
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Segmented Online Neural Filtering System Based  
On Independent Components Of Pre-Processed Information 337

Segmented Online Neural Filtering System Based On Independent 
Components Of Pre-Processed Information

Rodrigo Torres, Eduardo Simas Filho, Danilo de Lima and José de Seixas

X 
 

Segmented Online Neural Filtering System 
Based On Independent Components Of Pre-

Processed Information 
 

Rodrigo Torres1, Eduardo Simas Filho1,2, 
 Danilo de Lima1 and José de Seixas1 

1 COPPE / Poli - Federal University of Rio de Janeiro, Brazil  
2 Federal Institute of Education, Science and Technology of Bahia, Brazil  

 
1. Introduction 

Data filtering systems are used in different fields of research, aiming at isolating signals of 
interest from patterns related to a given background noise. Nowadays, in many complex 
applications, the input data space dimensionality is very high, as well as the incoming data 
rate. In this case, the difficulty of the input data stream analysis increases significantly. Also, 
the processing speed plays a critical role when the filtering system is envisaged for online 
operation. Finally, the signals of interest may rarely occur, forcing the experiment to keep 
running for a long period of time in order to acquire a reasonable amount of events for 
better measurement estimation.  
In general, online filtering systems should have the following features: 
• High detection efficiency for a low false alarm probability. 
• Simplified software / hardware implementation. 
• Flexibility in order to accomplish possible future requirements. 
• Execution speed capable of meeting the desired time requirements. 
• Robustness, in order to keep its filtering features through its lifetime of operation. 
To cope with such high-input data dimension, feature extraction techniques may be applied 
in order to isolate the relevant information from the event data description, eventually 
reducing its dimension. For this, different data compaction techniques have been developed 
using expert information or / and stochastic processing. Pre-processing schemes based on 
signal decorrelation (linear or nonlinear) may even reduce the complexity of the classifier 
(signal against background) design. Finally, in the case where the available information is 
from a set of sensors, signal pre-processing might also be segmented, better exploiting the 
available local information.  
Statistical processing can play a valuable role in the pattern recognition task, since it can 
provide better separation cuts than deterministic methods, specially for the case where the 
problem to be solved presents nonlinear characteristics. By using algorithms based on high-
order statistics, it is possible to better estimate the bounds of each pattern, achieving higher 
detection efficiencies. In many applications, neural networks (Haykin, 2008) may play a role in 
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signal classification. On the other hand, by reducing the classifier design complexity by means 
of signal pre-processing, it might be possible to restrict the nonlinear processing implemented 
by the neural network to perform slight adjustments to the linear signal classification. It may 
also be the case where signal classification can go linear (through a Fisher Discriminant) (Duda 
et al., 2004), as a result of a highly-efficient pre-processing scheme. 
In the field of experimental high-energy physics, stringent conditions make signal 
processing a challenge, as there is often a large gap between the experiment requirements 
and the technology currently available, which forces the development of new technologies. 
This is particularly the case for modern particle collider experiments, in which particles are 
accelerated at high speed and put in collision route. Analyzing the resulting collisions 
products, one can probe deeper into the structure of matter (Perkins, 2000). One important 
aspect in particle collider experiments is that events of interest are typically very rare, since 
most of the produced events are from background noise. In addition, the fine-grained 
segmentation of the particle detectors placed around the collision points for the resulting 
interaction readout may produce up to terabytes per second of information. Therefore, an 
online filtering system must be applied for selecting only the interesting physics channels, 
while rejecting, as much as possible, the huge amount of background noise. 
Presently, the Large Hadron Collider (LHC) at CERN (CERN, 2007) is the largest particle 
accelerator in the world. LHC has a total length of 27 km and will be colliding protons with 
14 TeV at their center of mass, at a rate of 40 MHz and at a luminosity of 1034cm-2s-1 (Evans 
and Bryant, 2008). Multiple collision points occur around the LHC ring. Around each 
collision point, a detection laboratory is placed to analyze the sub-products of the collisions. 
Among such detectors ATLAS (The ATLAS Collaboration, 2008) is the largest one. It 
comprises multiple sub-detectors, such as tracking, calorimeter and muon detection 
systems. Due to the detector granularity, each collision produces ~1.5 MBytes of 
information, resulting in a total rate of ~60 TB/s of information. Therefore, an online 
filtering system is mandatory for proper ATLAS operation. 
This chapter focuses on proposing an efficient data filtering strategy for operating at 
stringent conditions. It is based on a signal processing scheme that combines expert 
knowledge with stochastic signal processing techniques for data dimension reduction and 
relevant feature extraction. The classifier design that implements the final filtering operation 
(rejection / acceptance of incoming data) is evaluated in terms of complexity and efficiency. 
For this, the input nodes of the classifier are fed from pre-processed information. The 
proposed signal processing strategy will be applied in high-energy physics, using the 
ATLAS detector as a case study. 
This chapter is organized as follows: Section 2 briefly describes the pre-processing methods 
used in the application. Then, in Section 3, the ATLAS filtering system will be explained, 
and the envisaged application is presented. In Section 4, the obtained results for such 
application are discussed. Finally, conclusions are derived in Section 5. 

 
2. Signal Pre-Processing 

The pre-processing techniques presented in this section focus on performing linear and 
nonlinear input variable decorrelation. This could make the relevant discrimination features 
more evident to the classifier, simplifying its design. Furthermore, depending on the power 

of the nonlinear decorrelation applied, the classifier could be simplified to the point of a 
simple linear discriminant. 

 
2.1 Independent Component Analysis 
Independent Component Analysis (ICA) is a multidimensional signal processing technique 
that searches for a linear transformation of the data, so that its essential structure becomes 
somehow more accessible (Hyvärinen et al., 2001). In ICA, the transformed variables are 
restricted to be statistically independent. 
In the standard ICA model, the measured (observed) signals x=[x1,x2,...,xN]T are considered 
to be generated through a linear combination of the independent (unobserved) signals 
s=[s1,s2,...,sN]T: 
 

1
=

N

i ij j
j

x a s


  x As     (1) 

where i=1,...,N and A is the mixing matrix. The ICA model has been widely applied in a 
variety of signal processing tasks, see as reference (Choi et al., 2005) and (Moura et al., 2009). 
The purpose of ICA is to estimate the independent signals s and the mixing matrix A using 
only the observed data x. This can be achieved through an inverse model:  
 

= ,y Wx      (2) 
where the coefficients of the estimated matrix W are obtained by considering that the 
components of y are statistically independent (or at least as much independent as possible). 
There are some indeterminacies in the ICA model: the order of extraction of the independent 
components can change and scalar multipliers (positive or negative) may modify the 
estimated components. Fortunately these limitations are insignificant in most applications. 
In some practical signal processing problems, the standard linear ICA model may not be 
able to properly describe the data. Considering a practical ICA application, both the mixing 
environment and the sensors may present some nonlinear behavior. Providing a more 
general formulation, the nonlinear independent component analysis (NLICA) model 
considers that the measured signals x are formed by a nonlinear instantaneous mixing 
model (Almeida, 2006): 

 =Fx s      (3) 

 
where F(.) is a RN -> RN nonlinear mapping (the number of sources is usually assumed to be 
equal to the number of observed signals). The purpose of NLICA is to estimate an inverse 
transformation G(.) RN -> RN:  

 =Gy x      (4) 

