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1. Introduction: magnetic resonance spectroscopic (MRS) signals

A magnetic resonance spectroscopic (MRS) signal is made of several frequencies typical of the
active nuclei and their chemical environments. The amplitude of these contributions in the
time domain depends on the amount of those nuclei, which is then related to the concentration
of the substance (Hornak, 1997).
This property is exploited in many applications of MRS, in particular in the clinical one. The
MRS spectra contain a wealth of biochemical information characterizing the molecular content
of living tissues (Govindaraju et al., 2000). Therefore, MRS is a unique non-invasive tool for
monitoring human brain tumours, etc. (Devos et al., 2004), if it is well quantified.
When an MRS proton signal is acquired at short echo-time (TE), the distortion of spectral mul-
tiplets due to J-evolution can be minimized and the signals are minimally affected by trans-
verse relaxation. Such signals exhibit many more metabolite contributions, such as glutamate
and myo-inositol, compared to long TE spectra. Therefore, an MRS signal acquired at short
TE presents rich in vivo metabolic information through complicated, overlapping spectral sig-
natures. However, it is usually contaminated by water residue and a baseline which mainly
originates from large molecules, known as macromolecules. As the shape and intensity of the
baseline are not known a priori, this contribution becomes one of the major obstructions to
accurately quantify the overlapping signals from the metabolites, especially by peak integra-
tion, which is commonly used in frequency-based quantification techniques. Also, by seeing
only the frequency aspect, one loses all information about time localization.
A number of quantification techniques have been proposed, which work either in the time
domain (see Vanhamme et al. (2001) for a review) or in the frequency domain (see Mierisová
& Ala-Korpela (2001) for a review). The time-domain based methods are divided into two
main classes: on one side, non-interactive methods such as SVD-based methods (Pijnappel
et al., 1992) and, on the other side, methods based on iterative model function fitting using
strong prior knowledge such as QUEST (Ratiney et al., 2004; 2005), LCModel (Provencher,
1993), AQSES (Poullet et al., 2007), or AMARES (Vanhamme et al., 1997).

*A. Suvichakorn is a Marie-Curie Research Fellow in the FAST (Advanced Signal Processing for Ultra-
fast Magnetic Resonance) Marie-Curie Research Network (MRTN-CT-2006-035801, http://fast-mrs.eu)

†E-mail address: Sophie.Cavassila@univ-lyon1.fr
‡E-mail address: Jean-Pierre.Antoine@uclouvain.be
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However, there also exist techniques that analyse a signal in the two domains simultaneously
and are therefore more efficient than, say, the Fourier transform, which gives only spectral in-
formation. The result is a time-scale and or a time-frequency representation, such as provided
by the wavelet transform (WT) and the Short-Time Fourier transform (STFT). In addition, both
transforms are local, in the sense that a small perturbation of a signal which may occur during
the data acquisition will result only in a small, local modification of the transform.
A number of wavelet-based techniques have been proposed for spectral line estimation in
MRS, including the continuous wavelet transform (Delprat et al., 1992; Guillemain et al., 1992;
Serrai et al., 1997) and the wavelet packet decomposition (Mainardi et al., 2002). Among the
various possibilities, we will concentrate our discussion on the continuous wavelet transform
(CWT) with the Morlet wavelet (MWT). All wavelet calculations have been performed by our
own wavelet toolbox, called YAWTb (Jacques et al., 2007). Some of the experimental aspects
have been reported in Suvichakorn et al. (2009). For the convenience of the reader we have
collected in the Appendix the basic features and properties of the CWT.
In the following sections, we will study the performance of the Morlet WT to retrieve parame-
ters of interest such as resonances frequencies, amplitude and damping factors, for nuisances
or impairments generally encountered in in vivo MRS signals: noise, baseline, solvent, and
non-Lorentzian lineshapes.

2. The Morlet wavelet transform

The wavelet transform (WT) of a signal s(t) with respect to a basic wavelet g(t) is

S(τ, a) =
1√
a

∫

g

(

t − τ

a

)

s(t) dt

=
1

2π

√
a
∫

G(aω) S(ω) eiωτ dω, (1)

where S(ω) is the Fourier transform of the signal, a > 0 is a dilation parameter that charac-
terizes the frequency of the signal (since 1/a is essentially a frequency), τ ∈ R is a translation

parameter that indicates the localization in time and G(aω) is the complex conjugate of the
(scaled) Fourier transform of g(t). We can think of the basic wavelet as a window which slides
through the signal, giving the information at instantaneous time τ. The window is also dilated
by a, so that a small a corresponds to a high frequency of the signal, and vice versa. As a re-
sult, the WT becomes a function of both time and frequency (scale). For more details, see the
Appendix.
A technique based on the continuous wavelet transform (CWT) was proposed by Guillemain
et al. (1992). By exploiting the ability of the CWT to see the information in the two domains
simultaneously, it can extract the information from MRS signals directly without any decom-
position or pre-processing, in order to quantify an MRS signal. The technique proceeds in two
steps: (i) detection of the frequency of the peaks in MRS signals and (ii) characterization at
each detected frequency. It can be described as follows.
At a particular value of a, the WT Sa(τ) ≡ S(τ, a) can be represented in terms of its modulus
|Sa(τ)| and phase Φa(τ), namely,

Sa(τ) = |Sa(τ)|eiΦa(τ), (2)
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with an instantaneous frequency

Ωa(τ) =
∂

∂τ
Φa(τ)

=
∂

∂τ
Im[ln Sa(τ)]

= Im

[

1

Sa(τ)

d

dτ
Sa(τ)

]

, (3)

Next, let us consider an MRS signal with a Lorentzian damping function, namely,

sL(t) = Ae−Dtei(ωst+ϕ) ⇔ SL(ω) = 2πAeiϕδ(ω − (ωs + iD)), (4)

where D and ϕ denote the damping factor and the phase of the signal. Its WT is accordingly

SL(τ, a) =
√

aAeiϕe−DτeiωsτG(a(ωs + iD))

=
√

as(τ)G(a(ωs + iD)). (5)

For a Morlet function scaled by a dilation parameter a (we omit the negligible correction term,
see Eq.(A.9)), namely,

GM(aω) = exp
(

− 1
2 σ2(aω − ω0)

2
)

, (6)

it can be seen that the modulus of S(τ, a) is maximum, i.e., ∂
∂a S(τ, a) → 0, when ∂

