late MFCCs by using overlapping frames of 30 ms. The Discrete Wavelet Coefficients (DWCs)
are computed by applying the Discrete Wavelet Transform (DWT) which provides a time-
frequency representation of the signal. It was developed to overcome the short coming of the
Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary sig-
nals. While STFT gives a constant resolution at all frequencies, the Wavelet Transform uses
multi-resolution technique by which different frequencies are analyzed with different reso-
lutions. The DWT is computed by successive lowpass and highpass filtering of the discrete
time-domain signal. This is called the Mallat algorithm or Mallat-tree decomposition Mallat
(1998).

5.3.1 Mel frequency cepstral coefficient

MFCCs are a short-time spectral decomposition of audio that convey the general frequency
characteristics important to human hearing. While originally developed to decouple vocal ex-
citation from vocal tract shape for automatic speech recognition. In order to calculate MFCCs,
the signal is first broken into overlapping frames, each approximately 25ms long, a time scale
at which the signal is assumed to be stationary. The log-magnitude of the discrete Fourier
transform of each window is warped to the Mel frequency scale, imitating human frequency
and amplitude sensitivity. The inverse discrete cosine transform decorrelates these "auditory
spectra" and the so called "high time" portion of the signal, corresponding to fine spectral
detail, is discarded, leaving only the general spectral shape

5.3.2 Discrete Wavelet transform

The Wavelet Transform provides a time-frequency representation of the signal. It was de-
veloped to overcome the short coming of the Short Time Fourier Transform (STFT), which
can also be used to analyze non-stationary signals. While STFT gives a constant resolution
at all frequencies, the Wavelet Transform uses multi-resolution technique by which differ-
ent frequencies are analyzed with different resolutions. The DWT is computed by successive
lowpass and highpass filtering of the discrete time-domain signal. This is called the Mallat
algorithm or Mallat-tree decomposition Mallat (1998). Its significance is in the manner it con-
nects the continuous-time mutiresolution to discrete-time filters. In the figure, the signal is
denoted by the sequence x[n], where n is an integer. The low pass filter is denoted by G0
while the high pass filter is denoted by H0. At each level, the high pass filter produces detail
information, d[n], while the low pass filter associated with scaling function produces coarse
approximations, a[n].

5.4 Results

Table 1 illustrates speaker segmentation experiments conducted on the various audio docu-
ments previously described and their corresponding results using 1-SVMs and DIS_T

2_BIC
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approaches. Segmentation using 1-SVMs outperforms DIS_T
2_BIC based segmentation tech-

nique for all the tested audio documents. The segmentation of the IDIAP meetings(1) using
the two methods presents the highest value of precision and recall. In fact, opposite to other
types of audio streams, this corpus contains long speech segments allowing good estimation
of data. As presented in the table 1, the PRC and RCL values obtained with IDIAP meetings(1)
increases respectively from 0.69 to 0.8 and from 0.68 to 0.79.

Audio 1-SVM method DIS_T
2_BIC method

Streams Features RCL PRC F Features RCL PRC F

M. IDIAP1 39MFCC+DWC5 0.8 0.79 0.79 13MFCC 0.69 0.68 0.68
M. IDIAP2 39MFCC+DWC5 0.68 0.67 0.67 13MFCC 0.58 0.56 0.57

B. News 39MFCC+DWC6 0.75 0.75 0.75 39MFCC 0.63 0.66 0.64
Tel. Conv 39MFCC+DWC3 0.72 0.71 0.71 13MFCC 0.56 0.58 0.57

Table 1. Segmentation results using the proposed 1-SVM and DIS_T
2_BIC methods.

The proposed method based on 1-SVMs allows the improvement of speaker change detection
in audio streams which contain overlapping speeches. The improvement in the PRC and
RCL values using IDIAP meetings(2) is more than 10% with respect to DIS_T

2_BIC method.
Generally, BIC based segmentation techniques detect a speaker change between two adjacent
analysis windows. Each window is modelized by a gaussian distribution. This supposition is
not true when the window contains overlapped speeches. In this case, it is more suitable to
suppose that each window can be modelized by an exponential family.
Broadcast news segmentation results are enhanced by adding discrete wavelet coefficients to
cepstral coefficients. The use of this kind of parametrization makes speaker changes detection
possible in the presence of background noise. Further, deploying 1-SVMs permits to better
put in evidence this characteristic since it is insensitive to the dimension of acoustic features.
Also, the proposed method is more appropriate to detect speaker changes close each others.
The F value obtained with the segmentation results of the telephone conversation is raised
from 0.56 with DIS_T2_BIC method to 0.71 with 1-SVMS method.

6. Conclusion

In this chapter, we have proposed a new unsupervised detection algorithm based on 1-SVMs.
This algorithm outperforms model-selection based detection methods. Using the exponen-
tial family model, we obtain a good estimation of the generalized Likelihood ratio applied on
the known hypothesis test generally used in change detection tasks. By adding to cepstral
coefficients the discrete wavelet coefficients. The use of this kind of parametrization permit-
ted to detect speaker changes even in real-world conditions in which the environment and
context are so complex that the segmentation results are often affected. The use of support
vector machines permit to deal practically with this high dimensional acoustic features vec-
tor. Experimental results present higher precision and recall values than those obtained with
DIS_T2_BIC technique, the increase of PRC and RCL values obtained with various kinds of
audio streams is roughly over 10%.
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