 

so that the components of y are statistically independent. If G(.)=F-1(.), the sources are 
perfectly recovered (Jutten and Karhunen, 2003). 
A characteristic of the NLICA problem is that the solutions are non-unique (Jutten and 
Karhunen, 2003). If u and v are independent random variables, it is easy to prove that f(u) 
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signal classification. On the other hand, by reducing the classifier design complexity by means 
of signal pre-processing, it might be possible to restrict the nonlinear processing implemented 
by the neural network to perform slight adjustments to the linear signal classification. It may 
also be the case where signal classification can go linear (through a Fisher Discriminant) (Duda 
et al., 2004), as a result of a highly-efficient pre-processing scheme. 
In the field of experimental high-energy physics, stringent conditions make signal 
processing a challenge, as there is often a large gap between the experiment requirements 
and the technology currently available, which forces the development of new technologies. 
This is particularly the case for modern particle collider experiments, in which particles are 
accelerated at high speed and put in collision route. Analyzing the resulting collisions 
products, one can probe deeper into the structure of matter (Perkins, 2000). One important 
aspect in particle collider experiments is that events of interest are typically very rare, since 
most of the produced events are from background noise. In addition, the fine-grained 
segmentation of the particle detectors placed around the collision points for the resulting 
interaction readout may produce up to terabytes per second of information. Therefore, an 
online filtering system must be applied for selecting only the interesting physics channels, 
while rejecting, as much as possible, the huge amount of background noise. 
Presently, the Large Hadron Collider (LHC) at CERN (CERN, 2007) is the largest particle 
accelerator in the world. LHC has a total length of 27 km and will be colliding protons with 
14 TeV at their center of mass, at a rate of 40 MHz and at a luminosity of 1034cm-2s-1 (Evans 
and Bryant, 2008). Multiple collision points occur around the LHC ring. Around each 
collision point, a detection laboratory is placed to analyze the sub-products of the collisions. 
Among such detectors ATLAS (The ATLAS Collaboration, 2008) is the largest one. It 
comprises multiple sub-detectors, such as tracking, calorimeter and muon detection 
systems. Due to the detector granularity, each collision produces ~1.5 MBytes of 
information, resulting in a total rate of ~60 TB/s of information. Therefore, an online 
filtering system is mandatory for proper ATLAS operation. 
This chapter focuses on proposing an efficient data filtering strategy for operating at 
stringent conditions. It is based on a signal processing scheme that combines expert 
knowledge with stochastic signal processing techniques for data dimension reduction and 
relevant feature extraction. The classifier design that implements the final filtering operation 
(rejection / acceptance of incoming data) is evaluated in terms of complexity and efficiency. 
For this, the input nodes of the classifier are fed from pre-processed information. The 
proposed signal processing strategy will be applied in high-energy physics, using the 
ATLAS detector as a case study. 
This chapter is organized as follows: Section 2 briefly describes the pre-processing methods 
used in the application. Then, in Section 3, the ATLAS filtering system will be explained, 
and the envisaged application is presented. In Section 4, the obtained results for such 
application are discussed. Finally, conclusions are derived in Section 5. 

 
2. Signal Pre-Processing 

The pre-processing techniques presented in this section focus on performing linear and 
nonlinear input variable decorrelation. This could make the relevant discrimination features 
more evident to the classifier, simplifying its design. Furthermore, depending on the power 

of the nonlinear decorrelation applied, the classifier could be simplified to the point of a 
simple linear discriminant. 

 
2.1 Independent Component Analysis 
Independent Component Analysis (ICA) is a multidimensional signal processing technique 
that searches for a linear transformation of the data, so that its essential structure becomes 
somehow more accessible (Hyvärinen et al., 2001). In ICA, the transformed variables are 
restricted to be statistically independent. 
In the standard ICA model, the measured (observed) signals x=[x1,x2,...,xN]T are considered 
to be generated through a linear combination of the independent (unobserved) signals 
s=[s1,s2,...,sN]T: 
 

1
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

  x As     (1) 

where i=1,...,N and A is the mixing matrix. The ICA model has been widely applied in a 
variety of signal processing tasks, see as reference (Choi et al., 2005) and (Moura et al., 2009). 
The purpose of ICA is to estimate the independent signals s and the mixing matrix A using 
only the observed data x. This can be achieved through an inverse model:  
 

= ,y Wx      (2) 
where the coefficients of the estimated matrix W are obtained by considering that the 
components of y are statistically independent (or at least as much independent as possible). 
There are some indeterminacies in the ICA model: the order of extraction of the independent 
components can change and scalar multipliers (positive or negative) may modify the 
estimated components. Fortunately these limitations are insignificant in most applications. 
In some practical signal processing problems, the standard linear ICA model may not be 
able to properly describe the data. Considering a practical ICA application, both the mixing 
environment and the sensors may present some nonlinear behavior. Providing a more 
general formulation, the nonlinear independent component analysis (NLICA) model 
considers that the measured signals x are formed by a nonlinear instantaneous mixing 
model (Almeida, 2006): 

 =Fx s      (3) 

 
where F(.) is a RN -> RN nonlinear mapping (the number of sources is usually assumed to be 
equal to the number of observed signals). The purpose of NLICA is to estimate an inverse 
transformation G(.) RN -> RN:  

 =Gy x      (4) 

 

so that the components of y are statistically independent. If G(.)=F-1(.), the sources are 
perfectly recovered (Jutten and Karhunen, 2003). 
A characteristic of the NLICA problem is that the solutions are non-unique (Jutten and 
Karhunen, 2003). If u and v are independent random variables, it is easy to prove that f(u) 
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and g(v), where f(.) and g(.) are differentiable functions, are also independent. So, it is clear 
that, without imposing some restrictions, there is an infinite number of solutions for the 
inverse mapping G in a given application (the problem is ill-posed). Considering this, an 
unique solution for the nonlinear independent component analysis (NLICA) can not be 
achieved without some prior information on the mixing model or the sources. A complete 
investigation on the uniqueness of nonlinear ICA solutions can be found in (Hyvärinen and 
Pajunen, 1999). NLICA algorithms have recently been applied in different problems such as 
speech processing (Rojas et al., 2003), (Wei et al., 2006), image denoising (Haritopoulos et al., 
2002), chemistry sensor array processing (Duarte et al., 2009). 
The minimization of statistical dependence is a main concern for any ICA/NLICA 
algorithm, as it leads to the estimation of the mixing system (and consequently the 
independent components). In addition, ICA often requires some pre-processing for data 
compaction, especially for high-dimension input data space applications. These topics are 
briefly described in the next subsections. It is also summarized the JADE algorithm, which 
has been widely used for independent component estimation. Different NLICA approaches 
are also briefly reviewed. 

 
2.1.1 Statistical Independence 
Considering two random vectors v1 and v2, they are statistically independent if and only if 
(Papoulis and Pillai, 2002): 
 

pv1 ,v 2
v1,v2  pv1 (v1)pv 2

(v2)    (5) 
 
where pv1(v1), pv2(v2) are, respectively, the probability density function (pdf) of v1 and v2 
and pv1,v2 (v1, v2) is their joint pdf. In typical ICA problems, there is very little information 
on the source signals and so, the pdf estimation is a very difficult task. Considering this, 
alternative independence measures are usually applied during the search for independent 
components (Hyvärinen et al., 2001) (Cichocki and Amari, 2002). They are defined next for 
reference. 