∂a G → 0.
Given that a > 0 and the assumption that ωs ≫ D, the maximum can be found along the scale
ar = ω0/ωs (this is called a horizontal ridge), which then gives

GM(ar(ωs + iD)) = exp

(

σarD√
2

)2

, (7)

and consequently

Sar (τ) =
√

ar exp

(

σarD√
2

)2

s(τ), (8)

which is identical to the signal s(t) multiplied by a coefficient depending on the still unknown
D. Consider the modulus of the Morlet wavelet transform (MWT) along ar,

|Sar (τ)| =
√

ar exp

(

σarD√
2

)2

|s(τ)|

ln |Sar (τ)| =
1

2
ln a +

(

σarD√
2

)2

+ ln A − Dτ. (9)

That is,

D = − ∂

∂τ
ln |Sar (τ)|. (10)

Knowing D can now lead to the estimation of the amplitude resonance A of the signal by

A = |s(t)|eDt. (11)
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Fig. 1. (a) Phase of the Morlet wavelet transform of a signal s(t) containing two frequencies
ωs=32 and 64 rad/s and (b) its instantaneous frequency. Here σ = 1, ω0 = 5 rad/s, sampling
frequency Fs = 256 s−1, data length l = 1024 points.

Since Sar (τ) is a function of time, the derived D is also a function of time. This is beneficial for
analysing signals that do not have a steady damping function. In addition, considering the
phase of the MWT along ar, namely,

arg Sar (τ) = ωsτ + ϕ,

we also have

ωs =
∂

∂τ
arg Sar (τ)

= Ωar (τ), (12)

as in Eq.(3). Strictly speaking, the instantaneous frequency at the scale ar of the Morlet trans-
form is ωs. This can be observed in Figure 1, which shows that the instantaneous frequency
intersects the line ω0/a at a = ω0/ωs, where ωs=32 and 64 rad/s are the frequencies of the
signal. The phase of the signal ϕ ∈ (−π, π) can also be derived from the phase of the WT, if
needed. The property given in Eq.(12) is useful for analysing an n-frequency signal; it indi-
cates the actual frequencies of the signal and the scale a that we should consider. In addition,

if its frequencies are sufficiently far away from each other, so that G(aω) treats each spectral
line independently (Barache et al., 1997), the amplitude at each frequency can thus be derived.
When two frequencies are very close to each other (this also depends on the sampling fre-
quency), increasing the frequency of the Morlet function ω0 can better localize and distinguish
the overlapping frequencies. On the other hand, ωs can be obtained iteratively by

1. Initializing a = ai at some values.

2. Calculating the instantaneous frequency, namely Ωai .

3. Assigning the new value to ai+1 = ω0/Ωai .

4. Repeating the process until a converges to ωs.

Figure 2 illustrates an overlap of two frequencies and the derived instantaneous frequencies
using the iteration method. The derived frequencies converge to the true frequencies within a
few steps.
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Fig. 2. (a) The MWT of y(t) = exp(i55t) + exp(i60t) and (b) its instantaneous frequencies
when using the iterative method. Here σ = 1, ω0 = 5.5 rad/s, Fs = 800 s−1, l = 1024 points.
(c) Comparison of the instantaneous frequencies by the non-iterative and the iterative method.
The symbol ◦ indicates an initial value of a.

3. Continuous Wavelet Transform and the in vivo MRS challenges

3.1 Gaussian White Noise

An in vivo MRS signal is always impaired by additive noise, which is usually assumed to be
white gaussian. This noise causes oscillations in the instantaneous frequency derived with
the CWT representation, as illustrated in Figure 3 which shows the instantaneous frequency
derived from a signal with a peak at a frequency of 32 rad/s with an additive Gaussian noise
corresponding to a signal to noise ratio (SNR) of 10.1 In order to reduce this effect, Guillemain

1 The Signal to Noise ratio SNR is defined as the ratio of the time domain first point amplitude of the
resonance to the time domain noise standard deviation
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Fig. 3. (a) A spectrum with one resonance at 32 rad/s with SNR=10 (σn = 0.079) and (b)
its instantaneous frequency derived by the Morlet wavelet at t = 4.7 s (ω0 = 5 rad/s, σ=1,
Fs = 800 s−1).
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Fig. 4. For the signal shown in Figure 3(a): Derived Lorentzian damping factor and (b) ab-
solute frequency estimation error with respect to the averaging time, calculated at the scale
a = ω0/ωs of the Morlet wavelet transform (SNR = 10, ωs = 32 rad/s,ω0 = 5 rad/s, σ = 1, Fs =
800 s−1).

et al. (1992) suggested averaging in time the derived parameters, for instance Ωa(τ), i.e.,

Ωa =
1

T

∫

τ0+T

τ0

Ωa(τ)dτ. (13)

As can be seen in Figure 3, averaging in time reduces the noise effect on the derivation of
the instantaneous frequency.2 One can see that averaging creates many steady points. At the
scale a = ω0/32, the instantaneous frequency is about, but not exactly, 32 rad/s. Here, the

2 This property might be used for denoising, but this has not been exploited.

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency (rad/s)

am
pl

itu
de

 (a
.u

.)

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
300

400

500

600

700

800

900

1000

1100

1200

1300

1400

dilation parameter

in
st

an
ta

ne
ou

s 
fre

qu
en

cy
 (r

ad
/s

)

with baseline
without baseline

= 0/a

www.intechopen.com



Wavelet-based techniques in MRS 173

−100 −50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency (rad/s)

A
m

pl
itu

de

0.1 0.15 0.2 0.25 0.3 0.35

15

20

25

30

35

40

45

50

55

dilation parameter (a)

in
st

an
ta

ne
ou

s 
fre

qu
en

cy
 (r

ad
/s

)

with noise
averaged
k0/ws

0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

translation (seconds)

Lo
re

nt
zi

an
 d

am
pi

ng
 fa

ct
or

 (D
)

averaged
no noise

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

averaging time (s)

ab
so

lu
te

 e
rr

or
 (r

ad
/s

)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency (rad/s)

am
pl

itu
de

 (a
.u

.)