 
2.1.1.1 Nonlinear Decorrelation 
Two zero-mean random variables (u1 and u2) are said to be (linearly) uncorrelated if their 
cross-correlation Ru1u2 is zero (here, E{.} is the expectation operator): 

 1 2 1 2
T

u uR E u u      (6) 

 
Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher-order 
information too (requiring direct or indirect computation of higher-order moments). 
Considering g(u1) and f(u2) absolutely integrable functions of u1 and u2, respectively, it can be 
proved that if Equation 7 holds for all possible g(.) and f(.), than u1 and u2 are independent 

E g u1  f u2   E g u1  E f u2      (7) 
By choosing g(.) and f(.) as nonlinear functions, high-order statistical information is (indirectly) 
accessed. The statistical independence measure provided by Equation 7 is usually called the 
nonlinear decorrelation between u1 and u2 (Cichocki and Unbehauen, 1996).  

A practical limitation appears when trying to apply this measure in an ICA algorithm as it is 
not possible to check all integrable functions g(.) and f(.). Thus estimates of the independent 
components are usually obtained while guaranteeing nonlinear decorrelation between a 
finite set of nonlinear functions (Cichocki and Unbehauen, 1996). 

 
2.1.1.2 Higher-Order Statistics 
Another principle that can be used to estimate the dependence of variables comes from the 
central limit theorem (McClave et al., 2008): “The sum of two random variables is always 
closer to a Gaussian distribution than the original variable distributions”. As the measured 
signals (x) are considered to be a linear combination of independent sources (s), then the 
measured signals are closer to a Gaussian distribution than the original sources. Thus, the 
independent components can be obtained through maximization of non-gaussianity 
(Hyvärinen et al., 2001). 
It is known that, for Gaussian random variables, the cumulants of orders higher than two 
are all zero. Considering this, non-gaussianity (and consequently independence) measures 
can be obtained by using high-order cumulants, such as the kurtosis Κ4, which, for a zero-
mean, unit-variance random variable u is defined through (Papoulis and Pillai, 2002): 

    24 2
4 3K E u E u         (8) 

 
2.1.1.3 Information Theoretic Measures 

Alternative statistical independence measures can be obtained from information theory 
(Mackay, 2002). A basic definition in information theory is the entropy (H(.)), which, for a 
discrete random variable u, is defined as (Shannon, 1948): 
 

 H u   P u  i logP u  i 
i
            (9) 

 
Where κ1, κ2, ..., κ m are all the possible discrete values of u. is that the Gaussian variable 
has maximum entropy between the random variables of same variance (Hyvärinen et al., 
2001). Considering this, entropy can be used as gaussianity measure. 
The Negentropy J(u) of the random variable u is also applied in the ICA context:. 

     gaussJ u H u H u      (10) 

 
where ugauss is a Gaussian random variable with the same mean and variance of u. The 
advantage of using J(u), instead of H(u), is that it is always non-negative and zero when u is 
Gaussian. A problem with the computation of both J(.) and H(.) is the pdf estimation. To 
avoid this, approximations using high-order cumulants or non-polynomial functions are 
often applied (Murillo-Fuentes et al., 2004). 
The Mutual Information I(u1, u2, ..., um) between m random variables u1, u2 , ..., um is obtained 
through Equation 11. 
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and g(v), where f(.) and g(.) are differentiable functions, are also independent. So, it is clear 
that, without imposing some restrictions, there is an infinite number of solutions for the 
inverse mapping G in a given application (the problem is ill-posed). Considering this, an 
unique solution for the nonlinear independent component analysis (NLICA) can not be 
achieved without some prior information on the mixing model or the sources. A complete 
investigation on the uniqueness of nonlinear ICA solutions can be found in (Hyvärinen and 
Pajunen, 1999). NLICA algorithms have recently been applied in different problems such as 
speech processing (Rojas et al., 2003), (Wei et al., 2006), image denoising (Haritopoulos et al., 
2002), chemistry sensor array processing (Duarte et al., 2009). 
The minimization of statistical dependence is a main concern for any ICA/NLICA 
algorithm, as it leads to the estimation of the mixing system (and consequently the 
independent components). In addition, ICA often requires some pre-processing for data 
compaction, especially for high-dimension input data space applications. These topics are 
briefly described in the next subsections. It is also summarized the JADE algorithm, which 
has been widely used for independent component estimation. Different NLICA approaches 
are also briefly reviewed. 

 
2.1.1 Statistical Independence 
Considering two random vectors v1 and v2, they are statistically independent if and only if 
(Papoulis and Pillai, 2002): 
 

pv1 ,v 2
v1,v2  pv1 (v1)pv 2

(v2)    (5) 
 
where pv1(v1), pv2(v2) are, respectively, the probability density function (pdf) of v1 and v2 
and pv1,v2 (v1, v2) is their joint pdf. In typical ICA problems, there is very little information 
on the source signals and so, the pdf estimation is a very difficult task. Considering this, 
alternative independence measures are usually applied during the search for independent 
components (Hyvärinen et al., 2001) (Cichocki and Amari, 2002). They are defined next for 
reference. 

 
2.1.1.1 Nonlinear Decorrelation 
Two zero-mean random variables (u1 and u2) are said to be (linearly) uncorrelated if their 
cross-correlation Ru1u2 is zero (here, E{.} is the expectation operator): 

 1 2 1 2
T

u uR E u u      (6) 

 
Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher-order 
information too (requiring direct or indirect computation of higher-order moments). 
Considering g(u1) and f(u2) absolutely integrable functions of u1 and u2, respectively, it can be 
proved that if Equation 7 holds for all possible g(.) and f(.), than u1 and u2 are independent 

E g u1  f u2   E g u1  E f u2      (7) 
By choosing g(.) and f(.) as nonlinear functions, high-order statistical information is (indirectly) 
accessed. The statistical independence measure provided by Equation 7 is usually called the 
nonlinear decorrelation between u1 and u2 (Cichocki and Unbehauen, 1996).  

A practical limitation appears when trying to apply this measure in an ICA algorithm as it is 
not possible to check all integrable functions g(.) and f(.). Thus estimates of the independent 
components are usually obtained while guaranteeing nonlinear decorrelation between a 
finite set of nonlinear functions (Cichocki and Unbehauen, 1996). 

 
2.1.1.2 Higher-Order Statistics 
Another principle that can be used to estimate the dependence of variables comes from the 
central limit theorem (McClave et al., 2008): “The sum of two random variables is always 
closer to a Gaussian distribution than the original variable distributions”. As the measured 
signals (x) are considered to be a linear combination of independent sources (s), then the 
measured signals are closer to a Gaussian distribution than the original sources. Thus, the 
independent components can be obtained through maximization of non-gaussianity 
(Hyvärinen et al., 2001). 
It is known that, for Gaussian random variables, the cumulants of orders higher than two 
are all zero. Considering this, non-gaussianity (and consequently independence) measures 
can be obtained by using high-order cumulants, such as the kurtosis Κ4, which, for a zero-
mean, unit-variance random variable u is defined through (Papoulis and Pillai, 2002): 

    24 2
4 3K E u E u         (8) 

 
2.1.1.3 Information Theoretic Measures 

Alternative statistical independence measures can be obtained from information theory 
(Mackay, 2002). A basic definition in information theory is the entropy (H(.)), which, for a 
discrete random variable u, is defined as (Shannon, 1948): 
 

 H u   P u  i logP u  i 
i
            (9) 

 
Where κ1, κ2, ..., κ m are all the possible discrete values of u. is that the Gaussian variable 
has maximum entropy between the random variables of same variance (Hyvärinen et al., 
2001). Considering this, entropy can be used as gaussianity measure. 
The Negentropy J(u) of the random variable u is also applied in the ICA context:. 

     gaussJ u H u H u      (10) 

 
where ugauss is a Gaussian random variable with the same mean and variance of u. The 
advantage of using J(u), instead of H(u), is that it is always non-negative and zero when u is 
Gaussian. A problem with the computation of both J(.) and H(.) is the pdf estimation. To 
avoid this, approximations using high-order cumulants or non-polynomial functions are 
often applied (Murillo-Fuentes et al., 2004). 
The Mutual Information I(u1, u2, ..., um) between m random variables u1, u2 , ..., um is obtained 
through Equation 11. 
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
I u1,u2,,um  H ui H v 

i1

m

    (11) 

 
It is known that the entropy of the vector v = [u1, u2, ..., um] is always smaller than the sum 
of H(ui), unless  the variables are independent. So, minimization of mutual information 
leads to independence (Hyvärinen et al., 2001). 

 
2.1.2 Signal Decorrelation 

The standard ICA model assumes a mixing system where the number of sources and 
observed signals is the same. In a practical problem, this assumption may not be always 
true. When there exist more sources than sensors (observed signals), the problem is under-
determined and the sources are only recovered approximately through algorithms derived 
for such situation (Syskind et al., 2006), (Natora et al., 2009). In the case where the number of 
sources (K) is smaller than the number of observed signals (N), the problem is over-
determined and thus some signal compaction algorithm is needed to reduce signal 
dimensionality. With this purpose, Principal Component Analysis (PCA) is usually applied 
as a pre-processing for ICA algorithms. Principal Components for Discrimination (PCD) 
analysis (Caloba et al., 1995) has been introduced as an alternative to PCA, when ICA is 
applied to classification problems (Simas Filho et al., 2009b). 

 
2.1.2.1 Principal Component Analysis 
Principal Component Analysis (PCA) (Jolliffe, 2002) is a statistical signal processing 
technique that searches for a new representation of the input signals where the energy is 
concentrated on a small number of components. Using second-order statistics, PCA 
transformation searches for a vector basis for which the projections yi=wi xi of a zero-mean 
random vector x (E{x}=0) are uncorrelated and have maximum variance (i.e. composing an 
orthonormal basis). 
The first principal direction w1 can be computed through the maximization of 
 

      PCA T
xJ w E v E w x w C w22

1 1 1 1 1      (12) 

 
where Cx is the covariance matrix of x and ||w1||=1. 
PCA transformation is very useful as a pre-processing for ICA as it eliminates second-order 
dependencies (correlation) between the signals, facilitating the search for independence. 

 
2.1.2.2 Whitening 
A zero-mean random vector z is said to be white if their components are uncorrelated and 
have unit variance (Hyvärinen et al., 2001). This implies that the covariance matrix (and also 
the correlation matrix) of z equals the identity matrix. Whitening is sometimes called 
sphering and is a slightly stronger operation than decorrelation. One popular method to 
perform whitening is the eigenvalue decomposition (EVD) of the covariance matrix (Strang, 

2009). In this approach, considering Z the matrix whose columns are the unit-norm 
eigenvectors of the covariance matrix Cx of a random vector x and D the diagonal matrix of 
the eigenvalues of Cx, the linear whitening transform V is given by: 
 

V D1/ 2ZT           (13) 

 
2.1.2.3 Principal Components of Discrimination 
Considering a classification problem, the purpose of PCD analysis is to determine the 
directions that maximize class separation (Caloba et al., 1995). Typically, PCD provides a 
higher compaction rate for classification problems with respect to PCA (Simas Filho et al., 
2009b). 
The PCD analysis can be performed through a Multilayer Perceptron (MLP) neural network  
(Haykin, 2008). For simplicity, considering binary discrimination, a network with a single 
hidden neuron, trained to maximize class discrimination, extracts the first discriminating 
component (see Fig. 1-a). By sequentially adding neurons to the hidden layer and restarting 
the training procedure, the next components are estimated. The hidden weights are trained 
only for the added neurons (highlighted synaptic lines in Fig. 1-b). The estimated weights 
from the previous steps are kept fixed, as they represent the directions of the principal 
components already extracted. The weights of the output layer are adjusted during the 
whole training procedure for optimal combination of principal components at each 
processing step. The PCD extraction continues up to the point where the classification 
efficiency does not improve significantly by adding more components. 
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It is known that the entropy of the vector v = [u1, u2, ..., um] is always smaller than the sum 
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where Cx is the covariance matrix of x and ||w1||=1. 
PCA transformation is very useful as a pre-processing for ICA as it eliminates second-order 
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characteristics. After that, linear ICA is applied to data belonging to each cluster producing 
local independent components. 

 
2.1.3.1 JADE 
In JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm, second and 
fourth-order statistics are applied for independent component estimation through a 
tensorial approach. The second-order cumulant (i.e. the covariance matrix) is used to ensure 
that data are white (uncorrelated). Fourth-order information (through the fourth-order 
cumulant tensor matrix) produces an independence criterion. 
Tensors are considered as a higher-dimensional generalization of matrices or linear 
operators (Michal, 2008). Cumulant tensors are matrices containing the cross-cumulants. 
Considering this, the second-order cumulant tensor is the covariance matrix and the fourth-
order tensor (T4) is formed by the fourth-order cross-cumulants cum(ui,uj,uk,ul), which, for 
zero-mean random variables, is defined as: 

               i j k l i j k l i j k l i k j l k j i lcum u u u u E u u u u E u u E u u E u u E u u E u u E u u, , , , , , , , , , , ,    (14) 

The fourth-order cumulant tensor T4 is a four-dimensional array, where, for each element 
qijkl= cum(ui,uj,uk,ul), the indexes i ,j ,k ,l vary from 1 to N (where N is the number of signals). 
The fourth-order cumulant tensor contains all fourth-order information of the data. 
JADE estimation criterion is derived through a procedure analogous to diagonalization of 
the covariance matrix, which produces signal decorrelation. As T4 is a fourth-order 
counterpart of the covariance matrix, independence can be achieved by diagonalizing T4, as 
for independent signals the unique non-zero fourth-order cross-cumulant appears when 
i=j=k=l. Analogous to the second-order case, diagonalization of the fourth-order tensor can 
be achieved through eigenvalue decomposition (EVD) (Strang, 2009). 
Using tensorial methods for ICA is theoretically simple, but computing EVD of four-
dimensional matrices by ordinary algorithms requires a very large amount of memory and 
may be computationally prohibitive in some cases. In order to avoid this limitation, methods 
like JADE were proposed in the literature. JADE algorithm searches for the matrix W that 
minimizes the sum of the squares of the non-diagonal elements of the output data of T4(y) 
(where T4(y) is the fourth-order cumulant tensor of the output data y). 

 
2.1.3.2 Post-Nonlinear ICA 
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Fig. 2. Post-Nonlinear mixing/de-mixing model. 
 