(a)

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
300

400

500

600

700

800

900

1000

1100

1200

1300

1400

dilation parameter

in
st

an
ta

ne
ou

s 
fre

qu
en

cy
 (r

ad
/s

)

with baseline
without baseline
ω=ω0/a

(b)

Fig. 5. (a) The Fourier transform of a 1056-rad/s signal with baseline; b) Its instantaneous
frequency (ω0 = 10 rad/s, σ = 1). The baseline is modelled by a cubic spline.

averaging time is 1.56 s. Figure 4(b) shows the evolution of the absolute frequency estimation
with respect to the averaging time. Increasing the averaging time is likely to decrease the
estimation error, as illustrated in Figure 4(b). The same approach can be used to derive the
instantaneous damping factor. The estimated instantaneous damping factor is also smoother
and closer to the actual damping factor when time averaging is employed. Although the
method described above should work at any value of a, there is a particular range of a that is
meaningful, and should be wisely selected. As a rule of thumb, this range should not be far
from the scale that maximizes the modulus of the Morlet WT.

3.2 Baseline

The baseline corresponds to contributions from large molecules, with a broad frequency pat-
tern in the MRS spectrum. Thus, it becomes a major obstruction in the quantification of
metabolite contribution from the MRS signals. First, we simulate the baseline by cubic splines
in order to study the performance of the MWT when a baseline is present. In the case of
Figure 5, the simulated baseline has no effect on the instantaneous frequency derived from
the WT. Then, we used a baseline modelled with 50 randomly distributed Lorentzian pro-
files with a large damping factor, compared to the signal-of-interest at 3447 rad/s, e.g. sL(t) =
exp(−10t) exp(i3447t)+ B(t) where B(t) = exp(−50t)[0.2 exp(i3447t)+ 0.3 exp(i2000t)+ . . .]
is the baseline (see Figure 6). The first component of B(t) has the same frequency as the sig-
nal, in order to imitate the overlap between the baseline and the signal. It is found that the
modelled baseline does not prevent an accurate estimation of both the damping factor and
the amplitude derived from the Morlet WT, provided one waits until both the effect of the
baseline and the edge effect (discussed in Section 4.1 below) have died out. In the example
shown here, the waiting time is approximately 0.2 s.
The MWT in Figure 6(b) tells us that the baseline affects only the beginning of the transform in
the time (τ) axis, comparing to the long, clear peak of our 3447-rad/s signal. This means that
the baseline can be assumed to decay faster than the pure signal, and the method described
should still be effective without removing the baseline beforehand. Such an assumption has
been widely used in spectroscopic signal processing, where several authors have proposed
truncation of the initial data points in the time domain, which are believed to contain a major
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Fig. 6. (a) The Fourier transform of a 3447-rad/s Lorentzian signal with baseline. The latter is
modelled by large Lorentzian damping factors; (b) Its Morlet WT and the derived parameters:
(c) damping factor and (d) amplitude. The actual parameters are 10 s−1 and 1 a.u. for the
damping factor and amplitude, respectively. (ω0 = 100 rad/s, σ = 1). From Suvichakorn
et al. (2009).

part of the baseline. However, some information of the metabolites could be lost and a strat-
egy for properly selecting the number of data points is needed (see Rabeson et al. (2006) for
examples and further references).
Next, in order to study the characteristics of the real baseline by the Morlet wavelet, an in
vivo macromolecule MRS signal was acquired on a horizontal 4.7T Biospec system (BRUKER
BioSpin MRI, Germany). The data acquisition was done using the differences in spin-lattice
relaxation times (T1) between low molecular weight metabolites and macromolecules (Behar
et al., 1994; Cudalbu et al., 2009; 2007).
As seen in Figure 7, the metabolite-nullified signal from a volume-of-interest (VOI) central-
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Fig. 7. (a) The signal of baseline + residual water (a) in time domain; and (b) in frequency
domain.
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Fig. 8. (a) Frequency response of creatine at 4.7 Tesla and (b) its Morlet WT (ω0 = 10 rad/s,
σ = 1, Fs = 4006.41 s−1). The parameters derived from the Morlet transform are D = 10 s−1,
ω1 = 1056 rad/s, A1 = 1330 a.u. and ω2 = 2168 rad/s, A1 = 1965 a.u.

ized in the hippocampus of a healthy mouse3 resulted from a combination of residual water,
baseline and noise. Compared to the simulated signal of creatine, whose frequency response
and Morlet WT are shown in Figure 8, the signal decays much faster, making it suitable to use
the Morlet wavelet to analyse the MRS signal as described earlier. For studying this, the two
signals are normalised to the same amplitude and added together. Then the amplitude of the

3 An Inversion-Recovery module was included prior to the PRESS sequence (echo-time = 20ms, repe-
tition time = 3.5s, bandwidth of 4kHz, 4096 data-points) in order to measure the metabolite-nullified
signal. The water signal was suppressed by variable power RF pulses with optimized relaxation delays
(VAPOR). All first- and second-order shimming terms were adjusted using the Fast, Automatic Shim-
ming technique by Mapping Along Projections (FASTMAP) for each VOI (3 × 3 × 3 mm3). Inversion
time = 700 ms.
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creatine is derived with the Morlet WT. Next, we multiply the simulated, normalised creatine
by 0.5, 1, 1.5,. . . . For each of these values, we derive the amplitude and plot the result in Figure
9. The recovery of the (simulated) creatine at different amplitudes, after adding it to the base-
line signal, reveals that the amplitude of the metabolite can be correctly derived using t = 0.4
s, whereas at earlier time (t < 0.2 s) the derived amplitude still suffers from the boundary
effect (we will discuss this effect in Section 4.1). However, the metabolite signal is covered
later by noise (t = 0.77 s), giving an inaccurate amplitude estimate. Therefore, the time to
monitor the amplitude of the metabolite should be properly selected. Another data set of the
baseline4 acquired at 9.4T, with a better signal to noise ratio and a better water suppression,
shows similar characteristics (see Figure 10).
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Fig. 9. Derived amplitude at ω = 1056 rad/s, using ω0 = 100 rad/s and σ = 1 from a signal
containing a simulated creatine signal and an in vivo acquired macromolecule signal.

3.3 Solvent

In MRS quantification, a large resonance from the solvent needs to be suppressed to unveil the
metabolites without altering their magnitudes. The intensity of the solvent is usually several
orders of magnitude larger than those of the metabolites.

4 received from Cristina Cubaldu, Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole
Polytechnique Fédérale de Lausanne (EPFL).
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Fig. 10. Macromolecules MRS signals acquired at 4.7 Teslas and 9.4 Teslas, respectively, their
Fourier transforms and their Morlet WT.

The Morlet WT sees the signal at each frequency individually, therefore it can work well even
if the amplitudes at various frequencies are hugely different, which normally occurs when
there is a solvent peak in the signal. In order to illustrate this, the Morlet WT has been applied

www.intechopen.com



Signal Processing178

to the following signal

s(t) = 100e−8.5tei32t + e−1.5tei60t + e−0.5tei90t + e−tei120t + e−2tei150t, (14)

as seen in Figure 11 (a). This signal has an amplitude of 100 at 32 rad/s and 1 elsewhere. The
high amplitude can affect other frequencies if they are close to each other. This is illustrated in
Figure 11 (b) when a Hann window is applied to the signal in order to separate each frequency.
Using the aforementioned method, the amplitude of 1 is derived as 0.980, 0.911, 0.988 and
0.974 respectively. The error ranges within 1.2-8.9 %, without any preprocessing.
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Fig. 11. (a) The Fourier transform of a signal with different amplitudes and the spectrum
extracted by the Morlet wavelet and (b) by a Hann window.

3.4 Non-Lorentzian lineshape

The ideal Lorentzian lineshape assumes that the homogeneous broadening is equally con-
tributed from each individual molecule. However, imperfect shimming and susceptibility
effects from internal heterogeneity within tissues lead to non-Lorentzian lineshapes in real ex-
periments (Cudalbu et al., 2008). These effects are typically modelled by a Gaussian lineshape
(Franzen, 2002; Hornak, 1997). Since the inhomogeneous broadening is often significantly
larger than the lifetime broadening, the Gaussian lineshape is often dominant. If the line-
shape is intermediate between a Gaussian and a Lorentzian form, the spectrum can be fitted
to a convolution of the two functions (Marshall et al., 2000; Ratiney et al., 2008). Such lineshape
is known as a Voigt profile.
Next we will explore how the Morlet WT can deal with the Gaussian and Voigt lineshapes.
Consider a pure Gaussian function modulated at the frequency ωs, namely,

sG(t) = Ae−γt2
eiωst. (15)

Its Morlet WT is

SG(τ, a) =
1√
a

∫

gM

(

t − τ

a

)

sG(t) dt

=
A

2π
√

aσ

∫

e−γt2
eiωste

−
(

t−τ√
2σa

)2

e−iω0( t−τ

a )dt

=
A

2π
√

aσ

∫

e−(k1t2+k2t+k3)dt, (16)
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where

k1 = γ +
1

2σ2a2

k2 = −i(ωs −
ω0

a
)−

τ

σ2a2

k3 = −i
ω0τ

a
+

τ2

2σ2a2
.

Eq.(16) is known as a Gaussian integral and can be computed explicitly:

∫

∞

−∞

e
−(k1t2+k2t+k3)dt =

√

π

k1
e

k2
2

4k1
−k3 . (17)

As a result, the Morlet WT at the scale ar = ω0/ωs is

SG,ar
(τ) = k4 Ae

−k5τ2
e

iωsτ , (18)

where

k4 =

√

ar

2π(2γσ2a2
r + 1)

k5 =
γ

2γσ2a2
r + 1

,

which is also a Gaussian function at the frequency ωs. The width and amplitude of this new
Gaussian function are functions of ωs and of the width of the original Gaussian signal sG(t).
Therefore, similarly to the process of the Lorentzian lineshape, the amplitude (A) and the
width of the Gaussian function (inversely proportional to γ) can be obtained as follows:

1. Find ωs =
∂

∂τ
arg SG,ar

(τ).

2. Find γ from the second derivative of ln |SG,ar
(τ)|, which yields

γ = −
0.5

(

∂2

∂τ2 ln |SG,ar
(τ)|

)−1
+ σ2a2

r

. (19)

3. Find A from the calculated ωs and γ.

On the other hand, the Morlet WT at the scale ar = ω0/ωs of a Voigt lineshape,

sV(t) = Ae
−γt2

e
−Dt

e
iωst, (20)

is given by

SV,ar
(τ) = k6 Ae

−k5(τ−k7)2
e

iωsτ , (21)

where

k6 = k4e
−D2

4γ

k7 =
D

2γ
.
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Fig. 12. (a) The modulus of the Morlet WT (ω0 = 15 rad/s) of a signal of a frequency 60 rad/s

with (a) undamped s(t) = ei60t; (b) Lorentzian s(t) = e−tei60t; (c) Gaussian s(t) = e−t2
ei60t;

and (d) Voigt s(t) = e−te−t2
ei60t lineshape.

That is, at the scale ar, the Morlet WT of the Voigt lineshape is also a Gaussian function with
the same width, but shifted in time, with the amplitude smaller than that of the Gaussian
lineshape, and its instantaneous frequency is also equal to ωs.
Note that the scale ar = ω0/ωs does not give exactly the maximum modulus of the WT.
However, as seen in Figure 12, the modulus of the Morlet WT of a signal with a Lorentzian
lineshape or a Gaussian lineshape (and also a Voigt lineshape) are maximal at the same scale
ar, provided that a ∈ R and ωs ≫ D.
Figure 13 shows that the second derivative of the modulus of the Morlet WT can be used to
describe the second-order broadening of the lineshape, no matter whether it is Gaussian or
Voigt. In the case of a Voigt lineshape, γ actually gives back a Lorentzian whose damping
factor is obtained by Eq.(10).
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Fig. 13. The Gaussian damping factor derived from the pure Gaussian signal and the Voigt
signal considered in Figure 12
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Fig. 14. (a) The comparison of the derived instantaneous frequency of the Morlet WT of
a signal of a frequency 60 rad/s with different lineshapes, e.g. Lorentzian s(t) = e−tei60t,

Gaussian s(t) = e−t2
ei60t, Voigt s(t) = e−te−t2

ei60t and Kubo s(t) = e−0.25(e−t−1+t)ei60t at t=
4.7 s. Panel (b) shows the modulus of the Morlet WT of each line at ar = ω0/60. Note: σ =1,
ω0 =15 rad/s, Fs = 800 s−1, l = 1024 points.