Post-Nonlinear (PNL) mixtures arise whenever, after a linear mixing process, the sensors 
present nonlinear behavior. The observed signals can be expressed as (Almeida, 2006): 
 

 i i ix f      (15) 

 

where α=As. As stated in Eq. 15, each observed signal xi is obtained through component-
wise nonlinear functions fi applied to the linearly mixed signals αi. The independent 
components are obtained by a mirror model: 

y i Wigi x i     (16) 

 
where W is the de-mixing matrix and gi the inverse nonlinearity (see Fig. 2). The nonlinear 
functions are usually estimated through neural networks (MLP) and the de-mixing matrix 
by a linear ICA algorithm (Taleb and Jutten, 1999). 
A limitation of the PNL algorithm is that the number of observed signals is assumed to be 
equal to the number of sources (square model). This prevents its application to high-
dimensional data problems as both the number of parameters and the computational 
complexity increase exponentially with problem dimensionality. 
In order to deal with high-dimensional data, a modified PNL model for the overdetermined 
case (when there exist more sensors N than sources K) was proposed in (Simas Filho et al., 
2009a). As illustrated in Fig. 3, a linear block B is added to the standard PLN mixing model, 
allowing K<N. Coefficients of matrix B are estimated through signal compaction methods 
such as PCA and PCD, described in Section 2.1.2. The inverse (demixing) algorithm is thus 
described using a mirror model: y=W G(Dx), where y are the estimated sources. 
 

 
Fig. 3. Modified Post-Nonlinear mixing/de-mixing model. 

 
2.1.3.3 Local ICA 
Local ICA (Karhunen et al., 2000), (Jutten and Karhunen, 2003) can be viewed as a 
compromise between linear and nonlinear ICA. If the ICA model is used for feature 
extraction, better description of the data set can be obtained while exploring local 
characteristics. The purpose is to obtain better data representation when compared to linear 
ICA, while avoiding the high computational cost of the nonlinear models. 
In Local ICA model (see Equation 17), a N-dimensional input space Q  RN is divided into a 
finite number of subsets Ql, l=1,...,L, which satisfy: 
 

Q1Q2 QL Q   (17) 

 
Clustering is responsible for the overall nonlinear representation. Linear ICA models are 
applied to data belonging to each cluster (x(l)) in order to estimate the local independent 
components s(l)=B(l)x(l), where B(l) is a local de-mixing matrix. 
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Fig. 4. Local ICA model. 

 
3. The Application 

As mentioned in Section 1, the LHC collision rate, together with ATLAS granularity, will 
result in a data stream of ~60 TB/s, requiring an efficient online filtering system for 
retrieving the interesting physics channels from dense background noise. This filtering 
system comprises three cascaded operation levels, applying successive cuts to the incoming 
data (Riu et al., 2008). 
The first level (L1) will receive full data and will reduce the input event rate to ~75 kHz. The 
first level is responsible for marking the regions in the detector that have effectively been 
excited. These regions are known as Region of Interest - RoI, and will be the only information 
passed over to the second level analysis. 
The second level (L2) will receive the regions of interest marked by the first level and will 
apply more specific analysis on them. For coping with an average processing time of 40 ms 
per event, a set of 500 off-the-shelf server processors will be employed, providing a multi-
processed environment. The third and last filtering level, also known as Event Filter - EF, 
will take the final decision on events approved by the previous levels. A highly parallel 
processing environment composed by ~1600 off-the-shelf server processors will be 
employed for coping with an average processing time of 4 sec. At the end, a rate of ~200 Hz 
events will be recorded in mass storage devices for further offline analysis by the physicists. 
One of the ATLAS main research goals is to experimentally prove the Higgs boson (Perkins, 
2000). Being the Higgs boson highly unstable, it soon decays into more stable particles. 
Therefore, the physicists will prove its existence not by detecting the Higgs boson directly, 
but by analyzing its decaying signatures. It is known (Perkins, 2000) that some of such 
signatures produce electrons at their final state. Therefore, the identification of electrons is 
of great importance. On the other hand, during proton-proton collisions, a cascade of quark 
and anti-quark pairs can be produced, which quickly merge into more stable particles, 
producing a pattern known as jet. These jets may interact with the detector in a manner very 
similar to electrons, making the correct identification of electrons a tricky process. 
Our analysis will focus on the electron / jet separation problem at the second level of the 
ATLAS filtering system, using calorimeter information. Calorimeters are total absorption 
detectors (Wigmans, 2000). Typically, they use a (passive) material (iron, lead, for instance) 
for absorbing entirely the energy of the incoming particle and sample the energy being 
deposited in the detector by using an active material (scintillating fibers, tiles, for instance).  

Calorimeters play a major role in collider experiments as they provide fast response, their 
energy resolution improves with increasing energy, and they interact with charged and non-
charged particles. In addition, they are highly-segmented detectors, so that it is possible to 
identify particle classes by their energy deposition profile. 
The ATLAS calorimetry system is composed by two calorimeter sections (The ATLAS 
Collaboration, 2008). The electromagnetic (EM) calorimeter is responsible for detecting 
electrons, positrons and photons. The hadronic calorimeter (HD) is responsible for detecting 
hadrons (kaons, pions, etc) and it is placed on top of the electromagnetic calorimeter. Both 
detectors comprise 3 sequential layers with distinct granularity and depth, providing 
detailed information of incoming particles. The electromagnetic calorimeter has, in addition, 
a very thin layer in front of it, which is called the pre-sampler (PS). Fig. 5 displays the 
energy deposition profile for an electron interaction. A region of interest selected by the 
first-level filtering system amounts, in average, to 1,000 calorimeter cells. 
Electrons have the property of depositing their energy in a very punctual way, differently 
from jets, which, for L2 data, tend to slightly spread their energy over multiple cells within a 
layer. Therefore, the relevant information relies not at the impact point center, but at its 
surrounding area. Aiming at exploiting this feature, a topological pre-processing based on 
ring sums has been tried by some L2 algorithms for data formatting (Torres et al., 2008). In 
this approach, the cell that samples the highest energy value (also known as the hottest cell) 
is considered the center of our region of interest in each calorimeter layer (seven in total). 
Then, a set of concentric rings are built around this hottest cell in a pattern similar to the one 
presented in Fig. 6. It can also be observed in Fig. 6 that, depending on the layer granularity, 
the rings might not close (incomplete) or even be composed only by strips. Finally, the cells 
belonging to a given ring are summed up, reducing the final event dimension, without 
jeopardizing their physics interpretation. This ring procedure is performed on a per layer 
basis, resulting, at the end, in a total of 100 rings, distributed as shown in Tab. 1. 
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Fig. 5. Example of the segmented calorimeter information obtained from an incoming 
electron. 
 

 
Fig. 6. Ring formatting for calorimetry. 
 

 
Table 1. Number of rings in each calorimeter layer. 
 
In the electron / jet separation problem, the dynamic range of the sampled energy is very 
large, therefore, an energy normalization procedure is applied, in order to focus, as much as 
possible, our analysis at the signal shape, rather than its energy nominal value, resulting in a 
steady detection efficiency over all the relevant energy spectrum. Also, since the relevant 
information from the discrimination point of view is known to be off-center, a sequential 
normalization is employed (dos Anjos et al., 2006). In this procedure, for each calorimeter 
layer, the normalized energy (EN) of each ring is given by 
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where El,i is the original energy of the i-th ring belonging to the l-th layer, and Etot l is the 
total sampled energy by the l-th layer. As a result, successively smaller attenuation factors 
are applied to the outer rings, but the normalization procedure is resilient enough to keep 
track of the signal-to-noise ratio, avoiding the amplification of irrelevant information. 