Kubo’s lineshape

The interaction between the Lorentzian and Gaussian broadening of lineshape depends on
the time scale. For example, if the relaxation time (T2) is much longer than any effect modu-
lating the energy of a molecule, the lineshape will approach the Lorentzian lineshape. On the
contrary, if T2 is short, the lineshape is likely to be Gaussian. In order to account for this time
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Fig. 15. ∂
∂τ ln |SG,ar

(τ)| with respect to Kubo’s γ for the pure gaussian signal given in Eq.(15), at the scale
ar = ω0/ωs. We have put α = γ/ς, where γ and ς are the two parameters of the Kubo lineshape defined
in Eq.(22).

scale, Kubo (1969) uses a so-called Gaussian-Markovian modulation, namely

s(t) = A exp
(

− ς2

γ2

(

e
−γt − 1 + γt

) )

. (22)

The parameter γ is inversely proportional to T2 and ς is the amplitude of the solvent-induced
fluctuations in the frequency. If α = γ/ς ≪ 1, the lineshape becomes Gaussian, whereas
α ≫ 1 leads to Lorentzian. The width of the lineshape is ς2γ.
Solving Eq.(22) seems to be complicated, though may be possible. However, it turns out that
the maximum modulus of the Morlet WT of a Kubo lineshape at ωs = 60 rad/s occurs also at
the scale ar = ω0/ωs, like those of the Gaussian and Lorentzian lineshapes. In addition, the
instantaneous frequency is still able to derive the ωs, even better than the Gaussian lineshape,
as shown in Figure 14(a), although the amplitude is broader than those of the Lorentzian,
Gaussian or Voigt profiles, as shown in Figure 14(b). The damping parameters can also be

derived by the linear relation between ∂
∂τ

ln |SG,ar
(τ)| and γ, as seen in Figure 15, whereas α

is related directly to ∂2

∂τ2 ln |SG,ar
(τ)|.

4. Limitations of the Morlet wavelet transform

In the previous section, the Morlet WT shows its potential for analysing an MRS signal by
means of its amplitude and phase, in addition to its time-frequency representation. However,
these techniques can be applied to well-defined lineshapes only. Another limitation is the
requirement of a proper ω0 that should distinguish the signal from the solvent, but should not
introduce noise in the result. In this section, we will look further on some more limitations
that prevent the use of the Morlet WT to quantify MRS signals directly.
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4.1 Edge effects

Errors in the wavelet analysis can occur at both ends of the spectrum due to the limited time
series. The region of the wavelet spectrum in which effects become important5 increases lin-
early with the scale a, thus it has a conic shape at both ends, as already seen in Figure 1(a)
(see also the Appendix). The size of the forbidden region, which is affected by the boundary
effect, varies with the frequency ω0 of the Morlet wavelet function and the ratio between the
frequency of the signal (ωs) and the sampling frequency (Fs). Figure 16 shows that the size
becomes larger for a large ω0 and low ωs/Fs. In practice, the working region is chosen so that
the edge effects are negligible outside and the characterization of the MRS signals should be
made inside this region, disregarding the presence of the macromolecular contamination.
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Fig. 16. Lines showing the width (in number of sample points) of the forbidden regions where
the boundary effect becomes important, as a function of ω0 (rad/s) and the ratio between the
signal frequency (ωs) and the sampling frequency (Fs). From (Suvichakorn et al., 2009).

4.2 Interacting/overlapping frequencies

If two frequencies of the signal are close to each other, the wavelet can interact with both
of them at the same time. This was already observed in Figure 2(a). Barache et al. (1997)
suggested the use of a linear equation system to solve the problem. In the sequel, the simu-
lated N-Acetyl Aspartate (NAA) is used to illustrate how the problem could be solved. The
spectrum of the NAA, shown in Figure 17(a), is composed of two different regions, the high,
single peak (NAA–acetyl part) and a group of overlapping frequencies (NAA–aspartate part).
By using a high ω0 to separate the overlapping frequencies, the Morlet WT reveals that there
are eight frequency peaks in the group as seen in Figure 17(b). The damping factors of the
two parts of NAA are shown in Figure 18(a). Applying Eq.(10) directly to each peak causes
an oscillation in the derived damping factor, compared to the smooth and stationary damping

5 defined as the e-folding time for the autocorrelation of wavelet power at each scale.
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Fig. 17. NAA : (a) Frequency response; (b) Its Morlet wavelet transform for ω0 = 100 rad/s
(left) and ω0 = 500 rad/s (right). From (Suvichakorn et al., 2009).

factor of the single peak. The size and frequency of the oscillation depends on the numbers
of neighbours of each peak and the spectral distance to these neighbours. A proper damping
factor can be achieved by averaging these oscillations in time.
Next, we will try to derive the amplitude of each peak. Let us consider an MRS signal com-
posed of n Lorentzian lines s(t) = e−Dt ∑n sn(t), where sn(t) = Aneiωnt+ϕn and n = 1, 2, . . .
is an indexing number. Its Morlet WT gives local maxima close to the scales a1 = ω0/ω1,
a2 = ω0/ω2, and so on. Therefore, we can establish a systematic relation between Sar

and
sn(t) at each scale as follows:


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
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
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
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Sa1
(τ)√
a1

Sa2
(τ)√
a2

Sa3
(τ)√
a3

...






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
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
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
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





,

where C = [Cmn] is a matrix with

Cnn = exp

(

σ2a2
nD2

2

)

Cmn = exp

[

−σ2ω2
0

2

(

ωn − ωm − iD

ωm

)2
]

, m �= n.

The value of |Cmn| decreases when the resonating peaks are well resolved (no overlapping
frequencies), in fact, it goes to zero when |ωm − ωn| increases, independently of D. Also,
|Cmn| decreases when ωm is high. If Cmn is not negligible (overlapping frequencies), solving
the linear equations gives the information for each sn(t).
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Fig. 18. NAA: (a) Damping function derived by Eq.(10); (b) Amplitudes of NAA–aspartate
part, derived by the linear equations (with zero phase). From (Suvichakorn et al., 2009).

The damping parameter D for the equations can be derived by Eq.(10), although the over-
lapping frequencies may cause oscillations in the solution, but these can be smoothened by
averaging in time.
There can be a bias from the estimation, depending on the number and distribution of overlap-
ping frequencies, e.g. the distance between neighbouring frequencies and ω0. For the NAA
(ω = 3447 rad/s), the bias is approximately 1% of its amplitude (in time domain), when ω0

= 200 rad/s is used. Note that Lorentzian lineshapes are assumed in these linear equations,
and the result is presented in Figure 18(b). In case of non-Lorentzian lineshapes, the arbitrary
damping function should be determined, and taken into account to solve the equation.
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Fig. 19. In vitro measured Creatine at 9.4 T
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4.3 Arbitrary lineshape

Let us consider a signal with an arbitrary damping function D(t), namely,

s(t) = AD(t)e(iωst+ϕ). (23)

Its Morlet WT is defined by

S(τ, a) =
Aeiϕ

2πσ
√

a

∫

D(t)eiωste
− 1

2σ2 (
t−τ

a )
2

e−iω0( t−τ

a )dt

= AC1

∫

D(x + τ)eiωs xe
− 1

2σ2 (
x
a )

2

e−iω0( x
a )dx; x = t − τ,

= AC1

∫

F [D(x + τ)]F [e−
x2

2σ2 a2 e
−i(ω0−ωs )x

a ]dω (Parseval’s theorem)

1√
a

S(τ, a) = AC2

∫

F [D(x)]eiτωe
−σ

2

2 (aω+ωs−ω0)
2

dω,

where C1 = ei(ωsτ+ϕ)

2πσ
√

a
and C2 = (

√
2π)−1ei(ωs x+ϕ). When implemented (thus discretized), the

equation above can be seen as the product of two matrices, namely,

S = C2DG,

and the damping function could be solved from the following equations

AF [D(x)] = C−1
2 SG

−1,

AD(x) = C−1
2 F−1[SG

−1],

AD(t) = C−1
2 F−1[SG

−1eiτω ],

where S is the matrix of the scaled wavelet coefficients, G is derived from the Morlet WT and
the frequency-of-interest ωs, and A is the unknown amplitude of the signal. For a combination
of frequencies with the same damping function, dividing by |D(t)| should give us a possibility
for comparing the amplitude at each peak relatively.

5. Working in a real life environment

By real life environment, we mean genuine acquired data, either in vitro or in vivo, rather than
simulated ones. In that case, the ideal Lorentzian lineshape of individual peaks gets distorted.
To give an example, we show in Figure 19 the analysis of an in vitro creatine signal. We see
that intermittent noise appears, in the form of many disrupted, horizontal bands in the WT.
Thus the noise occurs for a while at some particular frequencies and then disappears.6 Such
characteristics differ from the Gaussian white noise that usually appears as vertical bands in
the WT. It is also possible that the Gaussian white noise at that duration has the same intensity,
however. The analysis of this in vitro creatine signal shows that the frequency distribution
at each peak is broad and the almost stationary Gaussian damping factor indicates that the
acquired signal has a lineshape close to that of the Gaussian function. Nevertheless, deriving
the amplitude using the Gaussian assumption may lead to an inaccurate estimation.

6 We don’t know the origin of that noise, which in fact represents the part of the signal that we cannot
identify in terms of specific, known contributions.
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When the acquisition is made in an in vivo environment, the exponential decay of an MRS
signal is severely distorted. This is due to the inhomogeneity of the static magnetic field and
to eddy currents induced in the magnet walls by switching magnetic gradient fields on and
off. Apart from the problem of overlapping frequencies in each metabolite, an in vivo MRS
signal is composed of several metabolite signatures. Therefore, the challenge is to find a good
combination of the amplitudes that the Morlet WT derives at each frequency. Determining
complete spectra of each metabolite is preferred to individual resonance. This is yet to be
solved.

Appendix:The mathematics of the CWT

A.1. General definitions and properties

The continuous WT is a mathematical tool which permits to decompose a signal in terms of
elementary contributions called wavelets. A large body of literature exists for wavelet anal-
ysis. We might refer the interested reader to the textbooks of Daubechies (1992), Torrésani
(1995), Ali et al. (2000), Antoine et al. (2004), or the elementary introductions (Antoine, 1994)
and (Antoine, 2000). These wavelets are obtained from a single function g by translations and
dilations,

g(τ,a)(t) =
1√
a

g

(

t − τ

a

)

, (A.1)

where the parameters of translation, τ ∈ R, and dilation, a > 0, may be continuous or discrete.
The CWT of a signal s with the analysing wavelet g is the convolution of s with a scaled and

conjugated wavelet ga(t) = g(−t/a)/a, where the overbar denotes complex conjugation :

S(τ, a) = ga ∗ s(τ) =
1√
a

∫

g

(

t − τ

a

)

s(t) dt. (A.2)

It should be remarked that one uses often the so-called L1-normalisation, with a factor 1/a in
(A.1) and (A.2), instead of 1/

√
a, in order to enhance small scales, where the finer details lie.

In the Fourier domain, the expression (A.2) takes the following form:

S(τ, a) =
1

2π

∫

G(aω) S(ω) eiωτ dω, (A.3)

where S and G are the Fourier transforms of the signal s and of the wavelet g, respectively. The
equations (A.2) and (A.3) show clearly that the wavelet analysis is a time-frequency analysis,
or, more properly, a time-scale analysis (the scale parameter a behaves as the inverse of a
frequency). In particular, the relation (A.3) shows that the CWT of a signal s is a filter with a
constant relative bandwidth ∆ω/ω = const.
Then a straightforward calculation shows that this transform conserves energy (in the sense
of signal processing), that is,

∫∫

|S(τ, a)|2 da dτ

a2
= cg

∫

∞

−∞

|s(t)|2 dt. (A.4)

Clearly we must require the wavelet g to satisfy the so-called admissibility condition, namely,

cg ≡ 2π

∫

|G(ω)|2 dω

|ω| < ∞. (A.5)
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−10 0 10−10 0 10
Fig. 20. Two usual one-dimensional wavelets: (left) The Mexican hat or Marr wavelet; (right)
The real part of the 1-D Morlet wavelet, for ω0 = 5.6.