 
4. Results 

The available dataset was obtained through Monte Carlo simulation for proton-proton 
collisions and comprises approximately 470,000 electrons and 310,000 jet signatures. The 
simulation considers the detector characteristics and the first-level filtering operation. The 
available data set was approximately equally split into training, validation (stopping 
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Fig. 5. Example of the segmented calorimeter information obtained from an incoming 
electron. 
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Fig. 6. Ring formatting for calorimetry. 
 

Layer PS EM1 EM2 EM3 HD1 HD2 HD3 Total

Rings 8 64 8 8 4 4 4 100
 

Table 1. Number of rings in each calorimeter layer. 
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steady detection efficiency over all the relevant energy spectrum. Also, since the relevant 
information from the discrimination point of view is known to be off-center, a sequential 
normalization is employed (dos Anjos et al., 2006). In this procedure, for each calorimeter 
layer, the normalized energy (EN) of each ring is given by 
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where El,i is the original energy of the i-th ring belonging to the l-th layer, and Etot l is the 
total sampled energy by the l-th layer. As a result, successively smaller attenuation factors 
are applied to the outer rings, but the normalization procedure is resilient enough to keep 
track of the signal-to-noise ratio, avoiding the amplification of irrelevant information. 

 
4. Results 

The available dataset was obtained through Monte Carlo simulation for proton-proton 
collisions and comprises approximately 470,000 electrons and 310,000 jet signatures. The 
simulation considers the detector characteristics and the first-level filtering operation. The 
available data set was approximately equally split into training, validation (stopping 
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criterion for neural network training based on mean-squared error) and testing 
(performance evaluation) sets. 
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Fig. 7. - Processing chain of the electron/jet separation system. 
 
It is shown in Fig. 7 the block diagram of the electron / jet discriminator. The raw 
calorimeter data is received and the topological processing based on ring sums is 
performed. Next, for the segmented case, the rings belonging to a given layer are pre-
processed individually and the pre-processed event obtained for each layer is concatenated, 
generating a single input, which is propagated to the neural network for the pattern 
recognition. For the non-segmented case, the generated rings are concatenated prior to the 
pre-processing phase, so that the pre-processing is performed in all 100 rings at once. For the 
ICA based pre-processing, the JADE algorithm was used, and the clustering algorithm used 
by local ICA was the k-mean (Duda et al., 2004). 
In this work, the Fisher Linear Discriminant (FLD) and supervised Multi-Layer Perceptron 
(MLP) neural classifiers (single hidden layer) (single hidden layer) were used to perform 
particle identification over calorimeter information. The neural networks were trained using 
the Resilient Backpropagation algorithm (Riedmiller and Braun, 1993). In order to compare the 
discrimination efficiency for the proposed classifiers, both the Receiver Operating 
Characteristics (ROC) and the SP index were applied. The ROC curve (Van Trees, 2003) shows 
how the detection probability PD and false alarm probability PF vary as the decision threshold 
changes. The SP index (dos Anjos et al., 2006) is computed through  
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where PJ is the efficiency for jets. The threshold value that maximizes the SP provides both 
high PD and low PF. 
 
As mentioned in previous sections, the available calorimeter signatures are topologically 
pre-processed, generating 100 rings for an incoming event. Considering this, the 
discrimination system may benefit from signal compaction algorithms as they reduce 
redundant information and signal dimensionality. Here, compaction was performed 
through both Principal Component Analysis (PCA) and Principal Components for 
Discrimination (PCD), using segmented (layer-level) and non-segmented approaches. As the 
calorimeter system provides highly-segmented information, segmented processing tries to 
exploit subtle differences in electron and jet energy deposition profiles, which are available 
at the layer level. 
 

 
Fig. 8. ROC curves (and respective classifier topology) for segmented and non-segmented 
feature extraction through PCA and PCD. 

 
Fig. 8 illustrates the discrimination performance for different methods in terms of ROC 
curves. It can be observed that the segmented approach outperforms the non-segmented 
one, for both PCA and PCD. It can also be seen that PCD usually presents lower false-alarm 
when compared to PCA (for the same detection probability) and achieves higher 
compaction rates (31 components for PCD against 74 components for PCA in segmented 
processing mode). This is a result of the compaction strategies, as in PCA the purpose is to 
maximize the energy projection and in PCD the objective is to optimize the discrimination 
capability of the components. Moreover, PCD uses nonlinear processing to estimate its 
components, which proves to be efficient in terms of discrimination performance. As it can 
be seen from Fig. 8, using only 31 components, the PCD performance is even better than 
processing 100 rings without any further pre-processing. 
The (linear) Independent Component Analysis (ICA) model was without any further pre-
processingalso applied to ring signals, either without pre-processing or combined with 
segmented and non-segmented PCA and PCD compaction schemes. Fig. 9 illustrates the 
ROC curves for different ICA-based discriminators. It can be observed that the segmented 
feature extraction provides slightly higher discrimination performance when independent 
components are estimated. Other benefit observed with ICA is that the classifier training 
procedure usually converges in very few iterations, in contrast to PCA and PCD based 
discriminators, which, in general, require a larger number of training steps. From Fig. 9, it is 
also interesting to observe that ICA could be the only pre-processing technique, as the 
nonlinear decorrelation it provides allows the neural network to perform slightly better in 
terms of discrimination efficiency. 
Considering feature extraction through NLICA (using the modified PNL model) based on 
PCD projection, the nonlinearities which may arise are expected to be smooth. In a practical 
design, a calorimeter can exhibit small nonlinearities along the wide dynamic range it has to 
work on. In view of this, the neural networks used to estimate the inverse nonlinearities are 
restricted to have small number of hidden neurons and thus can only approximate smooth 
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particle identification over calorimeter information. The neural networks were trained using 
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Characteristics (ROC) and the SP index were applied. The ROC curve (Van Trees, 2003) shows 
how the detection probability PD and false alarm probability PF vary as the decision threshold 
changes. The SP index (dos Anjos et al., 2006) is computed through  
 

 D J
D J

P P
SP P P

2


       (19) 

where PJ is the efficiency for jets. The threshold value that maximizes the SP provides both 
high PD and low PF. 
 
As mentioned in previous sections, the available calorimeter signatures are topologically 
pre-processed, generating 100 rings for an incoming event. Considering this, the 
discrimination system may benefit from signal compaction algorithms as they reduce 
redundant information and signal dimensionality. Here, compaction was performed 
through both Principal Component Analysis (PCA) and Principal Components for 
Discrimination (PCD), using segmented (layer-level) and non-segmented approaches. As the 
calorimeter system provides highly-segmented information, segmented processing tries to 
exploit subtle differences in electron and jet energy deposition profiles, which are available 
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maximize the energy projection and in PCD the objective is to optimize the discrimination 
capability of the components. Moreover, PCD uses nonlinear processing to estimate its 
components, which proves to be efficient in terms of discrimination performance. As it can 
be seen from Fig. 8, using only 31 components, the PCD performance is even better than 
processing 100 rings without any further pre-processing. 
The (linear) Independent Component Analysis (ICA) model was without any further pre-
processingalso applied to ring signals, either without pre-processing or combined with 
segmented and non-segmented PCA and PCD compaction schemes. Fig. 9 illustrates the 
ROC curves for different ICA-based discriminators. It can be observed that the segmented 
feature extraction provides slightly higher discrimination performance when independent 
components are estimated. Other benefit observed with ICA is that the classifier training 
procedure usually converges in very few iterations, in contrast to PCA and PCD based 
discriminators, which, in general, require a larger number of training steps. From Fig. 9, it is 
also interesting to observe that ICA could be the only pre-processing technique, as the 
nonlinear decorrelation it provides allows the neural network to perform slightly better in 
terms of discrimination efficiency. 
Considering feature extraction through NLICA (using the modified PNL model) based on 
PCD projection, the nonlinearities which may arise are expected to be smooth. In a practical 
design, a calorimeter can exhibit small nonlinearities along the wide dynamic range it has to 
work on. In view of this, the neural networks used to estimate the inverse nonlinearities are 
restricted to have small number of hidden neurons and thus can only approximate smooth 
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nonlinear functions. This also reduces the probability of reaching local minima during the 
training procedure.  