Eq.(A.4) means that the CWT is an isometry from the space of signals onto a closed subspace
Hg of L2(R2

+, da dτ/a2), where R
2
+ denotes the scale-position half-plane R

2
+ = {(τ, a), τ ∈

R, a > 0}. Therefore, the CWT may be inverted on its range Hg by the adjoint map, and this
gives an exact reconstruction formula:

s(t) = c−1
g

∫∫

g(τ,a)(t) S(τ, a)
da dτ

a
. (A.6)

This formula may also be interpreted as an expansion of the signal into the wavelets g(τ,a),

with (wavelet) coefficients S(τ, a).
A necessary (and almost sufficient) condition for admissibility is that the wavelet have no DC
component:

G(0) = 0 ⇐⇒
∫

g(t) dt = 0. (A.7)

This is in fact the admissibility condition that is used in practice.
This transform is very general in the sense that there is one CWT for each choice of the
analysing wavelet g. For each application, one should select an analysing wavelet adapted
to the type of signal at hand. For instance, in order to detect and to characterize the singular-
ities of a signal or a curve, it is advantageous to use as analysing wavelet a derivative of the
Gaussian, for instance, the familiar Mexican hat (Figure 20, left),

gH(x) = (1 − x2) e−x2/2 ⇔ GH(ω) = ω
2 e−ω

2
. (A.8)

In our case, MRS signals are relatively well defined in frequency, so it is more interesting to
use analysing wavelets which are well localized in frequency space. This is the case of the
Morlet wavelet, defined by

gM(t) = eiω0t e−t2/(2σ
2
0 ) + h(t) ⇔ GM(ω) =

√
2π σ0 e−(ω−ω0)2

σ
2
0 /2 + H(ω), (A.9)

where the correction term h is necessary to enforce the admissibility condition (in the sequel
we shall use the value σ0 = 1). If ω0σ0 is sufficiently large (typically ω0σ0 > 5.5), then h is
numerically negligible, and will indeed be omitted. The Morlet wavelet can be interpreted as
a bandpass linear filter centered around ω = ω0/a and of weight 1/(σ0a) (Figure 20, right).
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−10 0 10 −10 0 10 −10 0 10
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Fig. 21. Support properties of the Morlet wavelet gM: for a = 0.5, 1, 2 (left to right), g(τ,a)
has width 3, 6, 12, respectively (top), while G(τ,a) has width 3, 1.5, 0.75, and peaks at 12, 6, 3
(bottom).

All the results presented here have been obtained with the Morlet wavelet, but they can easily
be generalized to any analysing wavelet whose Fourier transform has a single maximum at
ω = ω0, or even to the Short Time Fourier Transform (STFT)7 (Delprat et al., 1992).
An important fact is the so-called reproduction property. Indeed it may be shown that the
orthogonal projection Pg from L2(R2

+, dadτ/a2) onto the closed subspace Hg (the space of
wavelet transforms) is an integral operator, with kernel

K(τ′, a′; τ, a) = c−1
g 〈g(τ′ ,a′)|g(τ,a)〉. (A.10)

In other words, a function f ∈ L2(R2
+, da dτ/a2) is the WT of some signal if and only if it

satisfies the reproduction identity

f (τ′, a′) =
∫∫

K(τ′, a′; τ, a) f (τ, a)
da dτ

a2
. (A.11)

For this reason, K is called the reproducing kernel of g. It is also the autocorrelation function g
and as such it plays an essential role in calibrating the CWT (Antoine, 1994).
Now the relation (A.11) shows that the CWT is enormously redundant (the signal has been
unfolded from one variable t to two variables (τ, a)). Thus it is not surprising that the whole
information is already contained in a small subset of the values of S(τ, a). An example of
such a subset is the so-called skeleton, that is, the set of ridges, which are essentially the lines of
maxima of the modulus of the WT (in the case of a monochromatic signal, the ridges become
horizontal lines a = ar, as we have seen in Section 2). Another example is obtained by taking
an appropriate discrete subset Γ = {aj, τk} of the half-plane R

2
+, as it is necessary in any case

7 The STFT is obtained by replacing scaling by modulation in the definition of the wavelets, that is,

replacing Eq.(A.1) by g̃(τ,a)(t) = eit/a g(t − τ).
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for numerical evaluation of the integrals. However, for most wavelets g, the resulting family
{g(aj ,τk)} is never an orthogonal basis (for the Morlet wavelet, for instance, the kernel K is a

Gaussian, thus it never vanishes). At best, it is an overcomplete set of vectors, technically
called a frame, provided Γ contains sufficiently many points (Daubechies, 1992).

A.2. Localization properties and interpretation

The main virtues of the CWT follow from the support properties of g. Assume g and G to
be as well localized as possible (compatible with the Fourier uncertainty principle). More
specifically, assume that g has an ‘essential’ support of width L, centered around 0, while G
has an essential support of width Ω, centered around ω0. Then the transformed wavelets
g(τ,a) and G(τ,a) have, respectively, an essential support of width aL around τ and an essential
support of width Ω/a around ω0/a. This behavior is illustrated in Figure 21, which shows
the Morlet wavelet in the time and frequency domains, for three successive scales a = 0.5, 1
and 2, from left to right. Notice that the product of the two widths is constant (we know it has
to be bounded below by a fixed constant, by the (Fourier) uncertainty principle). Remember
that 1/a behaves like a frequency. Therefore:

• if a ≫ 1, g(τ,a) is a wide window, whereas G(τ,a) is very peaked around a small fre-
quency ω0/a: this transform is most sensitive to low frequencies.

• if a ≪ 1, g(τ,a) is a narrow window and G(τ,a) is wide and centered around a high
frequency ω0/a: this wavelet has a good localization capability in the space domain
and is mostly sensitive to high frequencies.

Combining now these localization properties with the zero mean condition and the fact that
g(τ,a) acts like a filter (convolution), we see that the CWT performs a local filtering, both in time

and in scale. The WT S(τ, a) is nonnegligible only when the wavelet g(τ,a) matches the signal

s(t), that is, it filters the part of the signal, if any, that lives around the time τ and the scale a.
Taking all these properties together, one is naturally led to the interpretation of the CWT as
a mathematical microscope, with optics g, position τ and global magnification 1/a. In addition,
the analysis works at constant relative bandwidth (∆ω/ω = constant), so that it has a better
resolution at high frequency, i.e., small scales. This property makes it an ideal tool for detect-
ing singularities (for instance, discontinuities in the signal or one of its derivatives), and also
scale dependent features, in particular, for analysing fractals.

A.3. Implementation questions

Faced with this new tool, one must begin by learning the rules of the trade, that is, one must
learn how to read and understand a CWT (Grossmann et al., 1990). The simplest way is to
get some practice on very simple academic signals, such as a simple discontinuity in time or a
monochromatic signal (pure sinusoid). We note that it is natural to use a logarithmic scale for
the scale parameter a. The visual effect is that the lines, τ/a = constant, are not straight lines,
but hyperbolic curves; at the same time, the horizon a = 0 recedes to infinity (see Figure 22).
The analysing wavelet g is supposed to be complex, so that we may treat separately the mod-
ulus and the phase of the transform. The scale axis, in units of ln a, points downward, so that
high frequencies (small a) correspond to the top of the plots, and low frequencies (large a)
to the bottom. The results are presented by coding the height of the function by density of
points (12 levels of gray, from white to black). The phase is 2π-periodic. When it reaches 2π,
it is wrapped around to the value 0. Thus the lines of constant phase with value 2kπ are lines
of discontinuity, where the density of points drops abruptly from 1 (black) to 0 (white). In
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Fig. 22. Morlet WT of a δ function: (left) modulus; (right) phase.

addition, the functions plotted are thresholded at 1% of the maximum value of the modulus
of S(τ, a). We will now analyse the two academic signals mentioned above.
(i) A simple discontinuity

The simplest signal is a simple discontinuity in time, at t = t0, modelled by s(t) = δ(t − t0).
The WT is obtained immediately and reads

S(τ, a) = a−1/2 g
(
a−1(t0 − τ)

)

. (A.12)

The following features may be read off Eq.(A.12):

• The phase of S(τ, a) is constant on the lines τ/a = constant, originating from the point
τ = t0 on the horizon. These lines point towards the position of the singularity, like a
finger.

• On the same lines of constant phase, the modulus of S(τ, a) increases as a−1/2 when
a → 0, so that the singularity is enhanced. The effect is even more pronounced if one
uses the L1 normalisation.

This is illustrated on Figure 22, which presents the modulus and phase of the WT of a δ func-
tion, using a standard Morlet wavelet (but the result is independent of the choice of g).
The interesting point is that this behavior is extremely robust. For instance, the ‘finger’ point-
ing to a δ-singularity remains clearly visible when the latter is superposed on a continuous
signal (even if the amplitude of the δ function is too small to be invisible on the signal it-
self), or even in the presence of substantial background noise. Similarly, the discontinuity
corresponding to the abrupt onset of a signal is readily identified with the CWT. We refer to
(Grossmann et al., 1990) for several spectacular examples.
This is the origin of the edge or boundary effects that we have encountered in Section 4.1. The
first notion is that of cone of confidence or cone of influence. Let the wavelet g vanish outside
the interval Ig = [tmin, tmax]. Then, given a point t0 in the support of the signal, the region
in which it influences the WT is the cone τ ∈ aIg + t0 = [−atmin + t0, atmax + t0]. Thus
the region of influence increases linearly with a. The effect is clearly seen in Figure 1: the
cones of influence of the two endpoints of the spectrum are the regions where the phase of the
WT differs from that of a pure sinusoid (see (ii) below). This is the region to be avoided, as
discussed in Section 4.1.
(ii) A single monochromatic wave
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Fig. 23. Morlet WT of a single sinusoid: (left) modulus; (right) phase.

Equally simple is a single harmonic signal (monochromatic wave):

s(t) = eiωst ⇔ S(ω) =
1√
2π

δ(ω − ωs), (A.13)

which gives

S(τ, a) =

√

a

2π

G(aωs) eiωsτ = S(a, 0) eiωsτ . (A.14)

The same relations remain true for a real monochromatic signal, s(t) = sin ωst or s(t) =
cos ωst, if the wavelet g is progressive (that is, G(ω) = 0 for ω � 0).
Again two important properties may be read off immediately from Eq.(A.14):

• The modulus of S(τ, a) is independent of τ. Hence, the graph of |S(τ, a)| consists of
horizontal bands and the profile for a fixed time τ essentially reproduces the profile of
G.

• The phase of S(τ, a) is linear in τ. Since the phase is 2π-periodic, the graph of Φ(τ, a) :=
arg S(τ, a) is a linear sawtooth function:

Φ(τ, a) = ωsτ (mod 2π). (A.15)

These properties are illustrated on Figure 23 for a single sine function analysed with a Morlet
wavelet. This pattern of equidistant vertical black-to-white bands is the signature of a pure
frequency signal. This can be seen already in Figure 1.
Both the modulus and the phase allow to determine the frequency ωs of the signal. If the
modulus of the wavelet G(ω) has a single maximum for ω = ω0, Eq.(A.14) gives immediately
ωs = ω0/ar, where ar is the scale corresponding to the maximum in the profile of |S(τ, a)| for
fixed τ. For instance, the (truncated) Morlet wavelet g(t) = exp(iω0t) exp(−t2/2) yields:

S(τ, a) =
√

a e−
1
2 (aωs−ω0)2

eiωsτ , (A.16)

and the result is obvious. As for the phase, Eq.(A.15) gives, at least locally:

∂Φ(τ, a)

∂τ
= ωs =

ω0

ar
. (A.17)
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A.4. The discrete wavelet transform

Notice that the discretized CWT which is used in practice, including in the present text, is
totally different from the so-called discrete WT (DWT). Indeed, orthogonal bases of wavelets
may be constructed, but from a completely different approach based on the notion of multires-
olution analysis.
We emphasize that the DWT is totally different in spirit from the CWT, either truly continuous
or discretized, and they have complementary ranges of applications:

• In the CWT, there is a lot of freedom in choosing the wavelet g, but one does not get an
orthonormal basis, at best a frame. This is a tool for analysis and feature determination,
as in MRS or other problems where the scaling properties of the signal are unknown a
priori, for instance in fractal analysis.

• In the DWT, one insists on having an orthonormal basis, but the wavelet is derived from
the multiresolution analysis. This is the preferred tool for data compression and signal
synthesis, and the most popular in the signal processing community.

More radically, one may even say that the kind of problems treated here can be solved only
with the CWT, the DWT is simply not adapted to the underlying physics, although it has been
proposed for MRS (Neue, 1996). For instance, the algorithm for detecting spectral lines, as
well as the ridge concept, rest upon a stationary phase argument. Similarly, the determination
of fractal exponents exploits the scaling behaviour of homogeneous functions or distributions
and the covariance properties of the CWT. All these notions are foreign to the DWT, which is
more a signal processing tool.
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