 
Fig. 9. ROC curves (and respective classifier topologies) for ICA-based discriminators. 
 
In the Local ICA approach, the training data set was initially clustered into two clusters (as 
there are two possible classes for the incoming particles). As illustrated in Fig. 10, cluster 1 
concentrates most of the electron signatures and cluster 2 the jets. After clustering, ICA and 
ICA with PCD pre-processing were both estimated for data belonging to each cluster. The 
classifiers were also trained locally, generating two ROCs (one for each cluster). A global 
optimization algorithm (Genetic Algorithm) (Haupt and Haupt, 2004) was used to search for 
the optimal combination of the local thresholds, which provides optimum global 
discrimination. 
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Fig. 10. Concentration of electrons and jets in each cluster for Local ICA pre-processing 
approach. 

Fig. 11 illustrates the discrimination performance obtained through PNL and Local ICA 
approaches. It can be seen that, compared to the linear ICA model, PNL exhibits slightly 
poorer performance. On the other hand, Local ICA produces higher discrimination 
efficiency with respect to the other models when it is performed on PCD directions. For 
Local ICA, only the optimum point is shown in Fig. 11. 

 
Fig. 11. ROC curves (and respective classifier topology) for NLICA and ICA discriminators. 
 
A summary of the results achieved for each approach can be observed in Tab. 2, where the 
maximum SP value obtained for each approach is presented. Furthermore, Tab. 3 presents 
the false alarm probability for a fixed 97% electron detection efficiency.  
The classifier complexity is shown in Tab. 4 for each approach. It can be depicted from this 
table that applying nonlinear decorrelation (PCD and ICA based algorithms) reduces the 
computational requirements for the classification task. The local ICA based on PCD 
projections not only achieves better classification efficiency, but it is also very efficient in 
terms of computational load (~33% reduction with respect to the rings only approach).  
 

 
Table 2. Maximum SP (× 100) obtained for segmented and non-segmented approaches. 
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poorer performance. On the other hand, Local ICA produces higher discrimination 
efficiency with respect to the other models when it is performed on PCD directions. For 
Local ICA, only the optimum point is shown in Fig. 11. 
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Fig. 11. ROC curves (and respective classifier topology) for NLICA and ICA discriminators. 
 
A summary of the results achieved for each approach can be observed in Tab. 2, where the 
maximum SP value obtained for each approach is presented. Furthermore, Tab. 3 presents 
the false alarm probability for a fixed 97% electron detection efficiency.  
The classifier complexity is shown in Tab. 4 for each approach. It can be depicted from this 
table that applying nonlinear decorrelation (PCD and ICA based algorithms) reduces the 
computational requirements for the classification task. The local ICA based on PCD 
projections not only achieves better classification efficiency, but it is also very efficient in 
terms of computational load (~33% reduction with respect to the rings only approach).  
 

Approach Non-segmented Segmented

Rings 96.10 ---

PCA 93.07 96.04

PCD 96.11 96.28

ICA 96.38 96.45

ICA + PCA 93.21 96.00

ICA + PCD 95.45 96.25

PNL + PCD 95.80 96.20

Local ICA 96.63 ---

Local ICA + PCD 97.32 ---  
Table 2. Maximum SP (× 100) obtained for segmented and non-segmented approaches. 
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Approach Non-segmented Segmented

Rings 1.75 ---

PCA 4.20 1.88

PCD 1.77 1.59

ICA 1.55 1.51

ICA + PCA 4.04 1.83

ICA + PCD 2.26 1.68

PNL + PCD 2.02 1.72

Local ICA 1.30 ---

Local ICA + PCD 0.82 ---  
Table 3. False alarm probability (%) for a detection efficiency of 97%. 
 

Approach Non-segmented Segmented

Rings 3636  ---

PCA 4242 5050

PCD 3636 2828

ICA 6868 8686

ICA + PCA 5454 9090

ICA + PCD 200 3030

PNL + PCD 3934 6768

Local ICA 4438  ---

Local ICA + PCD 2418  ---  
Table 4. Number of total floating point operations per approach. 
 
In order to verify whether a linear classifier suffices, the pre-processed signals were used to 
feed a linear Fisher Discriminant (FLD), which is proved to be optimal linear discriminators 
(Duda et al., 2004). Fig. 12 provides a comparison between the discrimination performance 
obtained through linear (FLD) and nonlinear (MLP) classifiers. It can be seen that the 
nonlinear decorrelation introduced by ICA was able to improve the discrimination obtained 
through FLD, providing more separated patterns for different types of particles. Through 
the proposed pre-processing chain, the results of the linear classifier got closer to the ones 
obtained by the MLP. However, the nonlinear decorrelation provided by PCD and ICA were 
still not sufficient to discard a nonlinear classifier in order to achieve optimal detection 
efficiency. Tab. 5 and Tab. 6 summarize the detection efficiency comparison between linear 
Fisher and neural discriminants. An important issue is the computational cost, which, for a 
linear classifier, is much smaller (see Tab. 7) with respect to the nonlinear counterpart. This 
might be a striking advantage for online filtering.  

 
Fig. 12. ROC curves for the linear and neural discriminators. 
 

 
Table 5. Maximum SP (× 100) obtained for each approach considered for a linear classifier. 
 

 
Table 6. False alarm (%) for a detection efficiency of 97% for each approach considered for a 
linear classifier. 
 

 
Table 7. Number of total floating point operations per approach considered for a linear 
classifier. 
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Fig. 12. ROC curves for the linear and neural discriminators. 
 

Approach Neural Fisher

Rings 96.10 95.12

Segm. PCD 96.28 95.35

Segm. ICA + PCD 96.25 95.43

Local ICA + PCD 97.32 94.40  
Table 5. Maximum SP (× 100) obtained for each approach considered for a linear classifier. 
 

Approach Neural Fisher

Rings 1.75 2.50

Segm. PCD 1.59 2.29

Segm. ICA + PCD 1.68 2.22

Local ICA + PCD 0.82 3.00  
Table 6. False alarm (%) for a detection efficiency of 97% for each approach considered for a 
linear classifier. 
 

Approach Neural Fisher

Rings 3636 200

Segm. PCD 2828 200

Segm. ICA + PCD 3030 200

Local ICA + PCD 2418 700  
Table 7. Number of total floating point operations per approach considered for a linear 
classifier. 
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5. Conclusions and Perspectives 

Online data filtering in high-dimensional input data space finds application in multiple 
areas. Depending on the accumulated knowledge about the target problem, combining what 
is known by experts with high-order stochastic signal processing techniques is being shown 
to be an efficient design approach. Among the benefits, high signal compaction rates, 
relevant feature extraction and reduced computational load are often accomplished. 
For a very demanding high-energy physics application, it was shown that we could benefit 
from topological pre-processing, which implements the expert part of the whole pre-
processing scheme. Then, adding decorrelation techniques to the signal processing chain 
provided efficient feature extraction. For this, only 30% of the original data components 
were required. Further knowledge about the problem pointed out that the segmented signal 
processing was the right approach. In addition, the overall computational load could 
significantly be reduced, which was attractive due to the low processing time required by 
the target application. 
Nonlinear independent component analysis achieved the best performance in this case 
study, which motivates further application investigations. A possibility is to implement it 
through SOM (Self-Organizing Maps) (Haykin, 2008). In detectors where the arising 
nonlinearities of practical designs are expected to be small deviations from the linear 
behavior, it would also be important to restrict the degrees of freedom of the nonlinear 
component extraction. The independent component analysis is also attractive in facing pile-
up effects (Knoll, 1989), which typically decreases discrimination efficiencies in high event 
rate applications. There is plenty of room for algorithm development in high demanding 
application scenarios.  

 
6. Acknowledgements 

The authors would like to express their gratitude to CNPq, FINEP, CAPES, FAPERJ (Brazil) 
and CERN (Switzerland) for their financial support. We also thank the ATLAS collaboration 
at CERN for providing the simulated calorimeter data and for fruitful discussions 
concerning this work. 

 
7. References 

Almeida, L. B. (2006). Nonlinear Source Separation, Morgan and Claypool.  
Caloba, L., Seixas, J. and Pereira, F. (1995). Neural discriminating analysis for a second-level 

 trigger system, Proceedings of the International Conference on Computing in High 
 Energy Physics (CHEP95), Rio de Janeiro, Brazil.  

Cardoso, J. F. and Souloumiac, A. (1993). Blind beamforming for non-gaussian signals, IEEE 
 Proceedings- F 140(6): 362–370.  

CERN (2007). European organization for nuclear research. URL: http://www.cern.ch  
Choi, S., Cichocki, A., Park, H. and Lee, Y. (2005). Blind source separation and independent 

 component analysis - a review, Neural Information Processing - Letters and 
 Reviews 6(1).  

Cichocki, A. and Amari, S. (2002). Adaptive Blind Signal and Image Processing, Willey. 

Cichocki, A. and Unbehauen, R. (1996). Robust neural networks with on-line learning for 
 blind identication and blind separation of sources, IEEE Transactions on Circuits 
 and Systems-I: Fundamental Theory and Applications (11).  

dos Anjos, A., Torres, R. C., Seixas, J. M., Ferreira, B. C. and Xavier, T. C. (2006). Neural 
 triggering system operating on high resolution calorimetry information, Nuclear 
 Instruments and Methods in Physics Research 559: 134–138.  

Duarte, L. T., Jutten, C. and Moussaoui, S. (2009). Ion selective electrode array based on a 
 bayesian nonlinear source separation method, in T. Adali, C. Jutten, J. Romano and 
 A. Barros (eds), Independent Component Analysis And Signal Separation, 8th 
 International Conference, Lecture Notes In Computer Science, Springer, Paraty, 
 Brazil, pp. 662–669.  

Duda, R. O., Hart, P. E. and Stork, D. G. (2004). Pattern Classication, 2nd ed, Wiley-
Interscience.  

Evans, L. and Bryant, P. (2008). LHC machine, Journal of Instrumentation (2008 JINST 3 
 S08001).  

Haritopoulos, M., Yin, H. and Allinson, N. M. (2002). Image denoising using self-organizing 
 map-based nonlinear independent component analysis, Neural Networks 
 pp.  1085–1098.  

Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms, 2nd ed,Wiley-Interscience.  
Haykin, S. (2008). Neural Networks and Learning Machines, 3rd ed, Prentice Hall.  
Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis, John 

 Wiley & Sons.  
Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: 

 Existence and uniqueness results, Neural Networks 12(3): 429–439.  
Jolliffe, I. T. (2002). Principal Component Analysis, 2nd ed, Springer.  
Jutten, C. and Karhunen, J. (2003). Advances in nonlinear blind source separation, 

 Proceedings of the 4th Int. Symp. on Independent Component Analysis and Blind 
 Signal Separation (ICA2003) pp. 245–256.  

Karhunen, J., Malaroiu, S. and Ilmoniemi, M. (2000). Local linear independent component 
 analysis based on clustering, Int. Journal of Neural Systems 10: 439–451.  

Knoll, G. F. (1989). Radiation Detection and Measurement, 2nd ed, John Wiley & Sons.  
Mackay, D. J. C. (2002). Information Theory, Inference and Learning Algorithms, Cambridge 

 University Press.  
McClave, J. T., Sincich, T. and Mendenhall, W. (2008). Statistics, 11th ed, Prentice Hall.  
Michal, A. D. (2008). Matrix and Tensor Calculus With Applications to Mechanics, Elasticity 

 and Aeronautics, 1st ed, Dover.  
Moura, N. N., Simas Filho, E. F. and Seixas, J. M. (2009). Advances in Sonar Signal  Processing, 

In-Tech, Vienna, Austria, chapter Independent Component Analysis for  Passive 
Sonar Signal Processing, pp. 91–110.  

Murillo-Fuentes, J., Boloix-Tortosa, R., Hornillo-Mellado, S. and Zarzoso, V. (2004). 
 Independent component analysis based on marginal entropy approximations, 
 Proceedings of the World Automation Congress (16): 433–438. 

Natora, M., Franke, F., Munk, M. and Obermayer, K. (2009). Bss of sparse overcomplete 
 mixtures and application to neural recordings, in T. Adali, C. Jutten, J. Romano and 
 A. Barros (eds), Independent Component Analysis And Signal Separation, 8th 

www.intechopen.com



Segmented Online Neural Filtering System Based  
On Independent Components Of Pre-Processed Information 357
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areas. Depending on the accumulated knowledge about the target problem, combining what 
is known by experts with high-order stochastic signal processing techniques is being shown 
to be an efficient design approach. Among the benefits, high signal compaction rates, 
relevant feature extraction and reduced computational load are often accomplished. 
For a very demanding high-energy physics application, it was shown that we could benefit 
from topological pre-processing, which implements the expert part of the whole pre-
processing scheme. Then, adding decorrelation techniques to the signal processing chain 
provided efficient feature extraction. For this, only 30% of the original data components 
were required. Further knowledge about the problem pointed out that the segmented signal 
processing was the right approach. In addition, the overall computational load could 
significantly be reduced, which was attractive due to the low processing time required by 
the target application. 
Nonlinear independent component analysis achieved the best performance in this case 
study, which motivates further application investigations. A possibility is to implement it 
through SOM (Self-Organizing Maps) (Haykin, 2008). In detectors where the arising 
nonlinearities of practical designs are expected to be small deviations from the linear 
behavior, it would also be important to restrict the degrees of freedom of the nonlinear 
component extraction. The independent component analysis is also attractive in facing pile-
up effects (Knoll, 1989), which typically decreases discrimination efficiencies in high event 
rate applications. There is plenty of room for algorithm development in high demanding 
application scenarios.  
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